stl_alloc.h
上传用户:kellyonhid
上传日期:2013-10-12
资源大小:932k
文件大小:32k
- /*
- * Copyright (c) 1996-1997
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- */
- /* NOTE: This is an internal header file, included by other STL headers.
- * You should not attempt to use it directly.
- */
- #ifndef __SGI_STL_INTERNAL_ALLOC_H
- #define __SGI_STL_INTERNAL_ALLOC_H
- #ifdef __SUNPRO_CC
- # define __PRIVATE public
- // Extra access restrictions prevent us from really making some things
- // private.
- #else
- # define __PRIVATE private
- #endif
- #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
- # define __USE_MALLOC
- #endif
- // This implements some standard node allocators. These are
- // NOT the same as the allocators in the C++ draft standard or in
- // in the original STL. They do not encapsulate different pointer
- // types; indeed we assume that there is only one pointer type.
- // The allocation primitives are intended to allocate individual objects,
- // not larger arenas as with the original STL allocators.
- #if 0
- # include <new>
- # define __THROW_BAD_ALLOC throw bad_alloc()
- #elif !defined(__THROW_BAD_ALLOC)
- # include <iostream.h>
- # define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1)
- #endif
- #ifdef __STL_WIN32THREADS
- # include <windows.h>
- #endif
- #include <stddef.h>
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #ifndef __RESTRICT
- # define __RESTRICT
- #endif
- #if !defined(_PTHREADS) && !defined(_NOTHREADS)
- && !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS)
- # define _NOTHREADS
- #endif
- # ifdef _PTHREADS
- // POSIX Threads
- // This is dubious, since this is likely to be a high contention
- // lock. Performance may not be adequate.
- # include <pthread.h>
- # define __NODE_ALLOCATOR_LOCK
- if (threads) pthread_mutex_lock(&_S_node_allocator_lock)
- # define __NODE_ALLOCATOR_UNLOCK
- if (threads) pthread_mutex_unlock(&_S_node_allocator_lock)
- # define __NODE_ALLOCATOR_THREADS true
- # define __VOLATILE volatile // Needed at -O3 on SGI
- # endif
- # ifdef __STL_WIN32THREADS
- // The lock needs to be initialized by constructing an allocator
- // objects of the right type. We do that here explicitly for alloc.
- # define __NODE_ALLOCATOR_LOCK
- EnterCriticalSection(&_S_node_allocator_lock)
- # define __NODE_ALLOCATOR_UNLOCK
- LeaveCriticalSection(&_S_node_allocator_lock)
- # define __NODE_ALLOCATOR_THREADS true
- # define __VOLATILE volatile // may not be needed
- # endif /* WIN32THREADS */
- # ifdef __STL_SGI_THREADS
- // This should work without threads, with sproc threads, or with
- // pthreads. It is suboptimal in all cases.
- // It is unlikely to even compile on nonSGI machines.
- extern "C" {
- extern int __us_rsthread_malloc;
- }
- // The above is copied from malloc.h. Including <malloc.h>
- // would be cleaner but fails with certain levels of standard
- // conformance.
- # define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc)
- { _S_lock(&_S_node_allocator_lock); }
- # define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc)
- { _S_unlock(&_S_node_allocator_lock); }
- # define __NODE_ALLOCATOR_THREADS true
- # define __VOLATILE volatile // Needed at -O3 on SGI
- # endif
- # ifdef _NOTHREADS
- // Thread-unsafe
- # define __NODE_ALLOCATOR_LOCK
- # define __NODE_ALLOCATOR_UNLOCK
- # define __NODE_ALLOCATOR_THREADS false
- # define __VOLATILE
- # endif
- __STL_BEGIN_NAMESPACE
- #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
- #pragma set woff 1174
- #endif
- // Malloc-based allocator. Typically slower than default alloc below.
- // Typically thread-safe and more storage efficient.
- #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
- # ifdef __DECLARE_GLOBALS_HERE
- void (* __malloc_alloc_oom_handler)() = 0;
- // g++ 2.7.2 does not handle static template data members.
- # else
- extern void (* __malloc_alloc_oom_handler)();
- # endif
- #endif
- template <int __inst>
- class __malloc_alloc_template {
- private:
- static void* _S_oom_malloc(size_t);
- static void* _S_oom_realloc(void*, size_t);
- #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
- static void (* __malloc_alloc_oom_handler)();
- #endif
- public:
- static void* allocate(size_t __n)
- {
- void* __result = malloc(__n);
- if (0 == __result) __result = _S_oom_malloc(__n);
- return __result;
- }
- static void deallocate(void* __p, size_t /* __n */)
- {
- free(__p);
- }
- static void* reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
- {
- void* __result = realloc(__p, __new_sz);
- if (0 == __result) __result = _S_oom_realloc(__p, __new_sz);
- return __result;
- }
- static void (* __set_malloc_handler(void (*__f)()))()
- {
- void (* __old)() = __malloc_alloc_oom_handler;
- __malloc_alloc_oom_handler = __f;
- return(__old);
- }
- };
- // malloc_alloc out-of-memory handling
- #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
- template <int __inst>
- void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0;
- #endif
- template <int __inst>
- void*
- __malloc_alloc_template<__inst>::_S_oom_malloc(size_t __n)
- {
- void (* __my_malloc_handler)();
- void* __result;
- for (;;) {
- __my_malloc_handler = __malloc_alloc_oom_handler;
- if (0 == __my_malloc_handler) { __THROW_BAD_ALLOC; }
- (*__my_malloc_handler)();
- __result = malloc(__n);
- if (__result) return(__result);
- }
- }
- template <int __inst>
- void* __malloc_alloc_template<__inst>::_S_oom_realloc(void* __p, size_t __n)
- {
- void (* __my_malloc_handler)();
- void* __result;
- for (;;) {
- __my_malloc_handler = __malloc_alloc_oom_handler;
- if (0 == __my_malloc_handler) { __THROW_BAD_ALLOC; }
- (*__my_malloc_handler)();
- __result = realloc(__p, __n);
- if (__result) return(__result);
- }
- }
- typedef __malloc_alloc_template<0> malloc_alloc;
- template<class _T, class _Alloc>
- class simple_alloc {
- public:
- static _T* allocate(size_t __n)
- { return 0 == __n ? 0 : (_T*) _Alloc::allocate(__n * sizeof (_T)); }
- static _T* allocate(void)
- { return (_T*) _Alloc::allocate(sizeof (_T)); }
- static void deallocate(_T* __p, size_t __n)
- { if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_T)); }
- static void deallocate(_T* __p)
- { _Alloc::deallocate(__p, sizeof (_T)); }
- };
- // Allocator adaptor to check size arguments for debugging.
- // Reports errors using assert. Checking can be disabled with
- // NDEBUG, but it's far better to just use the underlying allocator
- // instead when no checking is desired.
- // There is some evidence that this can confuse Purify.
- template <class _Alloc>
- class debug_alloc {
- private:
- enum {_S_extra = 8}; // Size of space used to store size. Note
- // that this must be large enough to preserve
- // alignment.
- public:
- static void* allocate(size_t __n)
- {
- char* __result = (char*)_Alloc::allocate(__n + _S_extra);
- *(size_t*)__result = __n;
- return __result + _S_extra;
- }
- static void deallocate(void* __p, size_t __n)
- {
- char* __real_p = (char*)__p - _S_extra;
- assert(*(size_t*)__real_p == __n);
- _Alloc::deallocate(__real_p, __n + _S_extra);
- }
- static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz)
- {
- char* __real_p = (char*)__p - _S_extra;
- assert(*(size_t*)__real_p == __old_sz);
- char* __result = (char*)
- _Alloc::reallocate(__real_p, __old_sz + _S_extra, __new_sz + _S_extra);
- *(size_t*)__result = __new_sz;
- return __result + _S_extra;
- }
- };
- # ifdef __USE_MALLOC
- typedef malloc_alloc alloc;
- typedef malloc_alloc single_client_alloc;
- # else
- // Default node allocator.
- // With a reasonable compiler, this should be roughly as fast as the
- // original STL class-specific allocators, but with less fragmentation.
- // Default_alloc_template parameters are experimental and MAY
- // DISAPPEAR in the future. Clients should just use alloc for now.
- //
- // Important implementation properties:
- // 1. If the client request an object of size > _MAX_BYTES, the resulting
- // object will be obtained directly from malloc.
- // 2. In all other cases, we allocate an object of size exactly
- // _S_round_up(requested_size). Thus the client has enough size
- // information that we can return the object to the proper free list
- // without permanently losing part of the object.
- //
- // The first template parameter specifies whether more than one thread
- // may use this allocator. It is safe to allocate an object from
- // one instance of a default_alloc and deallocate it with another
- // one. This effectively transfers its ownership to the second one.
- // This may have undesirable effects on reference locality.
- // The second parameter is unreferenced and serves only to allow the
- // creation of multiple default_alloc instances.
- // Node that containers built on different allocator instances have
- // different types, limiting the utility of this approach.
- #ifdef __SUNPRO_CC
- // breaks if we make these template class members:
- enum {_ALIGN = 8};
- enum {_MAX_BYTES = 128};
- enum {_NFREELISTS = _MAX_BYTES/_ALIGN};
- #endif
- template <bool threads, int inst>
- class __default_alloc_template {
- private:
- // Really we should use static const int x = N
- // instead of enum { x = N }, but few compilers accept the former.
- # ifndef __SUNPRO_CC
- enum {_ALIGN = 8};
- enum {_MAX_BYTES = 128};
- enum {_NFREELISTS = _MAX_BYTES/_ALIGN};
- # endif
- static size_t
- _S_round_up(size_t __bytes)
- { return (((__bytes) + _ALIGN-1) & ~(_ALIGN - 1)); }
- __PRIVATE:
- union _Obj {
- union _Obj* _M_free_list_link;
- char _M_client_data[1]; /* The client sees this. */
- };
- private:
- # ifdef __SUNPRO_CC
- static _Obj* __VOLATILE _S_free_list[];
- // Specifying a size results in duplicate def for 4.1
- # else
- static _Obj* __VOLATILE _S_free_list[_NFREELISTS];
- # endif
- static size_t _S_freelist_index(size_t __bytes) {
- return (((__bytes) + _ALIGN-1)/_ALIGN - 1);
- }
- // Returns an object of size __n, and optionally adds to size __n free list.
- static void* _S_refill(size_t __n);
- // Allocates a chunk for nobjs of size size. nobjs may be reduced
- // if it is inconvenient to allocate the requested number.
- static char* _S_chunk_alloc(size_t __size, int& __nobjs);
- // Chunk allocation state.
- static char* _S_start_free;
- static char* _S_end_free;
- static size_t _S_heap_size;
- # ifdef __STL_SGI_THREADS
- static volatile unsigned long _S_node_allocator_lock;
- static void _S_lock(volatile unsigned long*);
- static inline void _S_unlock(volatile unsigned long*);
- # endif
- # ifdef _PTHREADS
- static pthread_mutex_t _S_node_allocator_lock;
- # endif
- # ifdef __STL_WIN32THREADS
- static CRITICAL_SECTION _S_node_allocator_lock;
- static bool _S_node_allocator_lock_initialized;
- public:
- __default_alloc_template() {
- // This assumes the first constructor is called before threads
- // are started.
- if (!_S_node_allocator_lock_initialized) {
- InitializeCriticalSection(&_S_node_allocator_lock);
- _S_node_allocator_lock_initialized = true;
- }
- }
- private:
- # endif
- class _Lock {
- public:
- _Lock() { __NODE_ALLOCATOR_LOCK; }
- ~_Lock() { __NODE_ALLOCATOR_UNLOCK; }
- };
- friend class _Lock;
- public:
- /* __n must be > 0 */
- static void* allocate(size_t __n)
- {
- _Obj* __VOLATILE* __my_free_list;
- _Obj* __RESTRICT __result;
- if (__n > (size_t) _MAX_BYTES) {
- return(malloc_alloc::allocate(__n));
- }
- __my_free_list = _S_free_list + _S_freelist_index(__n);
- // Acquire the lock here with a constructor call.
- // This ensures that it is released in exit or during stack
- // unwinding.
- # ifndef _NOTHREADS
- /*REFERENCED*/
- _Lock __lock_instance;
- # endif
- __result = *__my_free_list;
- if (__result == 0) {
- void* __r = _S_refill(_S_round_up(__n));
- return __r;
- }
- *__my_free_list = __result -> _M_free_list_link;
- return (__result);
- };
- /* __p may not be 0 */
- static void deallocate(void* __p, size_t __n)
- {
- _Obj* __q = (_Obj*)__p;
- _Obj* __VOLATILE* __my_free_list;
- if (__n > (size_t) _MAX_BYTES) {
- malloc_alloc::deallocate(__p, __n);
- return;
- }
- __my_free_list = _S_free_list + _S_freelist_index(__n);
- // acquire lock
- # ifndef _NOTHREADS
- /*REFERENCED*/
- _Lock __lock_instance;
- # endif /* _NOTHREADS */
- __q -> _M_free_list_link = *__my_free_list;
- *__my_free_list = __q;
- // lock is released here
- }
- static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz);
- } ;
- typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
- typedef __default_alloc_template<false, 0> single_client_alloc;
- /* We allocate memory in large chunks in order to avoid fragmenting */
- /* the malloc heap too much. */
- /* We assume that size is properly aligned. */
- /* We hold the allocation lock. */
- template <bool __threads, int __inst>
- char*
- __default_alloc_template<__threads, __inst>::_S_chunk_alloc(size_t __size,
- int& __nobjs)
- {
- char* __result;
- size_t __total_bytes = __size * __nobjs;
- size_t __bytes_left = _S_end_free - _S_start_free;
- if (__bytes_left >= __total_bytes) {
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return(__result);
- } else if (__bytes_left >= __size) {
- __nobjs = (int)(__bytes_left/__size);
- __total_bytes = __size * __nobjs;
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return(__result);
- } else {
- size_t __bytes_to_get =
- 2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
- // Try to make use of the left-over piece.
- if (__bytes_left > 0) {
- _Obj* __VOLATILE* __my_free_list =
- _S_free_list + _S_freelist_index(__bytes_left);
- ((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list;
- *__my_free_list = (_Obj*)_S_start_free;
- }
- _S_start_free = (char*)malloc(__bytes_to_get);
- if (0 == _S_start_free) {
- size_t __i;
- _Obj* __VOLATILE* __my_free_list;
- _Obj* __p;
- // Try to make do with what we have. That can't
- // hurt. We do not try smaller requests, since that tends
- // to result in disaster on multi-process machines.
- for (__i = __size; __i <= _MAX_BYTES; __i += _ALIGN) {
- __my_free_list = _S_free_list + _S_freelist_index(__i);
- __p = *__my_free_list;
- if (0 != __p) {
- *__my_free_list = __p -> _M_free_list_link;
- _S_start_free = (char*)__p;
- _S_end_free = _S_start_free + __i;
- return(_S_chunk_alloc(__size, __nobjs));
- // Any leftover piece will eventually make it to the
- // right free list.
- }
- }
- _S_end_free = 0; // In case of exception.
- _S_start_free = (char*)malloc_alloc::allocate(__bytes_to_get);
- // This should either throw an
- // exception or remedy the situation. Thus we assume it
- // succeeded.
- }
- _S_heap_size += __bytes_to_get;
- _S_end_free = _S_start_free + __bytes_to_get;
- return(_S_chunk_alloc(__size, __nobjs));
- }
- }
- /* Returns an object of size __n, and optionally adds to size __n free list.*/
- /* We assume that __n is properly aligned. */
- /* We hold the allocation lock. */
- template <bool __threads, int __inst>
- void*
- __default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
- {
- int __nobjs = 20;
- char* __chunk = _S_chunk_alloc(__n, __nobjs);
- _Obj* __VOLATILE* __my_free_list;
- _Obj* __result;
- _Obj* __current_obj;
- _Obj* __next_obj;
- int __i;
- if (1 == __nobjs) return(__chunk);
- __my_free_list = _S_free_list + _S_freelist_index(__n);
- /* Build free list in chunk */
- __result = (_Obj*)__chunk;
- *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
- for (__i = 1; ; __i++) {
- __current_obj = __next_obj;
- __next_obj = (_Obj*)((char*)__next_obj + __n);
- if (__nobjs - 1 == __i) {
- __current_obj -> _M_free_list_link = 0;
- break;
- } else {
- __current_obj -> _M_free_list_link = __next_obj;
- }
- }
- return(__result);
- }
- template <bool threads, int inst>
- void*
- __default_alloc_template<threads, inst>::reallocate(void* __p,
- size_t __old_sz,
- size_t __new_sz)
- {
- void* __result;
- size_t __copy_sz;
- if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES) {
- return(realloc(__p, __new_sz));
- }
- if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p);
- __result = allocate(__new_sz);
- __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
- memcpy(__result, __p, __copy_sz);
- deallocate(__p, __old_sz);
- return(__result);
- }
- #ifdef _PTHREADS
- template <bool __threads, int __inst>
- pthread_mutex_t
- __default_alloc_template<__threads, __inst>::_S_node_allocator_lock
- = PTHREAD_MUTEX_INITIALIZER;
- #endif
- #ifdef __STL_WIN32THREADS
- template <bool __threads, int __inst>
- CRITICAL_SECTION
- __default_alloc_template<__threads, __inst>::
- _S_node_allocator_lock;
- template <bool __threads, int __inst>
- bool
- __default_alloc_template<__threads, __inst>::
- _S_node_allocator_lock_initialized
- = false;
- #endif
- #ifdef __STL_SGI_THREADS
- __STL_END_NAMESPACE
- #include <mutex.h>
- #include <time.h> /* XXX should use <ctime> */
- __STL_BEGIN_NAMESPACE
- // Somewhat generic lock implementations. We need only test-and-set
- // and some way to sleep. These should work with both SGI pthreads
- // and sproc threads. They may be useful on other systems.
- template <bool __threads, int __inst>
- volatile unsigned long
- __default_alloc_template<__threads, __inst>::_S_node_allocator_lock = 0;
- #if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__)
- # define __test_and_set(l,v) test_and_set(l,v)
- #endif
- template <bool __threads, int __inst>
- void
- __default_alloc_template<__threads, __inst>::
- _S_lock(volatile unsigned long* __lock)
- {
- const unsigned __low_spin_max = 30; // spins if we suspect uniprocessor
- const unsigned __high_spin_max = 1000; // spins for multiprocessor
- static unsigned __spin_max = __low_spin_max;
- unsigned __my_spin_max;
- static unsigned __last_spins = 0;
- unsigned __my_last_spins;
- unsigned __junk;
- # define __ALLOC_PAUSE
- __junk *= __junk; __junk *= __junk; __junk *= __junk; __junk *= __junk
- int __i;
- if (!__test_and_set((unsigned long*)__lock, 1)) {
- return;
- }
- __my_spin_max = __spin_max;
- __my_last_spins = __last_spins;
- for (__i = 0; __i < __my_spin_max; __i++) {
- if (__i < __my_last_spins/2 || *__lock) {
- __ALLOC_PAUSE;
- continue;
- }
- if (!__test_and_set((unsigned long*)__lock, 1)) {
- // got it!
- // Spinning worked. Thus we're probably not being scheduled
- // against the other process with which we were contending.
- // Thus it makes sense to spin longer the next time.
- __last_spins = __i;
- __spin_max = __high_spin_max;
- return;
- }
- }
- // We are probably being scheduled against the other process. Sleep.
- __spin_max = __low_spin_max;
- for (__i = 0 ;; ++__i) {
- struct timespec __ts;
- int __log_nsec = __i + 6;
- if (!__test_and_set((unsigned long *)__lock, 1)) {
- return;
- }
- if (__log_nsec > 27) __log_nsec = 27;
- /* Max sleep is 2**27nsec ~ 60msec */
- __ts.tv_sec = 0;
- __ts.tv_nsec = 1 << __log_nsec;
- nanosleep(&__ts, 0);
- }
- }
- template <bool __threads, int __inst>
- inline void
- __default_alloc_template<__threads, __inst>::_S_unlock(
- volatile unsigned long* __lock)
- {
- # if defined(__GNUC__) && __mips >= 3
- asm("sync");
- *__lock = 0;
- # elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64))
- __lock_release(__lock);
- # else
- *__lock = 0;
- // This is not sufficient on many multiprocessors, since
- // writes to protected variables and the lock may be reordered.
- # endif
- }
- #endif
- template <bool __threads, int __inst>
- char* __default_alloc_template<__threads, __inst>::_S_start_free = 0;
- template <bool __threads, int __inst>
- char* __default_alloc_template<__threads, __inst>::_S_end_free = 0;
- template <bool __threads, int __inst>
- size_t __default_alloc_template<__threads, __inst>::_S_heap_size = 0;
- template <bool __threads, int __inst>
- __default_alloc_template<__threads, __inst>::_Obj* __VOLATILE
- __default_alloc_template<__threads, __inst> ::_S_free_list[
- # ifdef __SUNPRO_CC
- _NFREELISTS
- # else
- __default_alloc_template<__threads, __inst>::_NFREELISTS
- # endif
- ] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
- // The 16 zeros are necessary to make version 4.1 of the SunPro
- // compiler happy. Otherwise it appears to allocate too little
- // space for the array.
- # ifdef __STL_WIN32THREADS
- // Create one to get critical section initialized.
- // We do this onece per file, but only the first constructor
- // does anything.
- static alloc __node_allocator_dummy_instance;
- # endif
- #endif /* ! __USE_MALLOC */
- // This implements allocators as specified in the C++ standard.
- //
- // Note that standard-conforming allocators use many language features
- // that are not yet widely implemented. In particular, they rely on
- // member templates, partial specialization, partial ordering of function
- // templates, the typename keyword, and the use of the template keyword
- // to refer to a template member of a dependent type.
- #ifdef __STL_USE_STD_ALLOCATORS
- template <class _T>
- class allocator {
- typedef alloc _Alloc; // The underlying allocator.
- public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef _T* pointer;
- typedef const _T* const_pointer;
- typedef _T& reference;
- typedef const _T& const_reference;
- typedef _T value_type;
- template <class _T1> struct rebind {
- typedef allocator<_T1> other;
- };
- allocator() __STL_NOTHROW {}
- allocator(const allocator&) __STL_NOTHROW {}
- template <class _T1> allocator(const allocator<_T1>&) __STL_NOTHROW {}
- ~allocator() __STL_NOTHROW {}
- pointer address(reference __x) const { return &__x; }
- const_pointer address(const_reference __x) const { return &__x; }
- // __n is permitted to be 0. The C++ standard says nothing about what
- // the return value is when __n == 0.
- _T* allocate(size_type __n, const void* = 0) {
- return __n != 0 ? static_cast<_T*>(_Alloc::allocate(__n * sizeof(_T)))
- : 0;
- }
- // __p is not permitted to be a null pointer.
- void deallocate(pointer __p, size_type __n)
- { _Alloc::deallocate(__p, __n * sizeof(_T)); }
- size_type max_size() const __STL_NOTHROW
- { return size_t(-1) / sizeof(_T); }
- void construct(pointer __p, const _T& __val) { new(__p) _T(__val); }
- void destroy(pointer __p) { __p->~_T(); }
- };
- template<>
- class allocator<void> {
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef void* pointer;
- typedef const void* const_pointer;
- typedef void value_type;
- template <class _T1> struct rebind {
- typedef allocator<_T1> other;
- };
- };
- template <class T1, class T2>
- inline bool operator==(const allocator<T1>& __a1,
- const allocator<T2>& __a2)
- {
- return true;
- }
- template <class T1, class T2>
- inline bool operator!=(const allocator<T1>& __a1,
- const allocator<T2>& __a2)
- {
- return false;
- }
- // Allocator adaptor to turn an SGI-style allocator (e.g. alloc, malloc_alloc)
- // into a standard-conforming allocator. Note that this adaptor does
- // *not* assume that all objects of the underlying alloc class are
- // identical, nor does it assume that all of the underlying alloc's
- // member functions are static member functions. Note, also, that
- // __allocator<_T, alloc> is essentially the same thing as allocator<_T>.
- template <class _T, class _Alloc>
- struct __allocator {
- _Alloc __underlying_alloc;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef _T* pointer;
- typedef const _T* const_pointer;
- typedef _T& reference;
- typedef const _T& const_reference;
- typedef _T value_type;
- template <class _T1> struct rebind {
- typedef __allocator<_T1, _Alloc> other;
- };
- __allocator() __STL_NOTHROW {}
- __allocator(const __allocator& __a) __STL_NOTHROW
- : __underlying_alloc(__a.__underlying_alloc) {}
- template <class _T1>
- __allocator(const __allocator<_T1, _Alloc>& __a) __STL_NOTHROW
- : __underlying_alloc(__a.__underlying_alloc) {}
- ~__allocator() __STL_NOTHROW {}
- pointer address(reference __x) const { return &__x; }
- const_pointer address(const_reference __x) const { return &__x; }
- // __n is permitted to be 0.
- _T* allocate(size_type __n, const void* = 0) {
- return __n != 0
- ? static_cast<_T*>(__underlying_alloc.allocate(__n * sizeof(_T)))
- : 0;
- }
- // __p is not permitted to be a null pointer.
- void deallocate(pointer __p, size_type __n)
- { __underlying_alloc.deallocate(__p, __n * sizeof(_T)); }
- size_type max_size() const __STL_NOTHROW
- { return size_t(-1) / sizeof(_T); }
- void construct(pointer __p, const _T& __val) { new(__p) _T(__val); }
- void destroy(pointer __p) { __p->~_T(); }
- };
- template <class _Alloc>
- class __allocator<void, _Alloc> {
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef void* pointer;
- typedef const void* const_pointer;
- typedef void value_type;
- template <class _T1> struct rebind {
- typedef __allocator<_T1, _Alloc> other;
- };
- };
- template <class _T, class _Alloc>
- inline bool operator==(const __allocator<_T, _Alloc>& __a1,
- const __allocator<_T, _Alloc>& __a2)
- {
- return __a1.__underlying_alloc == __a2.__underlying_alloc;
- }
- #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
- template <class _T, class _Alloc>
- inline bool operator!=(const __allocator<_T, _Alloc>& __a1,
- const __allocator<_T, _Alloc>& __a2)
- {
- return __a1.__underlying_alloc != __a2.__underlying_alloc;
- }
- #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
- // Comparison operators for all of the predifined SGI-style allocators.
- // This ensures that __allocator<malloc_alloc> (for example) will
- // work correctly.
- template <int inst>
- inline bool operator==(const __malloc_alloc_template<inst>&,
- const __malloc_alloc_template<inst>&)
- {
- return true;
- }
- #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
- template <int __inst>
- inline bool operator!=(const __malloc_alloc_template<__inst>&,
- const __malloc_alloc_template<__inst>&)
- {
- return false;
- }
- #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
- template <bool __threads, int __inst>
- inline bool operator==(const __default_alloc_template<__threads, __inst>&,
- const __default_alloc_template<__threads, __inst>&)
- {
- return true;
- }
- #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
- template <bool __threads, int __inst>
- inline bool operator!=(const __default_alloc_template<__threads, __inst>&,
- const __default_alloc_template<__threads, __inst>&)
- {
- return false;
- }
- #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
- template <class _Alloc>
- inline bool operator==(const debug_alloc<_Alloc>&,
- const debug_alloc<_Alloc>&) {
- return true;
- }
- #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
- template <class _Alloc>
- inline bool operator!=(const debug_alloc<_Alloc>&,
- const debug_alloc<_Alloc>&) {
- return false;
- }
- #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
- // Another allocator adaptor: _Alloc_traits. This serves two
- // purposes. First, make it possible to write containers that can use
- // either SGI-style allocators or standard-conforming allocator.
- // Second, provide a mechanism so that containers can query whether or
- // not the allocator has distinct instances. If not, the container
- // can avoid wasting a word of memory to store an empty object.
- // This adaptor uses partial specialization. The general case of
- // _Alloc_traits<_T, _Alloc> assumes that _Alloc is a
- // standard-conforming allocator, possibly with non-equal instances
- // and non-static members. (It still behaves correctly even if _Alloc
- // has static member and if all instances are equal. Refinements
- // affect performance, not correctness.)
- // There are always two members: allocator_type, which is a standard-
- // conforming allocator type for allocating objects of type _T, and
- // _S_instanceless, a static const member of type bool. If
- // _S_instanceless is true, this means that there is no difference
- // between any two instances of type allocator_type. Furthermore, if
- // _S_instanceless is true, then _Alloc_traits has one additional
- // member: _Alloc_type. This type encapsulates allocation and
- // deallocation of objects of type _T through a static interface; it
- // has two member functions, whose signatures are
- // static _T* allocate(size_t)
- // static void deallocate(_T*, size_t)
- // The fully general version.
- template <class _T, class _Allocator>
- struct _Alloc_traits
- {
- static const bool _S_instanceless = false;
- typedef typename _Allocator::__STL_TEMPLATE rebind<_T>::other
- allocator_type;
- };
- template <class _T, class _Allocator>
- const bool _Alloc_traits<_T, _Allocator>::_S_instanceless;
- // The version for the default allocator.
- template <class _T, class _T1>
- struct _Alloc_traits<_T, allocator<_T1> >
- {
- static const bool _S_instanceless = true;
- typedef simple_alloc<_T, alloc> _Alloc_type;
- typedef allocator<_T> allocator_type;
- };
- // Versions for the predefined SGI-style allocators.
- template <class _T, int __inst>
- struct _Alloc_traits<_T, __malloc_alloc_template<__inst> >
- {
- static const bool _S_instanceless = true;
- typedef simple_alloc<_T, __malloc_alloc_template<__inst> > _Alloc_type;
- typedef __allocator<_T, __malloc_alloc_template<__inst> > allocator_type;
- };
- template <class _T, bool __threads, int __inst>
- struct _Alloc_traits<_T, __default_alloc_template<__threads, __inst> >
- {
- static const bool _S_instanceless = true;
- typedef simple_alloc<_T, __default_alloc_template<__threads, __inst> >
- _Alloc_type;
- typedef __allocator<_T, __default_alloc_template<__threads, __inst> >
- allocator_type;
- };
- template <class _T, class _Alloc>
- struct _Alloc_traits<_T, debug_alloc<_Alloc> >
- {
- static const bool _S_instanceless = true;
- typedef simple_alloc<_T, debug_alloc<_Alloc> > _Alloc_type;
- typedef __allocator<_T, debug_alloc<_Alloc> > allocator_type;
- };
- // Versions for the __allocator adaptor used with the predefined
- // SGI-style allocators.
- template <class _T, class _T1, int __inst>
- struct _Alloc_traits<_T, __allocator<_T1, __malloc_alloc_template<__inst> > >
- {
- static const bool _S_instanceless = true;
- typedef simple_alloc<_T, __malloc_alloc_template<__inst> > _Alloc_type;
- typedef __allocator<_T, __malloc_alloc_template<__inst> > allocator_type;
- };
- template <class _T, class _T1, bool __thr, int __inst>
- struct _Alloc_traits<_T,
- __allocator<_T1,
- __default_alloc_template<__thr, __inst> > >
- {
- static const bool _S_instanceless = true;
- typedef simple_alloc<_T, __default_alloc_template<__thr,__inst> >
- _Alloc_type;
- typedef __allocator<_T, __default_alloc_template<__thr,__inst> >
- allocator_type;
- };
- template <class _T, class _T1, class _Alloc>
- struct _Alloc_traits<_T, __allocator<_T1, debug_alloc<_Alloc> > >
- {
- static const bool _S_instanceless = true;
- typedef simple_alloc<_T, debug_alloc<_Alloc> > _Alloc_type;
- typedef __allocator<_T, debug_alloc<_Alloc> > allocator_type;
- };
- #endif /* __STL_USE_STD_ALLOCATORS */
- #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
- #pragma reset woff 1174
- #endif
- __STL_END_NAMESPACE
- #undef __PRIVATE
- #endif /* __SGI_STL_INTERNAL_ALLOC_H */
- // Local Variables:
- // mode:C++
- // End: