decoder.c
上传用户:wstnjxml
上传日期:2014-04-03
资源大小:7248k
文件大小:32k
源码类别:

Windows CE

开发平台:

C/C++

  1. /* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id: decoder.c,v 1.107 2004/09/08 09:43:11 gcp Exp $ **/ #include "common.h" #include "structs.h" #include <stdlib.h> #include <string.h> #include "decoder.h" #include "mp4.h" #include "syntax.h" #include "error.h" #include "output.h" #include "filtbank.h" #include "drc.h" #ifdef SBR_DEC #include "sbr_dec.h" #include "sbr_syntax.h" #endif #ifdef SSR_DEC #include "ssr.h" #endif #ifdef ANALYSIS uint16_t dbg_count; #endif /* static function declarations */ static void* aac_frame_decode(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo,                               uint8_t *buffer, uint32_t buffer_size,                               void **sample_buffer, uint32_t sample_buffer_size); static void create_channel_config(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo); /*char* NEAACDECAPI NeAACDecGetErrorMessage(uint8_t errcode) {     if (errcode >= NUM_ERROR_MESSAGES)         return NULL;     return err_msg[errcode]; } */
  2. uint32_t NEAACDECAPI NeAACDecGetCapabilities(void) {     uint32_t cap = 0;     /* can't do without it */     cap += LC_DEC_CAP; #ifdef MAIN_DEC     cap += MAIN_DEC_CAP; #endif #ifdef LTP_DEC     cap += LTP_DEC_CAP; #endif #ifdef LD_DEC     cap += LD_DEC_CAP; #endif #ifdef ERROR_RESILIENCE     cap += ERROR_RESILIENCE_CAP; #endif #ifdef FIXED_POINT     cap += FIXED_POINT_CAP; #endif     return cap; } NeAACDecHandle NEAACDECAPI NeAACDecOpen(void) {     uint8_t i;     NeAACDecHandle hDecoder = NULL;     if ((hDecoder = (NeAACDecHandle)faad_malloc(sizeof(NeAACDecStruct))) == NULL)         return NULL;     memset(hDecoder, 0, sizeof(NeAACDecStruct));     hDecoder->config.outputFormat  = FAAD_FMT_16BIT;     hDecoder->config.defObjectType = MAIN;     hDecoder->config.defSampleRate = 44100; /* Default: 44.1kHz */     hDecoder->config.downMatrix = 0;     hDecoder->adts_header_present = 0;     hDecoder->adif_header_present = 0; #ifdef ERROR_RESILIENCE     hDecoder->aacSectionDataResilienceFlag = 0;     hDecoder->aacScalefactorDataResilienceFlag = 0;     hDecoder->aacSpectralDataResilienceFlag = 0; #endif     hDecoder->frameLength = 1024;     hDecoder->frame = 0;     hDecoder->sample_buffer = NULL;
  3.     for (i = 0; i < MAX_CHANNELS; i++)     {         hDecoder->window_shape_prev[i] = 0;         hDecoder->time_out[i] = NULL;         hDecoder->fb_intermed[i] = NULL; #ifdef SSR_DEC         hDecoder->ssr_overlap[i] = NULL;         hDecoder->prev_fmd[i] = NULL; #endif #ifdef MAIN_DEC         hDecoder->pred_stat[i] = NULL; #endif #ifdef LTP_DEC         hDecoder->ltp_lag[i] = 0;         hDecoder->lt_pred_stat[i] = NULL; #endif     } #ifdef SBR_DEC     for (i = 0; i < MAX_SYNTAX_ELEMENTS; i++)     {         hDecoder->sbr[i] = NULL;     } #endif     hDecoder->drc = drc_init(REAL_CONST(1.0), REAL_CONST(1.0));     return hDecoder; } NeAACDecConfigurationPtr NEAACDECAPI NeAACDecGetCurrentConfiguration(NeAACDecHandle hDecoder) {     if (hDecoder)     {         NeAACDecConfigurationPtr config = &(hDecoder->config);         return config;     }     return NULL; } uint8_t NEAACDECAPI NeAACDecSetConfiguration(NeAACDecHandle hDecoder,                                              NeAACDecConfigurationPtr config) {     if (hDecoder && config)     {         /* check if we can decode this object type */         if (can_decode_ot(config->defObjectType) < 0)             return 0;         hDecoder->config.defObjectType = config->defObjectType;         /* samplerate: anything but 0 should be possible */         if (config->defSampleRate == 0)             return 0;         hDecoder->config.defSampleRate = config->defSampleRate;         /* check output format */ #ifdef FIXED_POINT         if ((config->outputFormat < 1) || (config->outputFormat > 4))             return 0; #else         if ((config->outputFormat < 1) || (config->outputFormat > 5))             return 0; #endif         hDecoder->config.outputFormat = config->outputFormat;         if (config->downMatrix > 1)             return 0;         hDecoder->config.downMatrix = config->downMatrix;         /* OK */         return 1;     }     return 0; } int32_t NEAACDECAPI NeAACDecInit(NeAACDecHandle hDecoder, uint8_t *buffer,                                  uint32_t buffer_size,                                  uint32_t *samplerate, uint8_t *channels) {     uint32_t bits = 0;     bitfile ld;     adif_header adif;     adts_header adts;     if ((hDecoder == NULL) || (samplerate == NULL) || (channels == NULL))         return -1;     hDecoder->sf_index = get_sr_index(hDecoder->config.defSampleRate);     hDecoder->object_type = hDecoder->config.defObjectType;     *samplerate = get_sample_rate(hDecoder->sf_index);     *channels = 1;     if (buffer != NULL)     {         faad_initbits(&ld, buffer, buffer_size, 0);         /* Check if an ADIF header is present */         if ((buffer[0] == 'A') && (buffer[1] == 'D') &&             (buffer[2] == 'I') && (buffer[3] == 'F'))         {             hDecoder->adif_header_present = 1;             get_adif_header(&adif, &ld);             faad_byte_align(&ld);             hDecoder->sf_index = adif.pce[0].sf_index;             hDecoder->object_type = adif.pce[0].object_type + 1;             *samplerate = get_sample_rate(hDecoder->sf_index);             *channels = adif.pce[0].channels;             memcpy(&(hDecoder->pce), &(adif.pce[0]), sizeof(program_config));             hDecoder->pce_set = 1;             bits = bit2byte(faad_get_processed_bits(&ld));         /* Check if an ADTS header is present */         } else if (faad_showbits(&ld, 12) == 0xfff) {             hDecoder->adts_header_present = 1;             adts.old_format = hDecoder->config.useOldADTSFormat;             adts_frame(&adts, &ld);             hDecoder->sf_index = adts.sf_index;             hDecoder->object_type = adts.profile + 1;             *samplerate = get_sample_rate(hDecoder->sf_index);             *channels = (adts.channel_configuration > 6) ?                 2 : adts.channel_configuration;         }         if (ld.error)         {             faad_endbits(&ld);             return -1;         }         faad_endbits(&ld);     }     hDecoder->channelConfiguration = *channels; #if (defined(PS_DEC) || defined(DRM_PS))     /* check if we have a mono file */     if (*channels == 1)     {         /* upMatrix to 2 channels for implicit signalling of PS */         *channels = 2;     } #endif #ifdef SBR_DEC     /* implicit signalling */     if (*samplerate <= 24000 && !(hDecoder->config.dontUpSampleImplicitSBR))     {         *samplerate *= 2;         hDecoder->forceUpSampling = 1;     } else if (*samplerate > 24000 && !(hDecoder->config.dontUpSampleImplicitSBR)) {         hDecoder->downSampledSBR = 1;     } #endif     /* must be done before frameLength is divided by 2 for LD */ #ifdef SSR_DEC     if (hDecoder->object_type == SSR)         hDecoder->fb = ssr_filter_bank_init(hDecoder->frameLength/SSR_BANDS);     else #endif
  4. #ifdef LIBPAAC AAC_Filter_Init(&hDecoder->Lib,hDecoder->frameLength);
  5. #else
  6.         hDecoder->fb = filter_bank_init(hDecoder->frameLength);
  7. #endif
  8. #ifdef LD_DEC     if (hDecoder->object_type == LD)         hDecoder->frameLength >>= 1; #endif     if (can_decode_ot(hDecoder->object_type) < 0)         return -1;     return bits; } /* Init the library using a DecoderSpecificInfo */ int8_t NEAACDECAPI NeAACDecInit2(NeAACDecHandle hDecoder, uint8_t *pBuffer,                                  uint32_t SizeOfDecoderSpecificInfo,                                  uint32_t *samplerate, uint8_t *channels) {     int8_t rc;     mp4AudioSpecificConfig mp4ASC;     if((hDecoder == NULL)         || (pBuffer == NULL)         || (SizeOfDecoderSpecificInfo < 2)         || (samplerate == NULL)         || (channels == NULL))     {         return -1;     }     hDecoder->adif_header_present = 0;     hDecoder->adts_header_present = 0;     /* decode the audio specific config */     rc = AudioSpecificConfig2(pBuffer, SizeOfDecoderSpecificInfo, &mp4ASC,         &(hDecoder->pce));     /* copy the relevant info to the decoder handle */     *samplerate = mp4ASC.samplingFrequency;     if (mp4ASC.channelsConfiguration)     {         *channels = mp4ASC.channelsConfiguration;     } else {         *channels = hDecoder->pce.channels;         hDecoder->pce_set = 1;     } #if (defined(PS_DEC) || defined(DRM_PS))     /* check if we have a mono file */     if (*channels == 1)     {         /* upMatrix to 2 channels for implicit signalling of PS */         *channels = 2;     } #endif     hDecoder->sf_index = mp4ASC.samplingFrequencyIndex;     hDecoder->object_type = mp4ASC.objectTypeIndex; #ifdef ERROR_RESILIENCE     hDecoder->aacSectionDataResilienceFlag = mp4ASC.aacSectionDataResilienceFlag;     hDecoder->aacScalefactorDataResilienceFlag = mp4ASC.aacScalefactorDataResilienceFlag;     hDecoder->aacSpectralDataResilienceFlag = mp4ASC.aacSpectralDataResilienceFlag; #endif #ifdef SBR_DEC     hDecoder->sbr_present_flag = mp4ASC.sbr_present_flag;     hDecoder->downSampledSBR = mp4ASC.downSampledSBR;     if (hDecoder->config.dontUpSampleImplicitSBR == 0)         hDecoder->forceUpSampling = mp4ASC.forceUpSampling;     else         hDecoder->forceUpSampling = 0;     /* AAC core decoder samplerate is 2 times as low */     if (((hDecoder->sbr_present_flag == 1)&&(!hDecoder->downSampledSBR)) || hDecoder->forceUpSampling == 1)     {         hDecoder->sf_index = get_sr_index(mp4ASC.samplingFrequency / 2);     } #endif     if (rc != 0)     {         return rc;     }     hDecoder->channelConfiguration = mp4ASC.channelsConfiguration;     if (mp4ASC.frameLengthFlag) #ifdef ALLOW_SMALL_FRAMELENGTH         hDecoder->frameLength = 960; #else         return -1; #endif     /* must be done before frameLength is divided by 2 for LD */ #ifdef SSR_DEC     if (hDecoder->object_type == SSR)         hDecoder->fb = ssr_filter_bank_init(hDecoder->frameLength/SSR_BANDS);     else #endif #ifdef LIBPAAC
  9. AAC_Filter_Init(&hDecoder->Lib,hDecoder->frameLength);
  10. #else
  11.         hDecoder->fb = filter_bank_init(hDecoder->frameLength); #endif
  12. #ifdef LD_DEC     if (hDecoder->object_type == LD)         hDecoder->frameLength >>= 1; #endif     return 0; } #ifdef DRM int8_t NEAACDECAPI NeAACDecInitDRM(NeAACDecHandle *hDecoder, uint32_t samplerate,                                    uint8_t channels) {     if (hDecoder == NULL)         return 1; /* error */     NeAACDecClose(*hDecoder);     *hDecoder = NeAACDecOpen();     /* Special object type defined for DRM */     (*hDecoder)->config.defObjectType = DRM_ER_LC;     (*hDecoder)->config.defSampleRate = samplerate; #ifdef ERROR_RESILIENCE // This shoudl always be defined for DRM     (*hDecoder)->aacSectionDataResilienceFlag = 1; /* VCB11 */     (*hDecoder)->aacScalefactorDataResilienceFlag = 0; /* no RVLC */     (*hDecoder)->aacSpectralDataResilienceFlag = 1; /* HCR */ #endif     (*hDecoder)->frameLength = 960;     (*hDecoder)->sf_index = get_sr_index((*hDecoder)->config.defSampleRate);     (*hDecoder)->object_type = (*hDecoder)->config.defObjectType;     if ((channels == DRMCH_STEREO) || (channels == DRMCH_SBR_STEREO))         (*hDecoder)->channelConfiguration = 2;     else         (*hDecoder)->channelConfiguration = 1; #ifdef SBR_DEC     if ((channels == DRMCH_MONO) || (channels == DRMCH_STEREO))         (*hDecoder)->sbr_present_flag = 0;     else         (*hDecoder)->sbr_present_flag = 1;     #endif         #ifdef LIBPAAC
  13. AAC_Filter_Init(&hDecoder->Lib,hDecoder->frameLength);
  14. #else
  15.     (*hDecoder)->fb = filter_bank_init((*hDecoder)->frameLength); #endif
  16.     return 0; } #endif void NEAACDECAPI NeAACDecClose(NeAACDecHandle hDecoder) {     uint8_t i;     if (hDecoder == NULL)         return; #ifdef PROFILE     printf("AAC decoder total:  %I64d cyclesn", hDecoder->cycles);     printf("requant:            %I64d cyclesn", hDecoder->requant_cycles);     printf("spectral_data:      %I64d cyclesn", hDecoder->spectral_cycles);     printf("scalefactors:       %I64d cyclesn", hDecoder->scalefac_cycles);     printf("output:             %I64d cyclesn", hDecoder->output_cycles); #endif     for (i = 0; i < MAX_CHANNELS; i++)     {         if (hDecoder->time_out[i]) faad_free(hDecoder->time_out[i]);         if (hDecoder->fb_intermed[i]) faad_free(hDecoder->fb_intermed[i]); #ifdef SSR_DEC         if (hDecoder->ssr_overlap[i]) faad_free(hDecoder->ssr_overlap[i]);         if (hDecoder->prev_fmd[i]) faad_free(hDecoder->prev_fmd[i]); #endif #ifdef MAIN_DEC         if (hDecoder->pred_stat[i]) faad_free(hDecoder->pred_stat[i]); #endif #ifdef LTP_DEC         if (hDecoder->lt_pred_stat[i]) faad_free(hDecoder->lt_pred_stat[i]); #endif     }
  17. #ifdef SSR_DEC     if (hDecoder->object_type == SSR)         ssr_filter_bank_end(hDecoder->fb);     else #endif
  18. #ifndef LIBPAAC         filter_bank_end(hDecoder->fb);
  19. #endif     drc_end(hDecoder->drc);     if (hDecoder->sample_buffer) faad_free(hDecoder->sample_buffer); #ifdef SBR_DEC     for (i = 0; i < MAX_SYNTAX_ELEMENTS; i++)     {         if (hDecoder->sbr[i])             sbrDecodeEnd(hDecoder->sbr[i]);     } #endif
  20. if (hDecoder->stack)
  21. faad_free(hDecoder->stack);     if (hDecoder) faad_free(hDecoder); } void NEAACDECAPI NeAACDecPostSeekReset(NeAACDecHandle hDecoder, int32_t frame) {     if (hDecoder)     {         hDecoder->postSeekResetFlag = 1;         if (frame != -1)             hDecoder->frame = frame;     } } static void create_channel_config(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo) {     hInfo->num_front_channels = 0;     hInfo->num_side_channels = 0;     hInfo->num_back_channels = 0;     hInfo->num_lfe_channels = 0;     memset(hInfo->channel_position, 0, MAX_CHANNELS*sizeof(uint8_t));     if (hDecoder->downMatrix)     {         hInfo->num_front_channels = 2;         hInfo->channel_position[0] = FRONT_CHANNEL_LEFT;         hInfo->channel_position[1] = FRONT_CHANNEL_RIGHT;         return;     }     /* check if there is a PCE */     if (hDecoder->pce_set)     {         uint8_t i, chpos = 0;         uint8_t chdir, back_center = 0;         hInfo->num_front_channels = hDecoder->pce.num_front_channels;         hInfo->num_side_channels = hDecoder->pce.num_side_channels;         hInfo->num_back_channels = hDecoder->pce.num_back_channels;         hInfo->num_lfe_channels = hDecoder->pce.num_lfe_channels;         chdir = hInfo->num_front_channels;         if (chdir & 1)         {             hInfo->channel_position[chpos++] = FRONT_CHANNEL_CENTER;             chdir--;         }         for (i = 0; i < chdir; i += 2)         {             hInfo->channel_position[chpos++] = FRONT_CHANNEL_LEFT;             hInfo->channel_position[chpos++] = FRONT_CHANNEL_RIGHT;         }         for (i = 0; i < hInfo->num_side_channels; i += 2)         {             hInfo->channel_position[chpos++] = SIDE_CHANNEL_LEFT;             hInfo->channel_position[chpos++] = SIDE_CHANNEL_RIGHT;         }         chdir = hInfo->num_back_channels;         if (chdir & 1)         {             back_center = 1;             chdir--;         }         for (i = 0; i < chdir; i += 2)         {             hInfo->channel_position[chpos++] = BACK_CHANNEL_LEFT;             hInfo->channel_position[chpos++] = BACK_CHANNEL_RIGHT;         }         if (back_center)         {             hInfo->channel_position[chpos++] = BACK_CHANNEL_CENTER;         }         for (i = 0; i < hInfo->num_lfe_channels; i++)         {             hInfo->channel_position[chpos++] = LFE_CHANNEL;         }     } else {         switch (hDecoder->channelConfiguration)         {         case 1:             hInfo->num_front_channels = 1;             hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;             break;         case 2:             hInfo->num_front_channels = 2;             hInfo->channel_position[0] = FRONT_CHANNEL_LEFT;             hInfo->channel_position[1] = FRONT_CHANNEL_RIGHT;             break;         case 3:             hInfo->num_front_channels = 3;             hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;             hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;             hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;             break;         case 4:             hInfo->num_front_channels = 3;             hInfo->num_back_channels = 1;             hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;             hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;             hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;             hInfo->channel_position[3] = BACK_CHANNEL_CENTER;             break;         case 5:             hInfo->num_front_channels = 3;             hInfo->num_back_channels = 2;             hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;             hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;             hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;             hInfo->channel_position[3] = BACK_CHANNEL_LEFT;             hInfo->channel_position[4] = BACK_CHANNEL_RIGHT;             break;         case 6:             hInfo->num_front_channels = 3;             hInfo->num_back_channels = 2;             hInfo->num_lfe_channels = 1;             hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;             hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;             hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;             hInfo->channel_position[3] = BACK_CHANNEL_LEFT;             hInfo->channel_position[4] = BACK_CHANNEL_RIGHT;             hInfo->channel_position[5] = LFE_CHANNEL;             break;         case 7:             hInfo->num_front_channels = 3;             hInfo->num_side_channels = 2;             hInfo->num_back_channels = 2;             hInfo->num_lfe_channels = 1;             hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;             hInfo->channel_position[1] = FRONT_CHANNEL_LEFT;             hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT;             hInfo->channel_position[3] = SIDE_CHANNEL_LEFT;             hInfo->channel_position[4] = SIDE_CHANNEL_RIGHT;             hInfo->channel_position[5] = BACK_CHANNEL_LEFT;             hInfo->channel_position[6] = BACK_CHANNEL_RIGHT;             hInfo->channel_position[7] = LFE_CHANNEL;             break;         default: /* channelConfiguration == 0 || channelConfiguration > 7 */             {                 uint8_t i;                 uint8_t ch = hDecoder->fr_channels - hDecoder->has_lfe;                 if (ch & 1) /* there's either a center front or a center back channel */                 {                     uint8_t ch1 = (ch-1)/2;                     if (hDecoder->first_syn_ele == ID_SCE)                     {                         hInfo->num_front_channels = ch1 + 1;                         hInfo->num_back_channels = ch1;                         hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;                         for (i = 1; i <= ch1; i+=2)                         {                             hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;                             hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;                         }                         for (i = ch1+1; i < ch; i+=2)                         {                             hInfo->channel_position[i] = BACK_CHANNEL_LEFT;                             hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;                         }                     } else {                         hInfo->num_front_channels = ch1;                         hInfo->num_back_channels = ch1 + 1;                         for (i = 0; i < ch1; i+=2)                         {                             hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;                             hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;                         }                         for (i = ch1; i < ch-1; i+=2)                         {                             hInfo->channel_position[i] = BACK_CHANNEL_LEFT;                             hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;                         }                         hInfo->channel_position[ch-1] = BACK_CHANNEL_CENTER;                     }                 } else {                     uint8_t ch1 = (ch)/2;                     hInfo->num_front_channels = ch1;                     hInfo->num_back_channels = ch1;                     if (ch1 & 1)                     {                         hInfo->channel_position[0] = FRONT_CHANNEL_CENTER;                         for (i = 1; i <= ch1; i+=2)                         {                             hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;                             hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;                         }                         for (i = ch1+1; i < ch-1; i+=2)                         {                             hInfo->channel_position[i] = BACK_CHANNEL_LEFT;                             hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;                         }                         hInfo->channel_position[ch-1] = BACK_CHANNEL_CENTER;                     } else {                         for (i = 0; i < ch1; i+=2)                         {                             hInfo->channel_position[i] = FRONT_CHANNEL_LEFT;                             hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT;                         }                         for (i = ch1; i < ch; i+=2)                         {                             hInfo->channel_position[i] = BACK_CHANNEL_LEFT;                             hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT;                         }                     }                 }                 hInfo->num_lfe_channels = hDecoder->has_lfe;                 for (i = ch; i < hDecoder->fr_channels; i++)                 {                     hInfo->channel_position[i] = LFE_CHANNEL;                 }             }             break;         }     } } void* NEAACDECAPI NeAACDecDecode(NeAACDecHandle hDecoder,                                  NeAACDecFrameInfo *hInfo,                                  uint8_t *buffer, uint32_t buffer_size) {     return aac_frame_decode(hDecoder, hInfo, buffer, buffer_size, NULL, 0); } void* NEAACDECAPI NeAACDecDecode2(NeAACDecHandle hDecoder,                                   NeAACDecFrameInfo *hInfo,                                   uint8_t *buffer, uint32_t buffer_size,                                   void **sample_buffer, uint32_t sample_buffer_size) {     if ((sample_buffer == NULL) || (sample_buffer_size == 0))     {         hInfo->error = 27;         return NULL;     }     return aac_frame_decode(hDecoder, hInfo, buffer, buffer_size,         sample_buffer, sample_buffer_size); } static void* aac_frame_decode(NeAACDecHandle hDecoder, NeAACDecFrameInfo *hInfo,                               uint8_t *buffer, uint32_t buffer_size,                               void **sample_buffer2, uint32_t sample_buffer_size) {     uint8_t channels = 0;     uint8_t output_channels = 0;     bitfile ld;     uint32_t bitsconsumed;     uint16_t frame_len;     void *sample_buffer; #ifdef PROFILE     int64_t count = faad_get_ts(); #endif     /* safety checks */     if ((hDecoder == NULL) || (hInfo == NULL) || (buffer == NULL))     {         return NULL;     } #if 0     printf("%dn", buffer_size*8); #endif     frame_len = hDecoder->frameLength;     memset(hInfo, 0, sizeof(NeAACDecFrameInfo));     memset(hDecoder->internal_channel, 0, MAX_CHANNELS*sizeof(hDecoder->internal_channel[0]));     /* initialize the bitstream */     faad_initbits(&ld, buffer, buffer_size, 1); #if 0     {         int i;         for (i = 0; i < ((buffer_size+3)>>2); i++)         {             uint8_t *buf;             uint32_t temp = 0;             buf = faad_getbitbuffer(&ld, 32);             //temp = getdword((void*)buf);             temp = *((uint32_t*)buf);             printf("0x%.8Xn", temp);             free(buf);         }         faad_endbits(&ld);         faad_initbits(&ld, buffer, buffer_size);     } #endif #ifdef DRM     if (hDecoder->object_type == DRM_ER_LC)     {         /* We do not support stereo right now */         if (0) //(hDecoder->channelConfiguration == 2)         {             hInfo->error = 8; // Throw CRC error             goto error;         }         faad_getbits(&ld, 8             DEBUGVAR(1,1,"NeAACDecDecode(): skip CRC"));     } #endif     if (hDecoder->adts_header_present)     {         adts_header adts;         adts.old_format = hDecoder->config.useOldADTSFormat;         if ((hInfo->error = adts_frame(&adts, &ld)) > 0)             goto error;         /* MPEG2 does byte_alignment() here,          * but ADTS header is always multiple of 8 bits in MPEG2          * so not needed to actually do it.          */     } #ifdef ANALYSIS     dbg_count = 0; #endif     /* decode the complete bitstream */ #ifdef SCALABLE_DEC     if ((hDecoder->object_type == 6) || (hDecoder->object_type == DRM_ER_LC))     {         aac_scalable_main_element(hDecoder, hInfo, &ld, &hDecoder->pce, hDecoder->drc);     } else { #endif         raw_data_block(hDecoder, hInfo, &ld, &hDecoder->pce, hDecoder->drc); #ifdef SCALABLE_DEC     } #endif     channels = hDecoder->fr_channels;     if (hInfo->error > 0)         goto error;     /* safety check */     if (channels == 0 || channels > MAX_CHANNELS)     {         /* invalid number of channels */         hInfo->error = 12;         goto error;     }     /* no more bit reading after this */     bitsconsumed = faad_get_processed_bits(&ld);     hInfo->bytesconsumed = bit2byte(bitsconsumed);     if (ld.error)     {         hInfo->error = 14;         goto error;     }     faad_endbits(&ld);     if (!hDecoder->adts_header_present && !hDecoder->adif_header_present)     {         if (hDecoder->channelConfiguration == 0)             hDecoder->channelConfiguration = channels;         if (channels == 8) /* 7.1 */             hDecoder->channelConfiguration = 7;         if (channels == 7) /* not a standard channelConfiguration */             hDecoder->channelConfiguration = 0;     }     if ((channels == 5 || channels == 6) && hDecoder->config.downMatrix)     {         hDecoder->downMatrix = 1;         output_channels = 2;     } else {         output_channels = channels;     } #if (defined(PS_DEC) || defined(DRM_PS))     hDecoder->upMatrix = 0;     /* check if we have a mono file */
  22. // we don't want to giveup mono files in TCPMP
  23. #if 0     if (output_channels == 1)     {         /* upMatrix to 2 channels for implicit signalling of PS */         hDecoder->upMatrix = 1;         output_channels = 2;     }
  24. #endif #endif     /* Make a channel configuration based on either a PCE or a channelConfiguration */     create_channel_config(hDecoder, hInfo);     /* number of samples in this frame */     hInfo->samples = frame_len;
  25. if (hDecoder->config.outputFormat != FAAD_FMT_INTERNAL)
  26.     hInfo->samples *= output_channels;
  27.     /* number of channels in this frame */     hInfo->channels = output_channels;     /* samplerate */     hInfo->samplerate = get_sample_rate(hDecoder->sf_index);     /* object type */     hInfo->object_type = hDecoder->object_type;     /* sbr */     hInfo->sbr = NO_SBR;     /* header type */     hInfo->header_type = RAW;     if (hDecoder->adif_header_present)         hInfo->header_type = ADIF;     if (hDecoder->adts_header_present)         hInfo->header_type = ADTS; #if (defined(PS_DEC) || defined(DRM_PS))     hInfo->ps = hDecoder->ps_used_global; #endif     /* check if frame has channel elements */     if (channels == 0)     {         hDecoder->frame++;         return NULL;     }     /* allocate the buffer for the final samples */     if ((hDecoder->sample_buffer == NULL) ||         (hDecoder->alloced_channels != output_channels))     {         static const uint8_t str[] = { sizeof(int16_t), sizeof(int32_t), sizeof(int32_t),             sizeof(float32_t), sizeof(double), sizeof(int16_t), sizeof(int16_t),             sizeof(int16_t), sizeof(int16_t), 0, 0, 0         };         uint8_t stride = str[hDecoder->config.outputFormat-1]; #ifdef SBR_DEC         if (((hDecoder->sbr_present_flag == 1)&&(!hDecoder->downSampledSBR)) || (hDecoder->forceUpSampling == 1))         {             stride = 2 * stride;         } #endif         /* check if we want to use internal sample_buffer */         if (sample_buffer_size == 0)         {             if (hDecoder->sample_buffer)                 faad_free(hDecoder->sample_buffer);             hDecoder->sample_buffer = NULL;             hDecoder->sample_buffer = faad_malloc(frame_len*output_channels*stride);         } else if (sample_buffer_size < frame_len*output_channels*stride) {             /* provided sample buffer is not big enough */             hInfo->error = 27;             return NULL;         }         hDecoder->alloced_channels = output_channels;     } #ifdef SBR_DEC     if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))     {         uint8_t ele;         /* this data is different when SBR is used or when the data is upsampled */         if (!hDecoder->downSampledSBR)         {             frame_len *= 2;             hInfo->samples *= 2;             hInfo->samplerate *= 2;         }         /* check if every element was provided with SBR data */         for (ele = 0; ele < hDecoder->fr_ch_ele; ele++)         {             if (hDecoder->sbr[ele] == NULL)             {                 hInfo->error = 25;                 goto error;             }         }         /* sbr */         if (hDecoder->sbr_present_flag == 1)         {             hInfo->object_type = HE_AAC;             hInfo->sbr = SBR_UPSAMPLED;         } else {             hInfo->sbr = NO_SBR_UPSAMPLED;         }         if (hDecoder->downSampledSBR)         {             hInfo->sbr = SBR_DOWNSAMPLED;         }     } #endif
  28. if (hDecoder->config.outputFormat == FAAD_FMT_INTERNAL)
  29. {
  30. int ch;
  31. if (hDecoder->upMatrix)
  32. for (ch = 0; ch < output_channels; ch++)
  33. sample_buffer2[ch] = hDecoder->time_out[hDecoder->internal_channel[0]];
  34. else
  35. if (!hDecoder->downMatrix)
  36. {
  37. for (ch = 0; ch < output_channels; ch++)
  38. sample_buffer2[ch] = hDecoder->time_out[hDecoder->internal_channel[ch]];
  39. }
  40. else
  41. {
  42. for (ch = 0; ch < output_channels; ch++)
  43. sample_buffer2[ch] = downMix(hDecoder, hDecoder->time_out, frame_len, ch);
  44. }
  45. sample_buffer = NULL;
  46. }
  47. else
  48. {
  49. if (sample_buffer_size == 0)
  50. {
  51. sample_buffer = hDecoder->sample_buffer;
  52. } else {
  53. sample_buffer = *sample_buffer2;
  54. }
  55. sample_buffer = output_to_PCM(hDecoder, hDecoder->time_out, sample_buffer,   output_channels, frame_len, hDecoder->config.outputFormat);
  56. }     hDecoder->postSeekResetFlag = 0;     hDecoder->frame++; #ifdef LD_DEC     if (hDecoder->object_type != LD)     { #endif         if (hDecoder->frame <= 1)             hInfo->samples = 0; #ifdef LD_DEC     } else {         /* LD encoders will give lower delay */         if (hDecoder->frame <= 0)             hInfo->samples = 0;     } #endif     /* cleanup */ #ifdef ANALYSIS     fflush(stdout); #endif #ifdef PROFILE     count = faad_get_ts() - count;     hDecoder->cycles += count; #endif     return sample_buffer; error:     faad_endbits(&ld);     /* cleanup */ #ifdef ANALYSIS     fflush(stdout); #endif     return NULL; }