cfft.c
上传用户:wstnjxml
上传日期:2014-04-03
资源大小:7248k
文件大小:34k
源码类别:

Windows CE

开发平台:

C/C++

  1. /* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id: cfft.c,v 1.30 2004/09/08 09:43:11 gcp Exp $ **/ /*  * Algorithmically based on Fortran-77 FFTPACK  * by Paul N. Swarztrauber(Version 4, 1985).  *  * Does even sized fft only  */ /* isign is +1 for backward and -1 for forward transforms */ #include "common.h" #include "structs.h" #include <stdlib.h>
  2. #ifndef LIBPAAC
  3. #include "cfft.h" #include "cfft_tab.h" /* static function declarations */ static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,                       complex_t *ch, const complex_t *wa); static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,                       complex_t *ch, const complex_t *wa); static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,                    complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign); static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,                       const complex_t *wa1, const complex_t *wa2, const complex_t *wa3); static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,                       const complex_t *wa1, const complex_t *wa2, const complex_t *wa3); static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,                    const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,                    const complex_t *wa4, const int8_t isign); INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch,                    const uint16_t *ifac, const complex_t *wa, const int8_t isign); static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac); /*----------------------------------------------------------------------    passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd.   ----------------------------------------------------------------------*/ static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,                       complex_t *ch, const complex_t *wa) {     uint16_t i, k, ah, ac;     if (ido == 1)     {         for (k = 0; k < l1; k++)         {             ah = 2*k;             ac = 4*k;             RE(ch[ah])    = RE(cc[ac]) + RE(cc[ac+1]);             RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);             IM(ch[ah])    = IM(cc[ac]) + IM(cc[ac+1]);             IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);         }     } else {         for (k = 0; k < l1; k++)         {             ah = k*ido;             ac = 2*k*ido;             for (i = 0; i < ido; i++)             {                 complex_t t2;                 RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);                 RE(t2)       = RE(cc[ac+i]) - RE(cc[ac+i+ido]);                 IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);                 IM(t2)       = IM(cc[ac+i]) - IM(cc[ac+i+ido]); #if 1                 ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),                     IM(t2), RE(t2), RE(wa[i]), IM(wa[i])); #else                 ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),                     RE(t2), IM(t2), RE(wa[i]), IM(wa[i])); #endif             }         }     } } static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,                       complex_t *ch, const complex_t *wa) {     uint16_t i, k, ah, ac;     if (ido == 1)     {         for (k = 0; k < l1; k++)         {             ah = 2*k;             ac = 4*k;             RE(ch[ah])    = RE(cc[ac]) + RE(cc[ac+1]);             RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);             IM(ch[ah])    = IM(cc[ac]) + IM(cc[ac+1]);             IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);         }     } else {         for (k = 0; k < l1; k++)         {             ah = k*ido;             ac = 2*k*ido;             for (i = 0; i < ido; i++)             {                 complex_t t2;                 RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);                 RE(t2)       = RE(cc[ac+i]) - RE(cc[ac+i+ido]);                 IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);                 IM(t2)       = IM(cc[ac+i]) - IM(cc[ac+i+ido]); #if 1                 ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),                     RE(t2), IM(t2), RE(wa[i]), IM(wa[i])); #else                 ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),                     IM(t2), RE(t2), RE(wa[i]), IM(wa[i])); #endif             }         }     } } static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,                    complex_t *ch, const complex_t *wa1, const complex_t *wa2,                    const int8_t isign) {     static const real_t taur = FRAC_CONST(-0.5);     static const real_t taui = FRAC_CONST(0.866025403784439);     uint16_t i, k, ac, ah;     complex_t c2, c3, d2, d3, t2;     if (ido == 1)     {         if (isign == 1)         {             for (k = 0; k < l1; k++)             {                 ac = 3*k+1;                 ah = k;                 RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);                 IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);                 RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);                 IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);                 RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);                 IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);                 RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);                 IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);                 RE(ch[ah+l1]) = RE(c2) - IM(c3);                 IM(ch[ah+l1]) = IM(c2) + RE(c3);                 RE(ch[ah+2*l1]) = RE(c2) + IM(c3);                 IM(ch[ah+2*l1]) = IM(c2) - RE(c3);             }         } else {             for (k = 0; k < l1; k++)             {                 ac = 3*k+1;                 ah = k;                 RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);                 IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);                 RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);                 IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);                 RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);                 IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);                 RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);                 IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);                 RE(ch[ah+l1]) = RE(c2) + IM(c3);                 IM(ch[ah+l1]) = IM(c2) - RE(c3);                 RE(ch[ah+2*l1]) = RE(c2) - IM(c3);                 IM(ch[ah+2*l1]) = IM(c2) + RE(c3);             }         }     } else {         if (isign == 1)         {             for (k = 0; k < l1; k++)             {                 for (i = 0; i < ido; i++)                 {                     ac = i + (3*k+1)*ido;                     ah = i + k * ido;                     RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);                     RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);                     IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);                     IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);                     RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);                     IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);                     RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);                     IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);                     RE(d2) = RE(c2) - IM(c3);                     IM(d3) = IM(c2) - RE(c3);                     RE(d3) = RE(c2) + IM(c3);                     IM(d2) = IM(c2) + RE(c3); #if 1                     ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),                         IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));                     ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),                         IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); #else                     ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),                         RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));                     ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),                         RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); #endif                 }             }         } else {             for (k = 0; k < l1; k++)             {                 for (i = 0; i < ido; i++)                 {                     ac = i + (3*k+1)*ido;                     ah = i + k * ido;                     RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);                     RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);                     IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);                     IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);                     RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);                     IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);                     RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);                     IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);                     RE(d2) = RE(c2) + IM(c3);                     IM(d3) = IM(c2) + RE(c3);                     RE(d3) = RE(c2) - IM(c3);                     IM(d2) = IM(c2) - RE(c3); #if 1                     ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),                         RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));                     ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),                         RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); #else                     ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),                         IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));                     ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),                         IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); #endif                 }             }         }     } } static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,                       complex_t *ch, const complex_t *wa1, const complex_t *wa2,                       const complex_t *wa3) {     uint16_t i, k, ac, ah;     if (ido == 1)     {         for (k = 0; k < l1; k++)         {             complex_t t1, t2, t3, t4;             ac = 4*k;             ah = k;             RE(t2) = RE(cc[ac])   + RE(cc[ac+2]);             RE(t1) = RE(cc[ac])   - RE(cc[ac+2]);             IM(t2) = IM(cc[ac])   + IM(cc[ac+2]);             IM(t1) = IM(cc[ac])   - IM(cc[ac+2]);             RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);             IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);             IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);             RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);             RE(ch[ah])      = RE(t2) + RE(t3);             RE(ch[ah+2*l1]) = RE(t2) - RE(t3);             IM(ch[ah])      = IM(t2) + IM(t3);             IM(ch[ah+2*l1]) = IM(t2) - IM(t3);             RE(ch[ah+l1])   = RE(t1) + RE(t4);             RE(ch[ah+3*l1]) = RE(t1) - RE(t4);             IM(ch[ah+l1])   = IM(t1) + IM(t4);             IM(ch[ah+3*l1]) = IM(t1) - IM(t4);         }     } else {         for (k = 0; k < l1; k++)         {             ac = 4*k*ido;             ah = k*ido;             for (i = 0; i < ido; i++)             {                 complex_t c2, c3, c4, t1, t2, t3, t4;                 RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);                 RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);                 IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);                 IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);                 RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);                 IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);                 IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);                 RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);                 RE(c2) = RE(t1) + RE(t4);                 RE(c4) = RE(t1) - RE(t4);                 IM(c2) = IM(t1) + IM(t4);                 IM(c4) = IM(t1) - IM(t4);                 RE(ch[ah+i]) = RE(t2) + RE(t3);                 RE(c3)       = RE(t2) - RE(t3);                 IM(ch[ah+i]) = IM(t2) + IM(t3);                 IM(c3)       = IM(t2) - IM(t3); #if 1                 ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),                     IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));                 ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),                     IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));                 ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),                     IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i])); #else                 ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),                     RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));                 ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),                     RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));                 ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),                     RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i])); #endif             }         }     } } static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,                       complex_t *ch, const complex_t *wa1, const complex_t *wa2,                       const complex_t *wa3) {     uint16_t i, k, ac, ah;     if (ido == 1)     {         for (k = 0; k < l1; k++)         {             complex_t t1, t2, t3, t4;             ac = 4*k;             ah = k;             RE(t2) = RE(cc[ac])   + RE(cc[ac+2]);             RE(t1) = RE(cc[ac])   - RE(cc[ac+2]);             IM(t2) = IM(cc[ac])   + IM(cc[ac+2]);             IM(t1) = IM(cc[ac])   - IM(cc[ac+2]);             RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);             IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);             IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);             RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);             RE(ch[ah])      = RE(t2) + RE(t3);             RE(ch[ah+2*l1]) = RE(t2) - RE(t3);             IM(ch[ah])      = IM(t2) + IM(t3);             IM(ch[ah+2*l1]) = IM(t2) - IM(t3);             RE(ch[ah+l1])   = RE(t1) - RE(t4);             RE(ch[ah+3*l1]) = RE(t1) + RE(t4);             IM(ch[ah+l1])   = IM(t1) - IM(t4);             IM(ch[ah+3*l1]) = IM(t1) + IM(t4);         }     } else {         for (k = 0; k < l1; k++)         {             ac = 4*k*ido;             ah = k*ido;             for (i = 0; i < ido; i++)             {                 complex_t c2, c3, c4, t1, t2, t3, t4;                 RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);                 RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);                 IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);                 IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);                 RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);                 IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);                 IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);                 RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);                 RE(c2) = RE(t1) - RE(t4);                 RE(c4) = RE(t1) + RE(t4);                 IM(c2) = IM(t1) - IM(t4);                 IM(c4) = IM(t1) + IM(t4);                 RE(ch[ah+i]) = RE(t2) + RE(t3);                 RE(c3)       = RE(t2) - RE(t3);                 IM(ch[ah+i]) = IM(t2) + IM(t3);                 IM(c3)       = IM(t2) - IM(t3); #if 1                 ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),                     RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));                 ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),                     RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));                 ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),                     RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i])); #else                 ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),                     IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));                 ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),                     IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));                 ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),                     IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i])); #endif             }         }     } } static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc,                    complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,                    const complex_t *wa4, const int8_t isign) {     static const real_t tr11 = FRAC_CONST(0.309016994374947);     static const real_t ti11 = FRAC_CONST(0.951056516295154);     static const real_t tr12 = FRAC_CONST(-0.809016994374947);     static const real_t ti12 = FRAC_CONST(0.587785252292473);     uint16_t i, k, ac, ah;     complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5;     if (ido == 1)     {         if (isign == 1)         {             for (k = 0; k < l1; k++)             {                 ac = 5*k + 1;                 ah = k;                 RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);                 IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);                 RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);                 IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);                 RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);                 IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);                 RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);                 IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);                 RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);                 IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);                 RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);                 IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);                 RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);                 IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);                 ComplexMult(&RE(c5), &RE(c4),                     ti11, ti12, RE(t5), RE(t4));                 ComplexMult(&IM(c5), &IM(c4),                     ti11, ti12, IM(t5), IM(t4));                 RE(ch[ah+l1]) = RE(c2) - IM(c5);                 IM(ch[ah+l1]) = IM(c2) + RE(c5);                 RE(ch[ah+2*l1]) = RE(c3) - IM(c4);                 IM(ch[ah+2*l1]) = IM(c3) + RE(c4);                 RE(ch[ah+3*l1]) = RE(c3) + IM(c4);                 IM(ch[ah+3*l1]) = IM(c3) - RE(c4);                 RE(ch[ah+4*l1]) = RE(c2) + IM(c5);                 IM(ch[ah+4*l1]) = IM(c2) - RE(c5);             }         } else {             for (k = 0; k < l1; k++)             {                 ac = 5*k + 1;                 ah = k;                 RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);                 IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);                 RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);                 IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);                 RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);                 IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);                 RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);                 IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);                 RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);                 IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);                 RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);                 IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);                 RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);                 IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);                 ComplexMult(&RE(c4), &RE(c5),                     ti12, ti11, RE(t5), RE(t4));                 ComplexMult(&IM(c4), &IM(c5),                     ti12, ti12, IM(t5), IM(t4));                 RE(ch[ah+l1]) = RE(c2) + IM(c5);                 IM(ch[ah+l1]) = IM(c2) - RE(c5);                 RE(ch[ah+2*l1]) = RE(c3) + IM(c4);                 IM(ch[ah+2*l1]) = IM(c3) - RE(c4);                 RE(ch[ah+3*l1]) = RE(c3) - IM(c4);                 IM(ch[ah+3*l1]) = IM(c3) + RE(c4);                 RE(ch[ah+4*l1]) = RE(c2) - IM(c5);                 IM(ch[ah+4*l1]) = IM(c2) + RE(c5);             }         }     } else {         if (isign == 1)         {             for (k = 0; k < l1; k++)             {                 for (i = 0; i < ido; i++)                 {                     ac = i + (k*5 + 1) * ido;                     ah = i + k * ido;                     RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);                     IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);                     RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);                     IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);                     RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);                     IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);                     RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);                     IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);                     RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);                     IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);                     RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);                     IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);                     RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);                     IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);                     ComplexMult(&RE(c5), &RE(c4),                         ti11, ti12, RE(t5), RE(t4));                     ComplexMult(&IM(c5), &IM(c4),                         ti11, ti12, IM(t5), IM(t4));                     IM(d2) = IM(c2) + RE(c5);                     IM(d3) = IM(c3) + RE(c4);                     RE(d4) = RE(c3) + IM(c4);                     RE(d5) = RE(c2) + IM(c5);                     RE(d2) = RE(c2) - IM(c5);                     IM(d5) = IM(c2) - RE(c5);                     RE(d3) = RE(c3) - IM(c4);                     IM(d4) = IM(c3) - RE(c4); #if 1                     ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),                         IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));                     ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),                         IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));                     ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),                         IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));                     ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),                         IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i])); #else                     ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),                         RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));                     ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),                         RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));                     ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),                         RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));                     ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),                         RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i])); #endif                 }             }         } else {             for (k = 0; k < l1; k++)             {                 for (i = 0; i < ido; i++)                 {                     ac = i + (k*5 + 1) * ido;                     ah = i + k * ido;                     RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);                     IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);                     RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);                     IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);                     RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);                     IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);                     RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);                     IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);                     RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);                     IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);                     RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);                     IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);                     RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);                     IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);                     ComplexMult(&RE(c4), &RE(c5),                         ti12, ti11, RE(t5), RE(t4));                     ComplexMult(&IM(c4), &IM(c5),                         ti12, ti12, IM(t5), IM(t4));                     IM(d2) = IM(c2) - RE(c5);                     IM(d3) = IM(c3) - RE(c4);                     RE(d4) = RE(c3) - IM(c4);                     RE(d5) = RE(c2) - IM(c5);                     RE(d2) = RE(c2) + IM(c5);                     IM(d5) = IM(c2) + RE(c5);                     RE(d3) = RE(c3) + IM(c4);                     IM(d4) = IM(c3) + RE(c4); #if 1                     ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),                         RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));                     ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),                         RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));                     ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),                         RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));                     ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),                         RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i])); #else                     ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),                         IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));                     ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),                         IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));                     ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),                         IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));                     ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),                         IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i])); #endif                 }             }         }     } } /*----------------------------------------------------------------------    cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs.   ----------------------------------------------------------------------*/ static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch,                              const uint16_t *ifac, const complex_t *wa,                              const int8_t isign) {     uint16_t i;     uint16_t k1, l1, l2;     uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;     nf = ifac[1];     na = 0;     l1 = 1;     iw = 0;     for (k1 = 2; k1 <= nf+1; k1++)     {         ip = ifac[k1];         l2 = ip*l1;         ido = n / l2;         idl1 = ido*l1;         switch (ip)         {         case 4:             ix2 = iw + ido;             ix3 = ix2 + ido;             if (na == 0)                 passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);             else                 passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);             na = 1 - na;             break;         case 2:             if (na == 0)                 passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);             else                 passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);             na = 1 - na;             break;         case 3:             ix2 = iw + ido;             if (na == 0)                 passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);             else                 passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);             na = 1 - na;             break;         case 5:             ix2 = iw + ido;             ix3 = ix2 + ido;             ix4 = ix3 + ido;             if (na == 0)                 passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);             else                 passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);             na = 1 - na;             break;         }         l1 = l2;         iw += (ip-1) * ido;     }     if (na == 0)         return;     for (i = 0; i < n; i++)     {         RE(c[i]) = RE(ch[i]);         IM(c[i]) = IM(ch[i]);     } } static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch,                              const uint16_t *ifac, const complex_t *wa,                              const int8_t isign) {     uint16_t i;     uint16_t k1, l1, l2;     uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;     nf = ifac[1];     na = 0;     l1 = 1;     iw = 0;     for (k1 = 2; k1 <= nf+1; k1++)     {         ip = ifac[k1];         l2 = ip*l1;         ido = n / l2;         idl1 = ido*l1;         switch (ip)         {         case 4:             ix2 = iw + ido;             ix3 = ix2 + ido;             if (na == 0)                 passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);             else                 passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);             na = 1 - na;             break;         case 2:             if (na == 0)                 passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);             else                 passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);             na = 1 - na;             break;         case 3:             ix2 = iw + ido;             if (na == 0)                 passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);             else                 passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);             na = 1 - na;             break;         case 5:             ix2 = iw + ido;             ix3 = ix2 + ido;             ix4 = ix3 + ido;             if (na == 0)                 passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);             else                 passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);             na = 1 - na;             break;         }         l1 = l2;         iw += (ip-1) * ido;     }     if (na == 0)         return;     for (i = 0; i < n; i++)     {         RE(c[i]) = RE(ch[i]);         IM(c[i]) = IM(ch[i]);     } } void cfftf(cfft_info *cfft, complex_t *c) {     cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1); } void cfftb(cfft_info *cfft, complex_t *c) {     cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1); } static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac) {     static const uint16_t ntryh[4] = {3, 4, 2, 5}; #ifndef FIXED_POINT     real_t arg, argh, argld, fi;     uint16_t ido, ipm;     uint16_t i1, k1, l1, l2;     uint16_t ld, ii, ip; #endif     uint16_t ntry = 0, i, j;     uint16_t ib;     uint16_t nf, nl, nq, nr;     nl = n;     nf = 0;     j = 0; startloop:     j++;     if (j <= 4)         ntry = ntryh[j-1];     else         ntry += 2;     do     {         nq = nl / ntry;         nr = nl - ntry*nq;         if (nr != 0)             goto startloop;         nf++;         ifac[nf+1] = ntry;         nl = nq;         if (ntry == 2 && nf != 1)         {             for (i = 2; i <= nf; i++)             {                 ib = nf - i + 2;                 ifac[ib+1] = ifac[ib];             }             ifac[2] = 2;         }     } while (nl != 1);     ifac[0] = n;     ifac[1] = nf; #ifndef FIXED_POINT     argh = (real_t)2.0*(real_t)M_PI / (real_t)n;     i = 0;     l1 = 1;     for (k1 = 1; k1 <= nf; k1++)     {         ip = ifac[k1+1];         ld = 0;         l2 = l1*ip;         ido = n / l2;         ipm = ip - 1;         for (j = 0; j < ipm; j++)         {             i1 = i;             RE(wa[i]) = 1.0;             IM(wa[i]) = 0.0;             ld += l1;             fi = 0;             argld = ld*argh;             for (ii = 0; ii < ido; ii++)             {                 i++;                 fi++;                 arg = fi * argld;                 RE(wa[i]) = (real_t)cos(arg); #if 1                 IM(wa[i]) = (real_t)sin(arg); #else                 IM(wa[i]) = (real_t)-sin(arg); #endif             }             if (ip > 5)             {                 RE(wa[i1]) = RE(wa[i]);                 IM(wa[i1]) = IM(wa[i]);             }         }         l1 = l2;     } #endif } cfft_info *cffti(uint16_t n) {     cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info));     cfft->n = n;     cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t)); #ifndef FIXED_POINT     cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t));     cffti1(n, cfft->tab, cfft->ifac); #else     cffti1(n, NULL, cfft->ifac);     switch (n)     {     case 64: cfft->tab = (complex_t*)cfft_tab_64; break;     case 512: cfft->tab = (complex_t*)cfft_tab_512; break; #ifdef LD_DEC     case 256: cfft->tab = (complex_t*)cfft_tab_256; break; #endif #ifdef ALLOW_SMALL_FRAMELENGTH     case 60: cfft->tab = (complex_t*)cfft_tab_60; break;     case 480: cfft->tab = (complex_t*)cfft_tab_480; break; #ifdef LD_DEC     case 240: cfft->tab = (complex_t*)cfft_tab_240; break; #endif #endif     case 128: cfft->tab = (complex_t*)cfft_tab_128; break;     } #endif     return cfft; } void cfftu(cfft_info *cfft) {     if (cfft->work) faad_free(cfft->work); #ifndef FIXED_POINT     if (cfft->tab) faad_free(cfft->tab); #endif     if (cfft) faad_free(cfft); } #endif