algorithm.txt
上传用户:wstnjxml
上传日期:2014-04-03
资源大小:7248k
文件大小:9k
源码类别:

Windows CE

开发平台:

C/C++

  1. 1. Compression algorithm (deflate)
  2. The deflation algorithm used by gzip (also zip and zlib) is a variation of
  3. LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
  4. the input data.  The second occurrence of a string is replaced by a
  5. pointer to the previous string, in the form of a pair (distance,
  6. length).  Distances are limited to 32K bytes, and lengths are limited
  7. to 258 bytes. When a string does not occur anywhere in the previous
  8. 32K bytes, it is emitted as a sequence of literal bytes.  (In this
  9. description, `string' must be taken as an arbitrary sequence of bytes,
  10. and is not restricted to printable characters.)
  11. Literals or match lengths are compressed with one Huffman tree, and
  12. match distances are compressed with another tree. The trees are stored
  13. in a compact form at the start of each block. The blocks can have any
  14. size (except that the compressed data for one block must fit in
  15. available memory). A block is terminated when deflate() determines that
  16. it would be useful to start another block with fresh trees. (This is
  17. somewhat similar to the behavior of LZW-based _compress_.)
  18. Duplicated strings are found using a hash table. All input strings of
  19. length 3 are inserted in the hash table. A hash index is computed for
  20. the next 3 bytes. If the hash chain for this index is not empty, all
  21. strings in the chain are compared with the current input string, and
  22. the longest match is selected.
  23. The hash chains are searched starting with the most recent strings, to
  24. favor small distances and thus take advantage of the Huffman encoding.
  25. The hash chains are singly linked. There are no deletions from the
  26. hash chains, the algorithm simply discards matches that are too old.
  27. To avoid a worst-case situation, very long hash chains are arbitrarily
  28. truncated at a certain length, determined by a runtime option (level
  29. parameter of deflateInit). So deflate() does not always find the longest
  30. possible match but generally finds a match which is long enough.
  31. deflate() also defers the selection of matches with a lazy evaluation
  32. mechanism. After a match of length N has been found, deflate() searches for
  33. a longer match at the next input byte. If a longer match is found, the
  34. previous match is truncated to a length of one (thus producing a single
  35. literal byte) and the process of lazy evaluation begins again. Otherwise,
  36. the original match is kept, and the next match search is attempted only N
  37. steps later.
  38. The lazy match evaluation is also subject to a runtime parameter. If
  39. the current match is long enough, deflate() reduces the search for a longer
  40. match, thus speeding up the whole process. If compression ratio is more
  41. important than speed, deflate() attempts a complete second search even if
  42. the first match is already long enough.
  43. The lazy match evaluation is not performed for the fastest compression
  44. modes (level parameter 1 to 3). For these fast modes, new strings
  45. are inserted in the hash table only when no match was found, or
  46. when the match is not too long. This degrades the compression ratio
  47. but saves time since there are both fewer insertions and fewer searches.
  48. 2. Decompression algorithm (inflate)
  49. 2.1 Introduction
  50. The key question is how to represent a Huffman code (or any prefix code) so
  51. that you can decode fast.  The most important characteristic is that shorter
  52. codes are much more common than longer codes, so pay attention to decoding the
  53. short codes fast, and let the long codes take longer to decode.
  54. inflate() sets up a first level table that covers some number of bits of
  55. input less than the length of longest code.  It gets that many bits from the
  56. stream, and looks it up in the table.  The table will tell if the next
  57. code is that many bits or less and how many, and if it is, it will tell
  58. the value, else it will point to the next level table for which inflate()
  59. grabs more bits and tries to decode a longer code.
  60. How many bits to make the first lookup is a tradeoff between the time it
  61. takes to decode and the time it takes to build the table.  If building the
  62. table took no time (and if you had infinite memory), then there would only
  63. be a first level table to cover all the way to the longest code.  However,
  64. building the table ends up taking a lot longer for more bits since short
  65. codes are replicated many times in such a table.  What inflate() does is
  66. simply to make the number of bits in the first table a variable, and  then
  67. to set that variable for the maximum speed.
  68. For inflate, which has 286 possible codes for the literal/length tree, the size
  69. of the first table is nine bits.  Also the distance trees have 30 possible
  70. values, and the size of the first table is six bits.  Note that for each of
  71. those cases, the table ended up one bit longer than the ``average'' code
  72. length, i.e. the code length of an approximately flat code which would be a
  73. little more than eight bits for 286 symbols and a little less than five bits
  74. for 30 symbols.
  75. 2.2 More details on the inflate table lookup
  76. Ok, you want to know what this cleverly obfuscated inflate tree actually
  77. looks like.  You are correct that it's not a Huffman tree.  It is simply a
  78. lookup table for the first, let's say, nine bits of a Huffman symbol.  The
  79. symbol could be as short as one bit or as long as 15 bits.  If a particular
  80. symbol is shorter than nine bits, then that symbol's translation is duplicated
  81. in all those entries that start with that symbol's bits.  For example, if the
  82. symbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a
  83. symbol is nine bits long, it appears in the table once.
  84. If the symbol is longer than nine bits, then that entry in the table points
  85. to another similar table for the remaining bits.  Again, there are duplicated
  86. entries as needed.  The idea is that most of the time the symbol will be short
  87. and there will only be one table look up.  (That's whole idea behind data
  88. compression in the first place.)  For the less frequent long symbols, there
  89. will be two lookups.  If you had a compression method with really long
  90. symbols, you could have as many levels of lookups as is efficient.  For
  91. inflate, two is enough.
  92. So a table entry either points to another table (in which case nine bits in
  93. the above example are gobbled), or it contains the translation for the symbol
  94. and the number of bits to gobble.  Then you start again with the next
  95. ungobbled bit.
  96. You may wonder: why not just have one lookup table for how ever many bits the
  97. longest symbol is?  The reason is that if you do that, you end up spending
  98. more time filling in duplicate symbol entries than you do actually decoding.
  99. At least for deflate's output that generates new trees every several 10's of
  100. kbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code
  101. would take too long if you're only decoding several thousand symbols.  At the
  102. other extreme, you could make a new table for every bit in the code.  In fact,
  103. that's essentially a Huffman tree.  But then you spend two much time
  104. traversing the tree while decoding, even for short symbols.
  105. So the number of bits for the first lookup table is a trade of the time to
  106. fill out the table vs. the time spent looking at the second level and above of
  107. the table.
  108. Here is an example, scaled down:
  109. The code being decoded, with 10 symbols, from 1 to 6 bits long:
  110. A: 0
  111. B: 10
  112. C: 1100
  113. D: 11010
  114. E: 11011
  115. F: 11100
  116. G: 11101
  117. H: 11110
  118. I: 111110
  119. J: 111111
  120. Let's make the first table three bits long (eight entries):
  121. 000: A,1
  122. 001: A,1
  123. 010: A,1
  124. 011: A,1
  125. 100: B,2
  126. 101: B,2
  127. 110: -> table X (gobble 3 bits)
  128. 111: -> table Y (gobble 3 bits)
  129. Each entry is what the bits decode as and how many bits that is, i.e. how
  130. many bits to gobble.  Or the entry points to another table, with the number of
  131. bits to gobble implicit in the size of the table.
  132. Table X is two bits long since the longest code starting with 110 is five bits
  133. long:
  134. 00: C,1
  135. 01: C,1
  136. 10: D,2
  137. 11: E,2
  138. Table Y is three bits long since the longest code starting with 111 is six
  139. bits long:
  140. 000: F,2
  141. 001: F,2
  142. 010: G,2
  143. 011: G,2
  144. 100: H,2
  145. 101: H,2
  146. 110: I,3
  147. 111: J,3
  148. So what we have here are three tables with a total of 20 entries that had to
  149. be constructed.  That's compared to 64 entries for a single table.  Or
  150. compared to 16 entries for a Huffman tree (six two entry tables and one four
  151. entry table).  Assuming that the code ideally represents the probability of
  152. the symbols, it takes on the average 1.25 lookups per symbol.  That's compared
  153. to one lookup for the single table, or 1.66 lookups per symbol for the
  154. Huffman tree.
  155. There, I think that gives you a picture of what's going on.  For inflate, the
  156. meaning of a particular symbol is often more than just a letter.  It can be a
  157. byte (a "literal"), or it can be either a length or a distance which
  158. indicates a base value and a number of bits to fetch after the code that is
  159. added to the base value.  Or it might be the special end-of-block code.  The
  160. data structures created in inftrees.c try to encode all that information
  161. compactly in the tables.
  162. Jean-loup Gailly        Mark Adler
  163. jloup@gzip.org          madler@alumni.caltech.edu
  164. References:
  165. [LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
  166. Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
  167. pp. 337-343.
  168. ``DEFLATE Compressed Data Format Specification'' available in
  169. http://www.ietf.org/rfc/rfc1951.txt