fixed.c
资源名称:tcpmp.rar [点击查看]
上传用户:wstnjxml
上传日期:2014-04-03
资源大小:7248k
文件大小:16k
源码类别:
Windows CE
开发平台:
C/C++
- /* libFLAC - Free Lossless Audio Codec library
- * Copyright (C) 2000,2001,2002,2003,2004,2005 Josh Coalson
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * - Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * - Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * - Neither the name of the Xiph.org Foundation nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include <math.h>
- #include "private/bitmath.h"
- #include "private/fixed.h"
- #include "FLAC/assert.h"
- #ifndef M_LN2
- /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
- #define M_LN2 0.69314718055994530942
- #endif
- #ifdef min
- #undef min
- #endif
- #define min(x,y) ((x) < (y)? (x) : (y))
- #ifdef local_abs
- #undef local_abs
- #endif
- #define local_abs(x) ((unsigned)((x)<0? -(x) : (x)))
- #ifdef FLAC__INTEGER_ONLY_LIBRARY
- /* rbps stands for residual bits per sample
- *
- * (ln(2) * err)
- * rbps = log (-----------)
- * 2 ( n )
- */
- static FLAC__fixedpoint local__compute_rbps_integerized(FLAC__uint32 err, FLAC__uint32 n)
- {
- FLAC__uint32 rbps;
- unsigned bits; /* the number of bits required to represent a number */
- int fracbits; /* the number of bits of rbps that comprise the fractional part */
- FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint));
- FLAC__ASSERT(err > 0);
- FLAC__ASSERT(n > 0);
- FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE);
- if(err <= n)
- return 0;
- /*
- * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
- * These allow us later to know we won't lose too much precision in the
- * fixed-point division (err<<fracbits)/n.
- */
- fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2(err)+1);
- err <<= fracbits;
- err /= n;
- /* err now holds err/n with fracbits fractional bits */
- /*
- * Whittle err down to 16 bits max. 16 significant bits is enough for
- * our purposes.
- */
- FLAC__ASSERT(err > 0);
- bits = FLAC__bitmath_ilog2(err)+1;
- if(bits > 16) {
- err >>= (bits-16);
- fracbits -= (bits-16);
- }
- rbps = (FLAC__uint32)err;
- /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
- rbps *= FLAC__FP_LN2;
- fracbits += 16;
- FLAC__ASSERT(fracbits >= 0);
- /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
- {
- const int f = fracbits & 3;
- if(f) {
- rbps >>= f;
- fracbits -= f;
- }
- }
- rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1));
- if(rbps == 0)
- return 0;
- /*
- * The return value must have 16 fractional bits. Since the whole part
- * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
- * must be >= -3, these assertion allows us to be able to shift rbps
- * left if necessary to get 16 fracbits without losing any bits of the
- * whole part of rbps.
- *
- * There is a slight chance due to accumulated error that the whole part
- * will require 6 bits, so we use 6 in the assertion. Really though as
- * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
- */
- FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6);
- FLAC__ASSERT(fracbits >= -3);
- /* now shift the decimal point into place */
- if(fracbits < 16)
- return rbps << (16-fracbits);
- else if(fracbits > 16)
- return rbps >> (fracbits-16);
- else
- return rbps;
- }
- static FLAC__fixedpoint local__compute_rbps_wide_integerized(FLAC__uint64 err, FLAC__uint32 n)
- {
- FLAC__uint32 rbps;
- unsigned bits; /* the number of bits required to represent a number */
- int fracbits; /* the number of bits of rbps that comprise the fractional part */
- FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint));
- FLAC__ASSERT(err > 0);
- FLAC__ASSERT(n > 0);
- FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE);
- if(err <= n)
- return 0;
- /*
- * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
- * These allow us later to know we won't lose too much precision in the
- * fixed-point division (err<<fracbits)/n.
- */
- fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2_wide(err)+1);
- err <<= fracbits;
- err /= n;
- /* err now holds err/n with fracbits fractional bits */
- /*
- * Whittle err down to 16 bits max. 16 significant bits is enough for
- * our purposes.
- */
- FLAC__ASSERT(err > 0);
- bits = FLAC__bitmath_ilog2_wide(err)+1;
- if(bits > 16) {
- err >>= (bits-16);
- fracbits -= (bits-16);
- }
- rbps = (FLAC__uint32)err;
- /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
- rbps *= FLAC__FP_LN2;
- fracbits += 16;
- FLAC__ASSERT(fracbits >= 0);
- /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
- {
- const int f = fracbits & 3;
- if(f) {
- rbps >>= f;
- fracbits -= f;
- }
- }
- rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1));
- if(rbps == 0)
- return 0;
- /*
- * The return value must have 16 fractional bits. Since the whole part
- * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
- * must be >= -3, these assertion allows us to be able to shift rbps
- * left if necessary to get 16 fracbits without losing any bits of the
- * whole part of rbps.
- *
- * There is a slight chance due to accumulated error that the whole part
- * will require 6 bits, so we use 6 in the assertion. Really though as
- * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
- */
- FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6);
- FLAC__ASSERT(fracbits >= -3);
- /* now shift the decimal point into place */
- if(fracbits < 16)
- return rbps << (16-fracbits);
- else if(fracbits > 16)
- return rbps >> (fracbits-16);
- else
- return rbps;
- }
- #endif
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #else
- unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #endif
- {
- FLAC__int32 last_error_0 = data[-1];
- FLAC__int32 last_error_1 = data[-1] - data[-2];
- FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
- FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
- FLAC__int32 error, save;
- FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
- unsigned i, order;
- for(i = 0; i < data_len; i++) {
- error = data[i] ; total_error_0 += local_abs(error); save = error;
- error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
- error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
- error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
- error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
- }
- if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
- order = 0;
- else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
- order = 1;
- else if(total_error_2 < min(total_error_3, total_error_4))
- order = 2;
- else if(total_error_3 < total_error_4)
- order = 3;
- else
- order = 4;
- /* Estimate the expected number of bits per residual signal sample. */
- /* 'total_error*' is linearly related to the variance of the residual */
- /* signal, so we use it directly to compute E(|x|) */
- FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
- #else
- residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_integerized(total_error_0, data_len) : 0;
- residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_integerized(total_error_1, data_len) : 0;
- residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_integerized(total_error_2, data_len) : 0;
- residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_integerized(total_error_3, data_len) : 0;
- residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_integerized(total_error_4, data_len) : 0;
- #endif
- return order;
- }
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #else
- unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
- #endif
- {
- FLAC__int32 last_error_0 = data[-1];
- FLAC__int32 last_error_1 = data[-1] - data[-2];
- FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
- FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
- FLAC__int32 error, save;
- /* total_error_* are 64-bits to avoid overflow when encoding
- * erratic signals when the bits-per-sample and blocksize are
- * large.
- */
- FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
- unsigned i, order;
- for(i = 0; i < data_len; i++) {
- error = data[i] ; total_error_0 += local_abs(error); save = error;
- error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
- error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
- error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
- error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
- }
- if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
- order = 0;
- else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
- order = 1;
- else if(total_error_2 < min(total_error_3, total_error_4))
- order = 2;
- else if(total_error_3 < total_error_4)
- order = 3;
- else
- order = 4;
- /* Estimate the expected number of bits per residual signal sample. */
- /* 'total_error*' is linearly related to the variance of the residual */
- /* signal, so we use it directly to compute E(|x|) */
- FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
- FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
- #ifndef FLAC__INTEGER_ONLY_LIBRARY
- #if defined _MSC_VER || defined __MINGW32__
- /* with MSVC you have to spoon feed it the casting */
- residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
- #else
- residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
- residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
- #endif
- #else
- residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_wide_integerized(total_error_0, data_len) : 0;
- residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_wide_integerized(total_error_1, data_len) : 0;
- residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_wide_integerized(total_error_2, data_len) : 0;
- residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_wide_integerized(total_error_3, data_len) : 0;
- residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_wide_integerized(total_error_4, data_len) : 0;
- #endif
- return order;
- }
- void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[])
- {
- const int idata_len = (int)data_len;
- int i;
- switch(order) {
- case 0:
- for(i = 0; i < idata_len; i++) {
- residual[i] = data[i];
- }
- break;
- case 1:
- for(i = 0; i < idata_len; i++) {
- residual[i] = data[i] - data[i-1];
- }
- break;
- case 2:
- for(i = 0; i < idata_len; i++) {
- /* == data[i] - 2*data[i-1] + data[i-2] */
- residual[i] = data[i] - (data[i-1] << 1) + data[i-2];
- }
- break;
- case 3:
- for(i = 0; i < idata_len; i++) {
- /* == data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3] */
- residual[i] = data[i] - (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) - data[i-3];
- }
- break;
- case 4:
- for(i = 0; i < idata_len; i++) {
- /* == data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4] */
- residual[i] = data[i] - ((data[i-1]+data[i-3])<<2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4];
- }
- break;
- default:
- FLAC__ASSERT(0);
- }
- }
- void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[])
- {
- int i, idata_len = (int)data_len;
- switch(order) {
- case 0:
- for(i = 0; i < idata_len; i++) {
- data[i] = residual[i];
- }
- break;
- case 1:
- for(i = 0; i < idata_len; i++) {
- data[i] = residual[i] + data[i-1];
- }
- break;
- case 2:
- for(i = 0; i < idata_len; i++) {
- /* == residual[i] + 2*data[i-1] - data[i-2] */
- data[i] = residual[i] + (data[i-1]<<1) - data[i-2];
- }
- break;
- case 3:
- for(i = 0; i < idata_len; i++) {
- /* residual[i] + 3*data[i-1] - 3*data[i-2]) + data[i-3] */
- data[i] = residual[i] + (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) + data[i-3];
- }
- break;
- case 4:
- for(i = 0; i < idata_len; i++) {
- /* == residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4] */
- data[i] = residual[i] + ((data[i-1]+data[i-3])<<2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4];
- }
- break;
- default:
- FLAC__ASSERT(0);
- }
- }