error_resilience.c
上传用户:wstnjxml
上传日期:2014-04-03
资源大小:7248k
文件大小:39k
源码类别:

Windows CE

开发平台:

C/C++

  1. /*  * Error resilience / concealment  *  * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>  *  * This library is free software; you can redistribute it and/or  * modify it under the terms of the GNU Lesser General Public  * License as published by the Free Software Foundation; either  * version 2 of the License, or (at your option) any later version.  *  * This library is distributed in the hope that it will be useful,  * but WITHOUT ANY WARRANTY; without even the implied warranty of  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU  * Lesser General Public License for more details.  *  * You should have received a copy of the GNU Lesser General Public  * License along with this library; if not, write to the Free Software  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA  */   /**  * @file error_resilience.c  * Error resilience / concealment.  */ #include <limits.h>   #include "avcodec.h" #include "dsputil.h" #include "mpegvideo.h" #include "common.h" static void decode_mb(MpegEncContext *s){     s->dest[0] = s->current_picture.data[0] + (s->mb_y * 16* s->linesize  ) + s->mb_x * 16;     s->dest[1] = s->current_picture.data[1] + (s->mb_y * 8 * s->uvlinesize) + s->mb_x * 8;     s->dest[2] = s->current_picture.data[2] + (s->mb_y * 8 * s->uvlinesize) + s->mb_x * 8;     MPV_decode_mb(s, s->block);     } /**  * replaces the current MB with a flat dc only version.  */ static void put_dc(MpegEncContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int mb_x, int mb_y) {     int dc, dcu, dcv, y, i;     for(i=0; i<4; i++){         dc= s->dc_val[0][mb_x*2 + (i&1) + (mb_y*2 + (i>>1))*s->b8_stride];         if(dc<0) dc=0;         else if(dc>2040) dc=2040;         for(y=0; y<8; y++){             int x;             for(x=0; x<8; x++){                 dest_y[x + (i&1)*8 + (y + (i>>1)*8)*s->linesize]= dc/8;             }         }     }     dcu = s->dc_val[1][mb_x + mb_y*s->mb_stride];     dcv = s->dc_val[2][mb_x + mb_y*s->mb_stride];     if     (dcu<0   ) dcu=0;     else if(dcu>2040) dcu=2040;     if     (dcv<0   ) dcv=0;     else if(dcv>2040) dcv=2040;     for(y=0; y<8; y++){         int x;         for(x=0; x<8; x++){             dest_cb[x + y*(s->uvlinesize)]= dcu/8;             dest_cr[x + y*(s->uvlinesize)]= dcv/8;         }     } } static void filter181(int16_t *data, int width, int height, int stride){     int x,y;     /* horizontal filter */     for(y=1; y<height-1; y++){         int prev_dc= data[0 + y*stride];         for(x=1; x<width-1; x++){             int dc;                          dc= - prev_dc                  + data[x     + y*stride]*8                 - data[x + 1 + y*stride];             dc= (dc*10923 + 32768)>>16;             prev_dc= data[x + y*stride];             data[x + y*stride]= dc;         }     }          /* vertical filter */     for(x=1; x<width-1; x++){         int prev_dc= data[x];         for(y=1; y<height-1; y++){             int dc;                          dc= - prev_dc                  + data[x +  y   *stride]*8                 - data[x + (y+1)*stride];             dc= (dc*10923 + 32768)>>16;             prev_dc= data[x + y*stride];             data[x + y*stride]= dc;         }     } } /**  * guess the dc of blocks which dont have a undamaged dc  * @param w width in 8 pixel blocks  * @param h height in 8 pixel blocks  */ static void guess_dc(MpegEncContext *s, int16_t *dc, int w, int h, int stride, int is_luma){     int b_x, b_y;     for(b_y=0; b_y<h; b_y++){         for(b_x=0; b_x<w; b_x++){             int color[4]={1024,1024,1024,1024};             int distance[4]={9999,9999,9999,9999};             int mb_index, error, j;             int64_t guess, weight_sum;                          mb_index= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;                          error= s->error_status_table[mb_index];                          if(IS_INTER(s->current_picture.mb_type[mb_index])) continue; //inter             if(!(error&DC_ERROR)) continue;           //dc-ok                          /* right block */             for(j=b_x+1; j<w; j++){                 int mb_index_j= (j>>is_luma) + (b_y>>is_luma)*s->mb_stride;                 int error_j= s->error_status_table[mb_index_j];                 int intra_j= IS_INTRA(s->current_picture.mb_type[mb_index_j]);                 if(intra_j==0 || !(error_j&DC_ERROR)){                     color[0]= dc[j + b_y*stride];                     distance[0]= j-b_x;                     break;                 }             }                          /* left block */             for(j=b_x-1; j>=0; j--){                 int mb_index_j= (j>>is_luma) + (b_y>>is_luma)*s->mb_stride;                 int error_j= s->error_status_table[mb_index_j];                 int intra_j= IS_INTRA(s->current_picture.mb_type[mb_index_j]);                 if(intra_j==0 || !(error_j&DC_ERROR)){                     color[1]= dc[j + b_y*stride];                     distance[1]= b_x-j;                     break;                 }             }             /* bottom block */             for(j=b_y+1; j<h; j++){                 int mb_index_j= (b_x>>is_luma) + (j>>is_luma)*s->mb_stride;                 int error_j= s->error_status_table[mb_index_j];                 int intra_j= IS_INTRA(s->current_picture.mb_type[mb_index_j]);                 if(intra_j==0 || !(error_j&DC_ERROR)){                     color[2]= dc[b_x + j*stride];                     distance[2]= j-b_y;                     break;                 }             }             /* top block */             for(j=b_y-1; j>=0; j--){                 int mb_index_j= (b_x>>is_luma) + (j>>is_luma)*s->mb_stride;                 int error_j= s->error_status_table[mb_index_j];                 int intra_j= IS_INTRA(s->current_picture.mb_type[mb_index_j]);                 if(intra_j==0 || !(error_j&DC_ERROR)){                     color[3]= dc[b_x + j*stride];                     distance[3]= b_y-j;                     break;                 }             }                          weight_sum=0;             guess=0;             for(j=0; j<4; j++){                 int64_t weight= 256*256*256*16/distance[j];                 guess+= weight*(int64_t)color[j];                 weight_sum+= weight;             }             guess= (guess + weight_sum/2) / weight_sum;             dc[b_x + b_y*stride]= guess;         }     } } /**  * simple horizontal deblocking filter used for error resilience  * @param w width in 8 pixel blocks  * @param h height in 8 pixel blocks  */ static void h_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h, int stride, int is_luma){     int b_x, b_y;     uint8_t *cm = cropTbl + MAX_NEG_CROP;     for(b_y=0; b_y<h; b_y++){         for(b_x=0; b_x<w-1; b_x++){             int y;             int left_status = s->error_status_table[( b_x   >>is_luma) + (b_y>>is_luma)*s->mb_stride];             int right_status= s->error_status_table[((b_x+1)>>is_luma) + (b_y>>is_luma)*s->mb_stride];             int left_intra=   IS_INTRA(s->current_picture.mb_type      [( b_x   >>is_luma) + (b_y>>is_luma)*s->mb_stride]);             int right_intra=  IS_INTRA(s->current_picture.mb_type      [((b_x+1)>>is_luma) + (b_y>>is_luma)*s->mb_stride]);             int left_damage =  left_status&(DC_ERROR|AC_ERROR|MV_ERROR);             int right_damage= right_status&(DC_ERROR|AC_ERROR|MV_ERROR);             int offset= b_x*8 + b_y*stride*8;             int16_t *left_mv=  s->current_picture.motion_val[0][s->b8_stride*(b_y<<(1-is_luma)) + ( b_x   <<(1-is_luma))];             int16_t *right_mv= s->current_picture.motion_val[0][s->b8_stride*(b_y<<(1-is_luma)) + ((b_x+1)<<(1-is_luma))];                          if(!(left_damage||right_damage)) continue; // both undamaged                          if(   (!left_intra) && (!right_intra)                 && ABS(left_mv[0]-right_mv[0]) + ABS(left_mv[1]+right_mv[1]) < 2) continue;                          for(y=0; y<8; y++){                 int a,b,c,d;                                  a= dst[offset + 7 + y*stride] - dst[offset + 6 + y*stride];                 b= dst[offset + 8 + y*stride] - dst[offset + 7 + y*stride];                 c= dst[offset + 9 + y*stride] - dst[offset + 8 + y*stride];                                  d= ABS(b) - ((ABS(a) + ABS(c) + 1)>>1);                 d= FFMAX(d, 0);                 if(b<0) d= -d;                                  if(d==0) continue;                 if(!(left_damage && right_damage))                     d= d*16/9;                                  if(left_damage){                     dst[offset + 7 + y*stride] = cm[dst[offset + 7 + y*stride] + ((d*7)>>4)];                     dst[offset + 6 + y*stride] = cm[dst[offset + 6 + y*stride] + ((d*5)>>4)];                     dst[offset + 5 + y*stride] = cm[dst[offset + 5 + y*stride] + ((d*3)>>4)];                     dst[offset + 4 + y*stride] = cm[dst[offset + 4 + y*stride] + ((d*1)>>4)];                 }                 if(right_damage){                     dst[offset + 8 + y*stride] = cm[dst[offset + 8 + y*stride] - ((d*7)>>4)];                     dst[offset + 9 + y*stride] = cm[dst[offset + 9 + y*stride] - ((d*5)>>4)];                     dst[offset + 10+ y*stride] = cm[dst[offset +10 + y*stride] - ((d*3)>>4)];                     dst[offset + 11+ y*stride] = cm[dst[offset +11 + y*stride] - ((d*1)>>4)];                 }             }         }     } } /**  * simple vertical deblocking filter used for error resilience  * @param w width in 8 pixel blocks  * @param h height in 8 pixel blocks  */ static void v_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h, int stride, int is_luma){     int b_x, b_y;     uint8_t *cm = cropTbl + MAX_NEG_CROP;     for(b_y=0; b_y<h-1; b_y++){         for(b_x=0; b_x<w; b_x++){             int x;             int top_status   = s->error_status_table[(b_x>>is_luma) + ( b_y   >>is_luma)*s->mb_stride];             int bottom_status= s->error_status_table[(b_x>>is_luma) + ((b_y+1)>>is_luma)*s->mb_stride];             int top_intra=     IS_INTRA(s->current_picture.mb_type      [(b_x>>is_luma) + ( b_y   >>is_luma)*s->mb_stride]);             int bottom_intra=  IS_INTRA(s->current_picture.mb_type      [(b_x>>is_luma) + ((b_y+1)>>is_luma)*s->mb_stride]);             int top_damage =      top_status&(DC_ERROR|AC_ERROR|MV_ERROR);             int bottom_damage= bottom_status&(DC_ERROR|AC_ERROR|MV_ERROR);             int offset= b_x*8 + b_y*stride*8;             int16_t *top_mv=    s->current_picture.motion_val[0][s->b8_stride*( b_y   <<(1-is_luma)) + (b_x<<(1-is_luma))];             int16_t *bottom_mv= s->current_picture.motion_val[0][s->b8_stride*((b_y+1)<<(1-is_luma)) + (b_x<<(1-is_luma))];                          if(!(top_damage||bottom_damage)) continue; // both undamaged                          if(   (!top_intra) && (!bottom_intra)                 && ABS(top_mv[0]-bottom_mv[0]) + ABS(top_mv[1]+bottom_mv[1]) < 2) continue;                          for(x=0; x<8; x++){                 int a,b,c,d;                                  a= dst[offset + x + 7*stride] - dst[offset + x + 6*stride];                 b= dst[offset + x + 8*stride] - dst[offset + x + 7*stride];                 c= dst[offset + x + 9*stride] - dst[offset + x + 8*stride];                                  d= ABS(b) - ((ABS(a) + ABS(c)+1)>>1);                 d= FFMAX(d, 0);                 if(b<0) d= -d;                                  if(d==0) continue;                 if(!(top_damage && bottom_damage))                     d= d*16/9;                                  if(top_damage){                     dst[offset + x +  7*stride] = cm[dst[offset + x +  7*stride] + ((d*7)>>4)];                     dst[offset + x +  6*stride] = cm[dst[offset + x +  6*stride] + ((d*5)>>4)];                     dst[offset + x +  5*stride] = cm[dst[offset + x +  5*stride] + ((d*3)>>4)];                     dst[offset + x +  4*stride] = cm[dst[offset + x +  4*stride] + ((d*1)>>4)];                 }                 if(bottom_damage){                     dst[offset + x +  8*stride] = cm[dst[offset + x +  8*stride] - ((d*7)>>4)];                     dst[offset + x +  9*stride] = cm[dst[offset + x +  9*stride] - ((d*5)>>4)];                     dst[offset + x + 10*stride] = cm[dst[offset + x + 10*stride] - ((d*3)>>4)];                     dst[offset + x + 11*stride] = cm[dst[offset + x + 11*stride] - ((d*1)>>4)];                 }             }         }     } } static void guess_mv(MpegEncContext *s){ #ifdef _MSC_VER //Picard
  2.     uint8_t *fixed = (uint8_t*) _alloca(s->mb_stride * s->mb_height);
  3. #else
  4.     uint8_t fixed[s->mb_stride * s->mb_height];
  5. #endif
  6. #define MV_FROZEN    3 #define MV_CHANGED   2 #define MV_UNCHANGED 1     const int mb_stride = s->mb_stride;     const int mb_width = s->mb_width;     const int mb_height= s->mb_height;     int i, depth, num_avail;     int mb_x, mb_y;         num_avail=0;     for(i=0; i<s->mb_num; i++){         const int mb_xy= s->mb_index2xy[ i ];         int f=0;         int error= s->error_status_table[mb_xy];         if(IS_INTRA(s->current_picture.mb_type[mb_xy])) f=MV_FROZEN; //intra //FIXME check         if(!(error&MV_ERROR)) f=MV_FROZEN;           //inter with undamaged MV                  fixed[mb_xy]= f;         if(f==MV_FROZEN)             num_avail++;     }          if((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) || num_avail <= mb_width/2){         for(mb_y=0; mb_y<s->mb_height; mb_y++){             for(mb_x=0; mb_x<s->mb_width; mb_x++){                 const int mb_xy= mb_x + mb_y*s->mb_stride;                                  if(IS_INTRA(s->current_picture.mb_type[mb_xy]))  continue;                 if(!(s->error_status_table[mb_xy]&MV_ERROR)) continue;                 s->mv_dir = MV_DIR_FORWARD;                 s->mb_intra=0;                 s->mv_type = MV_TYPE_16X16;                 s->mb_skipped=0; s->dsp.clear_blocks(s->block[0]);                 s->mb_x= mb_x;                 s->mb_y= mb_y;                 s->mv[0][0][0]= 0;                 s->mv[0][0][1]= 0;                 decode_mb(s);             }         }         return;     }          for(depth=0;; depth++){         int changed, pass, none_left;         none_left=1;         changed=1;         for(pass=0; (changed || pass<2) && pass<10; pass++){             int mb_x, mb_y; int score_sum=0;               changed=0;             for(mb_y=0; mb_y<s->mb_height; mb_y++){                 for(mb_x=0; mb_x<s->mb_width; mb_x++){                     const int mb_xy= mb_x + mb_y*s->mb_stride;                     int mv_predictor[8][2]={{0}};                     int pred_count=0;                     int j;                     int best_score=256*256*256*64;                     int best_pred=0;                     const int mot_stride= s->b8_stride;                     const int mot_index= mb_x*2 + mb_y*2*mot_stride;                     int prev_x= s->current_picture.motion_val[0][mot_index][0];                     int prev_y= s->current_picture.motion_val[0][mot_index][1];                     if((mb_x^mb_y^pass)&1) continue;                                          if(fixed[mb_xy]==MV_FROZEN) continue;                     assert(!IS_INTRA(s->current_picture.mb_type[mb_xy]));                     assert(s->last_picture_ptr && s->last_picture_ptr->data[0]);                                          j=0;                     if(mb_x>0           && fixed[mb_xy-1        ]==MV_FROZEN) j=1;                     if(mb_x+1<mb_width  && fixed[mb_xy+1        ]==MV_FROZEN) j=1;                     if(mb_y>0           && fixed[mb_xy-mb_stride]==MV_FROZEN) j=1;                     if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]==MV_FROZEN) j=1;                     if(j==0) continue;                     j=0;                     if(mb_x>0           && fixed[mb_xy-1        ]==MV_CHANGED) j=1;                     if(mb_x+1<mb_width  && fixed[mb_xy+1        ]==MV_CHANGED) j=1;                     if(mb_y>0           && fixed[mb_xy-mb_stride]==MV_CHANGED) j=1;                     if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]==MV_CHANGED) j=1;                     if(j==0 && pass>1) continue;                                          none_left=0;                                          if(mb_x>0 && fixed[mb_xy-1]){                         mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index - 2][0];                         mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index - 2][1];                         pred_count++;                     }                     if(mb_x+1<mb_width && fixed[mb_xy+1]){                         mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index + 2][0];                         mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index + 2][1];                         pred_count++;                     }                     if(mb_y>0 && fixed[mb_xy-mb_stride]){                         mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index - mot_stride*2][0];                         mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index - mot_stride*2][1];                         pred_count++;                     }                     if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]){                         mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index + mot_stride*2][0];                         mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index + mot_stride*2][1];                         pred_count++;                     }                     if(pred_count==0) continue;                                          if(pred_count>1){                         int sum_x=0, sum_y=0;                         int max_x, max_y, min_x, min_y;                         for(j=0; j<pred_count; j++){                             sum_x+= mv_predictor[j][0];                             sum_y+= mv_predictor[j][1];                         }                                              /* mean */                         mv_predictor[pred_count][0] = sum_x/j;                         mv_predictor[pred_count][1] = sum_y/j;                                              /* median */                         if(pred_count>=3){                             min_y= min_x= 99999;                             max_y= max_x=-99999;                         }else{                             min_x=min_y=max_x=max_y=0;                         }                         for(j=0; j<pred_count; j++){                             max_x= FFMAX(max_x, mv_predictor[j][0]);                             max_y= FFMAX(max_y, mv_predictor[j][1]);                             min_x= FFMIN(min_x, mv_predictor[j][0]);                             min_y= FFMIN(min_y, mv_predictor[j][1]);                         }                         mv_predictor[pred_count+1][0] = sum_x - max_x - min_x;                         mv_predictor[pred_count+1][1] = sum_y - max_y - min_y;                                                  if(pred_count==4){                             mv_predictor[pred_count+1][0] /= 2;                             mv_predictor[pred_count+1][1] /= 2;                         }                         pred_count+=2;                     }                                          /* zero MV */                     pred_count++;                     /* last MV */                     mv_predictor[pred_count][0]= s->current_picture.motion_val[0][mot_index][0];                     mv_predictor[pred_count][1]= s->current_picture.motion_val[0][mot_index][1];                     pred_count++;                                                              s->mv_dir = MV_DIR_FORWARD;                     s->mb_intra=0;                     s->mv_type = MV_TYPE_16X16;                     s->mb_skipped=0;     s->dsp.clear_blocks(s->block[0]);                     s->mb_x= mb_x;                     s->mb_y= mb_y;                     for(j=0; j<pred_count; j++){                         int score=0;                         uint8_t *src= s->current_picture.data[0] + mb_x*16 + mb_y*16*s->linesize;                         s->current_picture.motion_val[0][mot_index][0]= s->mv[0][0][0]= mv_predictor[j][0];                         s->current_picture.motion_val[0][mot_index][1]= s->mv[0][0][1]= mv_predictor[j][1];                         decode_mb(s);                                                  if(mb_x>0 && fixed[mb_xy-1]){                             int k;                             for(k=0; k<16; k++)                                 score += ABS(src[k*s->linesize-1 ]-src[k*s->linesize   ]);                         }                         if(mb_x+1<mb_width && fixed[mb_xy+1]){                             int k;                             for(k=0; k<16; k++)                                 score += ABS(src[k*s->linesize+15]-src[k*s->linesize+16]);                         }                         if(mb_y>0 && fixed[mb_xy-mb_stride]){                             int k;                             for(k=0; k<16; k++)                                 score += ABS(src[k-s->linesize   ]-src[k               ]);                         }                         if(mb_y+1<mb_height && fixed[mb_xy+mb_stride]){                             int k;                             for(k=0; k<16; k++)                                 score += ABS(src[k+s->linesize*15]-src[k+s->linesize*16]);                         }                                                  if(score <= best_score){ // <= will favor the last MV                             best_score= score;                             best_pred= j;                         }                     } score_sum+= best_score; //FIXME no need to set s->current_picture.motion_val[0][mot_index][0] explicit                     s->current_picture.motion_val[0][mot_index][0]= s->mv[0][0][0]= mv_predictor[best_pred][0];                     s->current_picture.motion_val[0][mot_index][1]= s->mv[0][0][1]= mv_predictor[best_pred][1];                     decode_mb(s);                                          if(s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y){                         fixed[mb_xy]=MV_CHANGED;                         changed++;                     }else                         fixed[mb_xy]=MV_UNCHANGED;                 }             } //            printf(".%d/%d", changed, score_sum); fflush(stdout);         }                  if(none_left)              return;                      for(i=0; i<s->mb_num; i++){             int mb_xy= s->mb_index2xy[i];             if(fixed[mb_xy])                 fixed[mb_xy]=MV_FROZEN;         } //        printf(":"); fflush(stdout);     } }      static int is_intra_more_likely(MpegEncContext *s){     int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y;          if(s->last_picture_ptr==NULL) return 1; //no previous frame available -> use spatial prediction     undamaged_count=0;     for(i=0; i<s->mb_num; i++){         const int mb_xy= s->mb_index2xy[i];         const int error= s->error_status_table[mb_xy];         if(!((error&DC_ERROR) && (error&MV_ERROR)))             undamaged_count++;     }          if(undamaged_count < 5) return 0; //allmost all MBs damaged -> use temporal prediction          skip_amount= FFMAX(undamaged_count/50, 1); //check only upto 50 MBs      is_intra_likely=0;     j=0;     for(mb_y= 0; mb_y<s->mb_height-1; mb_y++){         for(mb_x= 0; mb_x<s->mb_width; mb_x++){             int error;             const int mb_xy= mb_x + mb_y*s->mb_stride;             error= s->error_status_table[mb_xy];             if((error&DC_ERROR) && (error&MV_ERROR))                 continue; //skip damaged                      j++;                 if((j%skip_amount) != 0) continue; //skip a few to speed things up                  if(s->pict_type==I_TYPE){                 uint8_t *mb_ptr     = s->current_picture.data[0] + mb_x*16 + mb_y*16*s->linesize;                 uint8_t *last_mb_ptr= s->last_picture.data   [0] + mb_x*16 + mb_y*16*s->linesize;      is_intra_likely += s->dsp.sad[0](NULL, last_mb_ptr, mb_ptr                    , s->linesize, 16);                 is_intra_likely -= s->dsp.sad[0](NULL, last_mb_ptr, last_mb_ptr+s->linesize*16, s->linesize, 16);             }else{                 if(IS_INTRA(s->current_picture.mb_type[mb_xy]))                    is_intra_likely++;                 else                    is_intra_likely--;             }         }     } //printf("is_intra_likely: %d type:%dn", is_intra_likely, s->pict_type);     return is_intra_likely > 0;     } void ff_er_frame_start(MpegEncContext *s){     if(!s->error_resilience) return;     memset(s->error_status_table, MV_ERROR|AC_ERROR|DC_ERROR|VP_START|AC_END|DC_END|MV_END, s->mb_stride*s->mb_height*sizeof(uint8_t));     s->error_count= 3*s->mb_num; } /**  * adds a slice.  * @param endx x component of the last macroblock, can be -1 for the last of the previous line  * @param status the status at the end (MV_END, AC_ERROR, ...), it is assumed that no earlier end or  *               error of the same type occured  */ void ff_er_add_slice(MpegEncContext *s, int startx, int starty, int endx, int endy, int status){     const int start_i= clip(startx + starty * s->mb_width    , 0, s->mb_num-1);     const int end_i  = clip(endx   + endy   * s->mb_width    , 0, s->mb_num);     const int start_xy= s->mb_index2xy[start_i];     const int end_xy  = s->mb_index2xy[end_i];     int mask= -1;          if(!s->error_resilience) return;     mask &= ~VP_START;     if(status & (AC_ERROR|AC_END)){         mask &= ~(AC_ERROR|AC_END);         s->error_count -= end_i - start_i + 1;     }     if(status & (DC_ERROR|DC_END)){         mask &= ~(DC_ERROR|DC_END);         s->error_count -= end_i - start_i + 1;     }     if(status & (MV_ERROR|MV_END)){         mask &= ~(MV_ERROR|MV_END);         s->error_count -= end_i - start_i + 1;     }     if(status & (AC_ERROR|DC_ERROR|MV_ERROR)) s->error_count= INT_MAX;     if(mask == ~0x7F){         memset(&s->error_status_table[start_xy], 0, (end_xy - start_xy) * sizeof(uint8_t));     }else{         int i;         for(i=start_xy; i<end_xy; i++){             s->error_status_table[ i ] &= mask;         }     }     if(end_i == s->mb_num)          s->error_count= INT_MAX;     else{         s->error_status_table[end_xy] &= mask;         s->error_status_table[end_xy] |= status;     }       s->error_status_table[start_xy] |= VP_START;     if(start_xy > 0 && s->avctx->thread_count <= 1 && s->avctx->skip_top*s->mb_width < start_i){         int prev_status= s->error_status_table[ s->mb_index2xy[start_i - 1] ];                  prev_status &= ~ VP_START;         if(prev_status != (MV_END|DC_END|AC_END)) s->error_count= INT_MAX;     } } void ff_er_frame_end(MpegEncContext *s){     int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error;     int distance;     int threshold_part[4]= {100,100,100};     int threshold= 50;     int is_intra_likely;     int size = s->b8_stride * 2 * s->mb_height;     Picture *pic= s->current_picture_ptr;          if(!s->error_resilience || s->error_count==0 ||         s->error_count==3*s->mb_width*(s->avctx->skip_top + s->avctx->skip_bottom)) return;     if(s->current_picture.motion_val[0] == NULL){         av_log(s->avctx, AV_LOG_ERROR, "Warning MVs not availablen");                      for(i=0; i<2; i++){             pic->ref_index[i]= av_mallocz(size * sizeof(uint8_t));             pic->motion_val_base[i]= av_mallocz((size+4) * 2 * sizeof(uint16_t));             pic->motion_val[i]= pic->motion_val_base[i]+4;         }         pic->motion_subsample_log2= 3;         s->current_picture= *s->current_picture_ptr;     }          for(i=0; i<2; i++){         if(pic->ref_index[i])             memset(pic->ref_index[i], 0, size * sizeof(uint8_t));     }     if(s->avctx->debug&FF_DEBUG_ER){         for(mb_y=0; mb_y<s->mb_height; mb_y++){             for(mb_x=0; mb_x<s->mb_width; mb_x++){                 int status= s->error_status_table[mb_x + mb_y*s->mb_stride];                              av_log(s->avctx, AV_LOG_DEBUG, "%2X ", status);              }             av_log(s->avctx, AV_LOG_DEBUG, "n");         }     }      #if 1     /* handle overlapping slices */     for(error_type=1; error_type<=3; error_type++){         int end_ok=0;         for(i=s->mb_num-1; i>=0; i--){             const int mb_xy= s->mb_index2xy[i];             int error= s->error_status_table[mb_xy];                      if(error&(1<<error_type))                 end_ok=1;             if(error&(8<<error_type))                 end_ok=1;             if(!end_ok)                 s->error_status_table[mb_xy]|= 1<<error_type;             if(error&VP_START)                 end_ok=0;         }     } #endif #if 1     /* handle slices with partitions of different length */     if(s->partitioned_frame){         int end_ok=0;         for(i=s->mb_num-1; i>=0; i--){             const int mb_xy= s->mb_index2xy[i];             int error= s->error_status_table[mb_xy];                      if(error&AC_END)                 end_ok=0;             if((error&MV_END) || (error&DC_END) || (error&AC_ERROR))                 end_ok=1;             if(!end_ok)                 s->error_status_table[mb_xy]|= AC_ERROR;             if(error&VP_START)                 end_ok=0;         }     } #endif     /* handle missing slices */     if(s->error_resilience>=4){         int end_ok=1;                          for(i=s->mb_num-2; i>=s->mb_width+100; i--){ //FIXME +100 hack             const int mb_xy= s->mb_index2xy[i];             int error1= s->error_status_table[mb_xy  ];             int error2= s->error_status_table[s->mb_index2xy[i+1]];                      if(error1&VP_START)                 end_ok=1;                           if(   error2==(VP_START|DC_ERROR|AC_ERROR|MV_ERROR|AC_END|DC_END|MV_END)                && error1!=(VP_START|DC_ERROR|AC_ERROR|MV_ERROR|AC_END|DC_END|MV_END)                 && ((error1&AC_END) || (error1&DC_END) || (error1&MV_END))){ //end & uninited                 end_ok=0;             }                      if(!end_ok)                 s->error_status_table[mb_xy]|= DC_ERROR|AC_ERROR|MV_ERROR;         }     }      #if 1     /* backward mark errors */     distance=9999999;     for(error_type=1; error_type<=3; error_type++){         for(i=s->mb_num-1; i>=0; i--){             const int mb_xy= s->mb_index2xy[i];             int error= s->error_status_table[mb_xy];                          if(!s->mbskip_table[mb_xy]) //FIXME partition specific                 distance++;                         if(error&(1<<error_type))                 distance= 0;             if(s->partitioned_frame){                 if(distance < threshold_part[error_type-1])                     s->error_status_table[mb_xy]|= 1<<error_type;             }else{                 if(distance < threshold)                     s->error_status_table[mb_xy]|= 1<<error_type;             }             if(error&VP_START)                 distance= 9999999;         }     } #endif     /* forward mark errors */     error=0;     for(i=0; i<s->mb_num; i++){         const int mb_xy= s->mb_index2xy[i];         int old_error= s->error_status_table[mb_xy];                  if(old_error&VP_START)             error= old_error& (DC_ERROR|AC_ERROR|MV_ERROR);         else{             error|= old_error& (DC_ERROR|AC_ERROR|MV_ERROR);             s->error_status_table[mb_xy]|= error;         }     } #if 1     /* handle not partitioned case */     if(!s->partitioned_frame){         for(i=0; i<s->mb_num; i++){             const int mb_xy= s->mb_index2xy[i];             error= s->error_status_table[mb_xy];             if(error&(AC_ERROR|DC_ERROR|MV_ERROR))                 error|= AC_ERROR|DC_ERROR|MV_ERROR;             s->error_status_table[mb_xy]= error;         }     } #endif     dc_error= ac_error= mv_error=0;     for(i=0; i<s->mb_num; i++){         const int mb_xy= s->mb_index2xy[i];         error= s->error_status_table[mb_xy];         if(error&DC_ERROR) dc_error ++;         if(error&AC_ERROR) ac_error ++;         if(error&MV_ERROR) mv_error ++;     }     av_log(s->avctx, AV_LOG_INFO, "concealing %d DC, %d AC, %d MV errorsn", dc_error, ac_error, mv_error);     is_intra_likely= is_intra_more_likely(s);     /* set unknown mb-type to most likely */     for(i=0; i<s->mb_num; i++){         const int mb_xy= s->mb_index2xy[i];         error= s->error_status_table[mb_xy];         if(!((error&DC_ERROR) && (error&MV_ERROR)))             continue;         if(is_intra_likely)             s->current_picture.mb_type[mb_xy]= MB_TYPE_INTRA4x4;         else             s->current_picture.mb_type[mb_xy]= MB_TYPE_16x16 | MB_TYPE_L0;     }          /* handle inter blocks with damaged AC */     for(mb_y=0; mb_y<s->mb_height; mb_y++){         for(mb_x=0; mb_x<s->mb_width; mb_x++){             const int mb_xy= mb_x + mb_y * s->mb_stride;             const int mb_type= s->current_picture.mb_type[mb_xy];             error= s->error_status_table[mb_xy];             if(IS_INTRA(mb_type)) continue; //intra             if(error&MV_ERROR) continue;              //inter with damaged MV             if(!(error&AC_ERROR)) continue;           //undamaged inter                          s->mv_dir = MV_DIR_FORWARD;             s->mb_intra=0;             s->mb_skipped=0;             if(IS_8X8(mb_type)){                 int mb_index= mb_x*2 + mb_y*2*s->b8_stride;                 int j;                 s->mv_type = MV_TYPE_8X8;                 for(j=0; j<4; j++){                     s->mv[0][j][0] = s->current_picture.motion_val[0][ mb_index + (j&1) + (j>>1)*s->b8_stride ][0];                     s->mv[0][j][1] = s->current_picture.motion_val[0][ mb_index + (j&1) + (j>>1)*s->b8_stride ][1];                 }             }else{                 s->mv_type = MV_TYPE_16X16;                 s->mv[0][0][0] = s->current_picture.motion_val[0][ mb_x*2 + mb_y*2*s->b8_stride ][0];                 s->mv[0][0][1] = s->current_picture.motion_val[0][ mb_x*2 + mb_y*2*s->b8_stride ][1];             }              s->dsp.clear_blocks(s->block[0]);             s->mb_x= mb_x;             s->mb_y= mb_y;             decode_mb(s);         }     }     /* guess MVs */     if(s->pict_type==B_TYPE){         for(mb_y=0; mb_y<s->mb_height; mb_y++){             for(mb_x=0; mb_x<s->mb_width; mb_x++){                 int xy= mb_x*2 + mb_y*2*s->b8_stride;                 const int mb_xy= mb_x + mb_y * s->mb_stride;                 const int mb_type= s->current_picture.mb_type[mb_xy];                 error= s->error_status_table[mb_xy];                 if(IS_INTRA(mb_type)) continue;                 if(!(error&MV_ERROR)) continue;           //inter with undamaged MV                 if(!(error&AC_ERROR)) continue;           //undamaged inter                              s->mv_dir = MV_DIR_FORWARD|MV_DIR_BACKWARD;                 s->mb_intra=0;                 s->mv_type = MV_TYPE_16X16;                 s->mb_skipped=0;                                  if(s->pp_time){                     int time_pp= s->pp_time;                     int time_pb= s->pb_time;                                  s->mv[0][0][0] = s->next_picture.motion_val[0][xy][0]*time_pb/time_pp;                     s->mv[0][0][1] = s->next_picture.motion_val[0][xy][1]*time_pb/time_pp;                     s->mv[1][0][0] = s->next_picture.motion_val[0][xy][0]*(time_pb - time_pp)/time_pp;                     s->mv[1][0][1] = s->next_picture.motion_val[0][xy][1]*(time_pb - time_pp)/time_pp;                 }else{                     s->mv[0][0][0]= 0;                     s->mv[0][0][1]= 0;                     s->mv[1][0][0]= 0;                     s->mv[1][0][1]= 0;                 }                 s->dsp.clear_blocks(s->block[0]);                 s->mb_x= mb_x;                 s->mb_y= mb_y;                 decode_mb(s);             }         }     }else         guess_mv(s); #ifdef HAVE_XVMC     /* the filters below are not XvMC compatible, skip them */     if(s->avctx->xvmc_acceleration) goto ec_clean; #endif     /* fill DC for inter blocks */     for(mb_y=0; mb_y<s->mb_height; mb_y++){         for(mb_x=0; mb_x<s->mb_width; mb_x++){             int dc, dcu, dcv, y, n;             int16_t *dc_ptr;             uint8_t *dest_y, *dest_cb, *dest_cr;             const int mb_xy= mb_x + mb_y * s->mb_stride;             const int mb_type= s->current_picture.mb_type[mb_xy];                         error= s->error_status_table[mb_xy];             if(IS_INTRA(mb_type) && s->partitioned_frame) continue; //            if(error&MV_ERROR) continue; //inter data damaged FIXME is this good?                          dest_y = s->current_picture.data[0] + mb_x*16 + mb_y*16*s->linesize;             dest_cb= s->current_picture.data[1] + mb_x*8  + mb_y*8 *s->uvlinesize;             dest_cr= s->current_picture.data[2] + mb_x*8  + mb_y*8 *s->uvlinesize;                         dc_ptr= &s->dc_val[0][mb_x*2 + mb_y*2*s->b8_stride];             for(n=0; n<4; n++){                 dc=0;                 for(y=0; y<8; y++){                     int x;                     for(x=0; x<8; x++){                        dc+= dest_y[x + (n&1)*8 + (y + (n>>1)*8)*s->linesize];                     }                 }                 dc_ptr[(n&1) + (n>>1)*s->b8_stride]= (dc+4)>>3;             }             dcu=dcv=0;             for(y=0; y<8; y++){                 int x;                 for(x=0; x<8; x++){                     dcu+=dest_cb[x + y*(s->uvlinesize)];                     dcv+=dest_cr[x + y*(s->uvlinesize)];                 }             }             s->dc_val[1][mb_x + mb_y*s->mb_stride]= (dcu+4)>>3;             s->dc_val[2][mb_x + mb_y*s->mb_stride]= (dcv+4)>>3;            }     } #if 1     /* guess DC for damaged blocks */     guess_dc(s, s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride, 1);     guess_dc(s, s->dc_val[1], s->mb_width  , s->mb_height  , s->mb_stride, 0);     guess_dc(s, s->dc_val[2], s->mb_width  , s->mb_height  , s->mb_stride, 0); #endif        /* filter luma DC */     filter181(s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride);      #if 1     /* render DC only intra */     for(mb_y=0; mb_y<s->mb_height; mb_y++){         for(mb_x=0; mb_x<s->mb_width; mb_x++){             uint8_t *dest_y, *dest_cb, *dest_cr;             const int mb_xy= mb_x + mb_y * s->mb_stride;             const int mb_type= s->current_picture.mb_type[mb_xy];             error= s->error_status_table[mb_xy];             if(IS_INTER(mb_type)) continue;             if(!(error&AC_ERROR)) continue;              //undamaged                          dest_y = s->current_picture.data[0] + mb_x*16 + mb_y*16*s->linesize;             dest_cb= s->current_picture.data[1] + mb_x*8  + mb_y*8 *s->uvlinesize;             dest_cr= s->current_picture.data[2] + mb_x*8  + mb_y*8 *s->uvlinesize;                          put_dc(s, dest_y, dest_cb, dest_cr, mb_x, mb_y);         }     } #endif          if(s->avctx->error_concealment&FF_EC_DEBLOCK){         /* filter horizontal block boundaries */         h_block_filter(s, s->current_picture.data[0], s->mb_width*2, s->mb_height*2, s->linesize  , 1);         h_block_filter(s, s->current_picture.data[1], s->mb_width  , s->mb_height  , s->uvlinesize, 0);         h_block_filter(s, s->current_picture.data[2], s->mb_width  , s->mb_height  , s->uvlinesize, 0);         /* filter vertical block boundaries */         v_block_filter(s, s->current_picture.data[0], s->mb_width*2, s->mb_height*2, s->linesize  , 1);         v_block_filter(s, s->current_picture.data[1], s->mb_width  , s->mb_height  , s->uvlinesize, 0);         v_block_filter(s, s->current_picture.data[2], s->mb_width  , s->mb_height  , s->uvlinesize, 0);     } #ifdef HAVE_XVMC ec_clean: #endif     /* clean a few tables */     for(i=0; i<s->mb_num; i++){         const int mb_xy= s->mb_index2xy[i];         int error= s->error_status_table[mb_xy];                  if(s->pict_type!=B_TYPE && (error&(DC_ERROR|MV_ERROR|AC_ERROR))){             s->mbskip_table[mb_xy]=0;         }         s->mbintra_table[mb_xy]=1;     }     }