mpegaudiodec.c
资源名称:tcpmp.rar [点击查看]
上传用户:wstnjxml
上传日期:2014-04-03
资源大小:7248k
文件大小:86k
源码类别:
Windows CE
开发平台:
C/C++
- /*
- * MPEG Audio decoder
- * Copyright (c) 2001, 2002 Fabrice Bellard.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
- /**
- * @file mpegaudiodec.c
- * MPEG Audio decoder.
- */
- //#define DEBUG
- #include "avcodec.h"
- #include "bitstream.h"
- #include "mpegaudio.h"
- #include "dsputil.h"
- /*
- * TODO:
- * - in low precision mode, use more 16 bit multiplies in synth filter
- * - test lsf / mpeg25 extensively.
- */
- /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
- audio decoder */
- #ifdef CONFIG_MPEGAUDIO_HP
- #define USE_HIGHPRECISION
- #endif
- #ifdef USE_HIGHPRECISION
- #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
- #define WFRAC_BITS 16 /* fractional bits for window */
- #else
- #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
- #define WFRAC_BITS 14 /* fractional bits for window */
- #endif
- #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
- typedef int32_t OUT_INT;
- #define OUT_MAX INT32_MAX
- #define OUT_MIN INT32_MIN
- #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 31)
- #else
- typedef int16_t OUT_INT;
- #define OUT_MAX INT16_MAX
- #define OUT_MIN INT16_MIN
- #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
- #endif
- #define FRAC_ONE (1 << FRAC_BITS)
- #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
- #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
- #define FIX(a) ((int)((a) * FRAC_ONE))
- /* WARNING: only correct for posititive numbers */
- #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
- #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
- #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
- //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
- static always_inline int MULH(int a, int b){
- return ((int64_t)(a) * (int64_t)(b))>>32;
- }
- #if FRAC_BITS <= 15
- typedef int16_t MPA_INT;
- #else
- typedef int32_t MPA_INT;
- #endif
- /****************/
- #define HEADER_SIZE 4
- #define BACKSTEP_SIZE 512
- struct GranuleDef;
- typedef struct MPADecodeContext {
- uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
- int inbuf_index;
- uint8_t *inbuf_ptr, *inbuf;
- int frame_size;
- int free_format_frame_size; /* frame size in case of free format
- (zero if currently unknown) */
- /* next header (used in free format parsing) */
- uint32_t free_format_next_header;
- int error_protection;
- int layer;
- int sample_rate;
- int sample_rate_index; /* between 0 and 8 */
- int bit_rate;
- int old_frame_size;
- GetBitContext gb;
- int nb_channels;
- int mode;
- int mode_ext;
- int lsf;
- MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
- int synth_buf_offset[MPA_MAX_CHANNELS];
- int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
- int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
- #ifdef DEBUG
- int frame_count;
- #endif
- void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
- int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
- unsigned int dither_state;
- } MPADecodeContext;
- /**
- * Context for MP3On4 decoder
- */
- typedef struct MP3On4DecodeContext {
- int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
- int chan_cfg; ///< channel config number
- MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
- } MP3On4DecodeContext;
- /* layer 3 "granule" */
- typedef struct GranuleDef {
- uint8_t scfsi;
- int part2_3_length;
- int big_values;
- int global_gain;
- int scalefac_compress;
- uint8_t block_type;
- uint8_t switch_point;
- int table_select[3];
- int subblock_gain[3];
- uint8_t scalefac_scale;
- uint8_t count1table_select;
- int region_size[3]; /* number of huffman codes in each region */
- int preflag;
- int short_start, long_end; /* long/short band indexes */
- uint8_t scale_factors[40];
- int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
- } GranuleDef;
- #define MODE_EXT_MS_STEREO 2
- #define MODE_EXT_I_STEREO 1
- /* layer 3 huffman tables */
- typedef struct HuffTable {
- int xsize;
- const uint8_t *bits;
- const uint16_t *codes;
- } HuffTable;
- #include "mpegaudiodectab.h"
- static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
- static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
- /* vlc structure for decoding layer 3 huffman tables */
- static VLC huff_vlc[16];
- static uint8_t *huff_code_table[16];
- static VLC huff_quad_vlc[2];
- /* computed from band_size_long */
- static uint16_t band_index_long[9][23];
- /* XXX: free when all decoders are closed */
- #define TABLE_4_3_SIZE (8191 + 16)*4
- static int8_t *table_4_3_exp;
- static uint32_t *table_4_3_value;
- /* intensity stereo coef table */
- static int32_t is_table[2][16];
- static int32_t is_table_lsf[2][2][16];
- static int32_t csa_table[8][4];
- static float csa_table_float[8][4];
- static int32_t mdct_win[8][36];
- /* lower 2 bits: modulo 3, higher bits: shift */
- static uint16_t scale_factor_modshift[64];
- /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
- static int32_t scale_factor_mult[15][3];
- /* mult table for layer 2 group quantization */
- #define SCALE_GEN(v)
- { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
- static const int32_t scale_factor_mult2[3][3] = {
- SCALE_GEN(4.0 / 3.0), /* 3 steps */
- SCALE_GEN(4.0 / 5.0), /* 5 steps */
- SCALE_GEN(4.0 / 9.0), /* 9 steps */
- };
- void ff_mpa_synth_init(MPA_INT *window);
- static MPA_INT window[512] __attribute__((aligned(16)));
- /* layer 1 unscaling */
- /* n = number of bits of the mantissa minus 1 */
- static inline int l1_unscale(int n, int mant, int scale_factor)
- {
- int shift, mod;
- int64_t val;
- shift = scale_factor_modshift[scale_factor];
- mod = shift & 3;
- shift >>= 2;
- val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
- shift += n;
- /* NOTE: at this point, 1 <= shift >= 21 + 15 */
- return (int)((val + (1LL << (shift - 1))) >> shift);
- }
- static inline int l2_unscale_group(int steps, int mant, int scale_factor)
- {
- int shift, mod, val;
- shift = scale_factor_modshift[scale_factor];
- mod = shift & 3;
- shift >>= 2;
- val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
- /* NOTE: at this point, 0 <= shift <= 21 */
- if (shift > 0)
- val = (val + (1 << (shift - 1))) >> shift;
- return val;
- }
- /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
- static inline int l3_unscale(int value, int exponent)
- {
- unsigned int m;
- int e;
- e = table_4_3_exp [4*value + (exponent&3)];
- m = table_4_3_value[4*value + (exponent&3)];
- e -= (exponent >> 2);
- assert(e>=1);
- if (e > 31)
- return 0;
- m = (m + (1 << (e-1))) >> e;
- return m;
- }
- /* all integer n^(4/3) computation code */
- #define DEV_ORDER 13
- #define POW_FRAC_BITS 24
- #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
- #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
- #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
- static int dev_4_3_coefs[DEV_ORDER];
- #if 0 /* unused */
- static int pow_mult3[3] = {
- POW_FIX(1.0),
- POW_FIX(1.25992104989487316476),
- POW_FIX(1.58740105196819947474),
- };
- #endif
- static void int_pow_init(void)
- {
- int i, a;
- a = POW_FIX(1.0);
- for(i=0;i<DEV_ORDER;i++) {
- a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
- dev_4_3_coefs[i] = a;
- }
- }
- #if 0 /* unused, remove? */
- /* return the mantissa and the binary exponent */
- static int int_pow(int i, int *exp_ptr)
- {
- int e, er, eq, j;
- int a, a1;
- /* renormalize */
- a = i;
- e = POW_FRAC_BITS;
- while (a < (1 << (POW_FRAC_BITS - 1))) {
- a = a << 1;
- e--;
- }
- a -= (1 << POW_FRAC_BITS);
- a1 = 0;
- for(j = DEV_ORDER - 1; j >= 0; j--)
- a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
- a = (1 << POW_FRAC_BITS) + a1;
- /* exponent compute (exact) */
- e = e * 4;
- er = e % 3;
- eq = e / 3;
- a = POW_MULL(a, pow_mult3[er]);
- while (a >= 2 * POW_FRAC_ONE) {
- a = a >> 1;
- eq++;
- }
- /* convert to float */
- while (a < POW_FRAC_ONE) {
- a = a << 1;
- eq--;
- }
- /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
- #if POW_FRAC_BITS > FRAC_BITS
- a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
- /* correct overflow */
- if (a >= 2 * (1 << FRAC_BITS)) {
- a = a >> 1;
- eq++;
- }
- #endif
- *exp_ptr = eq;
- return a;
- }
- #endif
- static int decode_init(AVCodecContext * avctx)
- {
- MPADecodeContext *s = avctx->priv_data;
- static int init=0;
- int i, j, k;
- #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
- avctx->sample_fmt= SAMPLE_FMT_S32;
- #else
- avctx->sample_fmt= SAMPLE_FMT_S16;
- #endif
- if(avctx->antialias_algo != FF_AA_FLOAT)
- s->compute_antialias= compute_antialias_integer;
- else
- s->compute_antialias= compute_antialias_float;
- if (!init && !avctx->parse_only) {
- /* scale factors table for layer 1/2 */
- for(i=0;i<64;i++) {
- int shift, mod;
- /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
- shift = (i / 3);
- mod = i % 3;
- scale_factor_modshift[i] = mod | (shift << 2);
- }
- /* scale factor multiply for layer 1 */
- for(i=0;i<15;i++) {
- int n, norm;
- n = i + 2;
- norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
- scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
- scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
- scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
- dprintf("%d: norm=%x s=%x %x %xn",
- i, norm,
- scale_factor_mult[i][0],
- scale_factor_mult[i][1],
- scale_factor_mult[i][2]);
- }
- ff_mpa_synth_init(window);
- /* huffman decode tables */
- huff_code_table[0] = NULL;
- for(i=1;i<16;i++) {
- const HuffTable *h = &mpa_huff_tables[i];
- int xsize, x, y;
- unsigned int n;
- uint8_t *code_table;
- xsize = h->xsize;
- n = xsize * xsize;
- /* XXX: fail test */
- init_vlc(&huff_vlc[i], 8, n,
- h->bits, 1, 1, h->codes, 2, 2, 1);
- code_table = av_mallocz(n);
- j = 0;
- for(x=0;x<xsize;x++) {
- for(y=0;y<xsize;y++)
- code_table[j++] = (x << 4) | y;
- }
- huff_code_table[i] = code_table;
- }
- for(i=0;i<2;i++) {
- init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
- mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
- }
- for(i=0;i<9;i++) {
- k = 0;
- for(j=0;j<22;j++) {
- band_index_long[i][j] = k;
- k += band_size_long[i][j];
- }
- band_index_long[i][22] = k;
- }
- /* compute n ^ (4/3) and store it in mantissa/exp format */
- table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
- if(!table_4_3_exp)
- return -1;
- table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
- if(!table_4_3_value)
- return -1;
- int_pow_init();
- for(i=1;i<TABLE_4_3_SIZE;i++) {
- double f, fm;
- int e, m;
- f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
- fm = frexp(f, &e);
- m = (uint32_t)(fm*(1LL<<31) + 0.5);
- e+= FRAC_BITS - 31 + 5;
- /* normalized to FRAC_BITS */
- table_4_3_value[i] = m;
- // av_log(NULL, AV_LOG_DEBUG, "%d %d %fn", i, m, pow((double)i, 4.0 / 3.0));
- table_4_3_exp[i] = -e;
- }
- for(i=0;i<7;i++) {
- float f;
- int v;
- if (i != 6) {
- f = tan((double)i * M_PI / 12.0);
- v = FIXR(f / (1.0 + f));
- } else {
- v = FIXR(1.0);
- }
- is_table[0][i] = v;
- is_table[1][6 - i] = v;
- }
- /* invalid values */
- for(i=7;i<16;i++)
- is_table[0][i] = is_table[1][i] = 0.0;
- for(i=0;i<16;i++) {
- double f;
- int e, k;
- for(j=0;j<2;j++) {
- e = -(j + 1) * ((i + 1) >> 1);
- f = pow(2.0, e / 4.0);
- k = i & 1;
- is_table_lsf[j][k ^ 1][i] = FIXR(f);
- is_table_lsf[j][k][i] = FIXR(1.0);
- dprintf("is_table_lsf %d %d: %x %xn",
- i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
- }
- }
- for(i=0;i<8;i++) {
- float ci, cs, ca;
- ci = ci_table[i];
- cs = 1.0 / sqrt(1.0 + ci * ci);
- ca = cs * ci;
- csa_table[i][0] = FIXHR(cs/4);
- csa_table[i][1] = FIXHR(ca/4);
- csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
- csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
- csa_table_float[i][0] = cs;
- csa_table_float[i][1] = ca;
- csa_table_float[i][2] = ca + cs;
- csa_table_float[i][3] = ca - cs;
- // printf("%d %d %d %dn", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
- // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %fn", cs, ca, ca+cs, ca-cs);
- }
- /* compute mdct windows */
- for(i=0;i<36;i++) {
- for(j=0; j<4; j++){
- double d;
- if(j==2 && i%3 != 1)
- continue;
- d= sin(M_PI * (i + 0.5) / 36.0);
- if(j==1){
- if (i>=30) d= 0;
- else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
- else if(i>=18) d= 1;
- }else if(j==3){
- if (i< 6) d= 0;
- else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
- else if(i< 18) d= 1;
- }
- //merge last stage of imdct into the window coefficients
- d*= 0.5 / cos(M_PI*(2*i + 19)/72);
- if(j==2)
- mdct_win[j][i/3] = FIXHR((d / (1<<5)));
- else
- mdct_win[j][i ] = FIXHR((d / (1<<5)));
- // av_log(NULL, AV_LOG_DEBUG, "%2d %d %fn", i,j,d / (1<<5));
- }
- }
- /* NOTE: we do frequency inversion adter the MDCT by changing
- the sign of the right window coefs */
- for(j=0;j<4;j++) {
- for(i=0;i<36;i+=2) {
- mdct_win[j + 4][i] = mdct_win[j][i];
- mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
- }
- }
- #if defined(DEBUG)
- for(j=0;j<8;j++) {
- printf("win%d=n", j);
- for(i=0;i<36;i++)
- printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
- printf("n");
- }
- #endif
- init = 1;
- }
- s->inbuf_index = 0;
- s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
- s->inbuf_ptr = s->inbuf;
- #ifdef DEBUG
- s->frame_count = 0;
- #endif
- if (avctx->codec_id == CODEC_ID_MP3ADU)
- s->adu_mode = 1;
- return 0;
- }
- /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
- /* cos(i*pi/64) */
- #define COS0_0 FIXR(0.50060299823519630134)
- #define COS0_1 FIXR(0.50547095989754365998)
- #define COS0_2 FIXR(0.51544730992262454697)
- #define COS0_3 FIXR(0.53104259108978417447)
- #define COS0_4 FIXR(0.55310389603444452782)
- #define COS0_5 FIXR(0.58293496820613387367)
- #define COS0_6 FIXR(0.62250412303566481615)
- #define COS0_7 FIXR(0.67480834145500574602)
- #define COS0_8 FIXR(0.74453627100229844977)
- #define COS0_9 FIXR(0.83934964541552703873)
- #define COS0_10 FIXR(0.97256823786196069369)
- #define COS0_11 FIXR(1.16943993343288495515)
- #define COS0_12 FIXR(1.48416461631416627724)
- #define COS0_13 FIXR(2.05778100995341155085)
- #define COS0_14 FIXR(3.40760841846871878570)
- #define COS0_15 FIXR(10.19000812354805681150)
- #define COS1_0 FIXR(0.50241928618815570551)
- #define COS1_1 FIXR(0.52249861493968888062)
- #define COS1_2 FIXR(0.56694403481635770368)
- #define COS1_3 FIXR(0.64682178335999012954)
- #define COS1_4 FIXR(0.78815462345125022473)
- #define COS1_5 FIXR(1.06067768599034747134)
- #define COS1_6 FIXR(1.72244709823833392782)
- #define COS1_7 FIXR(5.10114861868916385802)
- #define COS2_0 FIXR(0.50979557910415916894)
- #define COS2_1 FIXR(0.60134488693504528054)
- #define COS2_2 FIXR(0.89997622313641570463)
- #define COS2_3 FIXR(2.56291544774150617881)
- #define COS3_0 FIXR(0.54119610014619698439)
- #define COS3_1 FIXR(1.30656296487637652785)
- #define COS4_0 FIXR(0.70710678118654752439)
- /* butterfly operator */
- #define BF(a, b, c)
- {
- tmp0 = tab[a] + tab[b];
- tmp1 = tab[a] - tab[b];
- tab[a] = tmp0;
- tab[b] = MULL(tmp1, c);
- }
- #define BF1(a, b, c, d)
- {
- BF(a, b, COS4_0);
- BF(c, d, -COS4_0);
- tab[c] += tab[d];
- }
- #define BF2(a, b, c, d)
- {
- BF(a, b, COS4_0);
- BF(c, d, -COS4_0);
- tab[c] += tab[d];
- tab[a] += tab[c];
- tab[c] += tab[b];
- tab[b] += tab[d];
- }
- #define ADD(a, b) tab[a] += tab[b]
- /* DCT32 without 1/sqrt(2) coef zero scaling. */
- static void dct32(int32_t *out, int32_t *tab)
- {
- int tmp0, tmp1;
- /* pass 1 */
- BF(0, 31, COS0_0);
- BF(1, 30, COS0_1);
- BF(2, 29, COS0_2);
- BF(3, 28, COS0_3);
- BF(4, 27, COS0_4);
- BF(5, 26, COS0_5);
- BF(6, 25, COS0_6);
- BF(7, 24, COS0_7);
- BF(8, 23, COS0_8);
- BF(9, 22, COS0_9);
- BF(10, 21, COS0_10);
- BF(11, 20, COS0_11);
- BF(12, 19, COS0_12);
- BF(13, 18, COS0_13);
- BF(14, 17, COS0_14);
- BF(15, 16, COS0_15);
- /* pass 2 */
- BF(0, 15, COS1_0);
- BF(1, 14, COS1_1);
- BF(2, 13, COS1_2);
- BF(3, 12, COS1_3);
- BF(4, 11, COS1_4);
- BF(5, 10, COS1_5);
- BF(6, 9, COS1_6);
- BF(7, 8, COS1_7);
- BF(16, 31, -COS1_0);
- BF(17, 30, -COS1_1);
- BF(18, 29, -COS1_2);
- BF(19, 28, -COS1_3);
- BF(20, 27, -COS1_4);
- BF(21, 26, -COS1_5);
- BF(22, 25, -COS1_6);
- BF(23, 24, -COS1_7);
- /* pass 3 */
- BF(0, 7, COS2_0);
- BF(1, 6, COS2_1);
- BF(2, 5, COS2_2);
- BF(3, 4, COS2_3);
- BF(8, 15, -COS2_0);
- BF(9, 14, -COS2_1);
- BF(10, 13, -COS2_2);
- BF(11, 12, -COS2_3);
- BF(16, 23, COS2_0);
- BF(17, 22, COS2_1);
- BF(18, 21, COS2_2);
- BF(19, 20, COS2_3);
- BF(24, 31, -COS2_0);
- BF(25, 30, -COS2_1);
- BF(26, 29, -COS2_2);
- BF(27, 28, -COS2_3);
- /* pass 4 */
- BF(0, 3, COS3_0);
- BF(1, 2, COS3_1);
- BF(4, 7, -COS3_0);
- BF(5, 6, -COS3_1);
- BF(8, 11, COS3_0);
- BF(9, 10, COS3_1);
- BF(12, 15, -COS3_0);
- BF(13, 14, -COS3_1);
- BF(16, 19, COS3_0);
- BF(17, 18, COS3_1);
- BF(20, 23, -COS3_0);
- BF(21, 22, -COS3_1);
- BF(24, 27, COS3_0);
- BF(25, 26, COS3_1);
- BF(28, 31, -COS3_0);
- BF(29, 30, -COS3_1);
- /* pass 5 */
- BF1(0, 1, 2, 3);
- BF2(4, 5, 6, 7);
- BF1(8, 9, 10, 11);
- BF2(12, 13, 14, 15);
- BF1(16, 17, 18, 19);
- BF2(20, 21, 22, 23);
- BF1(24, 25, 26, 27);
- BF2(28, 29, 30, 31);
- /* pass 6 */
- ADD( 8, 12);
- ADD(12, 10);
- ADD(10, 14);
- ADD(14, 9);
- ADD( 9, 13);
- ADD(13, 11);
- ADD(11, 15);
- out[ 0] = tab[0];
- out[16] = tab[1];
- out[ 8] = tab[2];
- out[24] = tab[3];
- out[ 4] = tab[4];
- out[20] = tab[5];
- out[12] = tab[6];
- out[28] = tab[7];
- out[ 2] = tab[8];
- out[18] = tab[9];
- out[10] = tab[10];
- out[26] = tab[11];
- out[ 6] = tab[12];
- out[22] = tab[13];
- out[14] = tab[14];
- out[30] = tab[15];
- ADD(24, 28);
- ADD(28, 26);
- ADD(26, 30);
- ADD(30, 25);
- ADD(25, 29);
- ADD(29, 27);
- ADD(27, 31);
- out[ 1] = tab[16] + tab[24];
- out[17] = tab[17] + tab[25];
- out[ 9] = tab[18] + tab[26];
- out[25] = tab[19] + tab[27];
- out[ 5] = tab[20] + tab[28];
- out[21] = tab[21] + tab[29];
- out[13] = tab[22] + tab[30];
- out[29] = tab[23] + tab[31];
- out[ 3] = tab[24] + tab[20];
- out[19] = tab[25] + tab[21];
- out[11] = tab[26] + tab[22];
- out[27] = tab[27] + tab[23];
- out[ 7] = tab[28] + tab[18];
- out[23] = tab[29] + tab[19];
- out[15] = tab[30] + tab[17];
- out[31] = tab[31];
- }
- #if FRAC_BITS <= 15
- static inline int round_sample(int *sum)
- {
- int sum1;
- sum1 = (*sum) >> OUT_SHIFT;
- *sum &= (1<<OUT_SHIFT)-1;
- if (sum1 < OUT_MIN)
- sum1 = OUT_MIN;
- else if (sum1 > OUT_MAX)
- sum1 = OUT_MAX;
- return sum1;
- }
- #if defined(ARCH_POWERPC_405)
- /* signed 16x16 -> 32 multiply add accumulate */
- #define MACS(rt, ra, rb)
- asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
- /* signed 16x16 -> 32 multiply */
- #define MULS(ra, rb)
- ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
- #else
- /* signed 16x16 -> 32 multiply add accumulate */
- #define MACS(rt, ra, rb) rt += (ra) * (rb)
- /* signed 16x16 -> 32 multiply */
- #define MULS(ra, rb) ((ra) * (rb))
- #endif
- #else
- static inline int round_sample(int64_t *sum)
- {
- int sum1;
- sum1 = (int)((*sum) >> OUT_SHIFT);
- *sum &= (1<<OUT_SHIFT)-1;
- if (sum1 < OUT_MIN)
- sum1 = OUT_MIN;
- else if (sum1 > OUT_MAX)
- sum1 = OUT_MAX;
- return sum1;
- }
- #define MULS(ra, rb) MUL64(ra, rb)
- #endif
- #define SUM8(sum, op, w, p)
- {
- sum op MULS((w)[0 * 64], p[0 * 64]);
- sum op MULS((w)[1 * 64], p[1 * 64]);
- sum op MULS((w)[2 * 64], p[2 * 64]);
- sum op MULS((w)[3 * 64], p[3 * 64]);
- sum op MULS((w)[4 * 64], p[4 * 64]);
- sum op MULS((w)[5 * 64], p[5 * 64]);
- sum op MULS((w)[6 * 64], p[6 * 64]);
- sum op MULS((w)[7 * 64], p[7 * 64]);
- }
- #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p)
- {
- int tmp;
- tmp = p[0 * 64];
- sum1 op1 MULS((w1)[0 * 64], tmp);
- sum2 op2 MULS((w2)[0 * 64], tmp);
- tmp = p[1 * 64];
- sum1 op1 MULS((w1)[1 * 64], tmp);
- sum2 op2 MULS((w2)[1 * 64], tmp);
- tmp = p[2 * 64];
- sum1 op1 MULS((w1)[2 * 64], tmp);
- sum2 op2 MULS((w2)[2 * 64], tmp);
- tmp = p[3 * 64];
- sum1 op1 MULS((w1)[3 * 64], tmp);
- sum2 op2 MULS((w2)[3 * 64], tmp);
- tmp = p[4 * 64];
- sum1 op1 MULS((w1)[4 * 64], tmp);
- sum2 op2 MULS((w2)[4 * 64], tmp);
- tmp = p[5 * 64];
- sum1 op1 MULS((w1)[5 * 64], tmp);
- sum2 op2 MULS((w2)[5 * 64], tmp);
- tmp = p[6 * 64];
- sum1 op1 MULS((w1)[6 * 64], tmp);
- sum2 op2 MULS((w2)[6 * 64], tmp);
- tmp = p[7 * 64];
- sum1 op1 MULS((w1)[7 * 64], tmp);
- sum2 op2 MULS((w2)[7 * 64], tmp);
- }
- void ff_mpa_synth_init(MPA_INT *window)
- {
- int i;
- /* max = 18760, max sum over all 16 coefs : 44736 */
- for(i=0;i<257;i++) {
- int v;
- v = mpa_enwindow[i];
- #if WFRAC_BITS < 16
- v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
- #endif
- window[i] = v;
- if ((i & 63) != 0)
- v = -v;
- if (i != 0)
- window[512 - i] = v;
- }
- }
- /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
- 32 samples. */
- /* XXX: optimize by avoiding ring buffer usage */
- void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
- MPA_INT *window, int *dither_state,
- OUT_INT *samples, int incr,
- int32_t sb_samples[SBLIMIT])
- {
- int32_t tmp[32];
- register MPA_INT *synth_buf;
- register const MPA_INT *w, *w2, *p;
- int j, offset, v;
- OUT_INT *samples2;
- #if FRAC_BITS <= 15
- int sum, sum2;
- #else
- int64_t sum, sum2;
- #endif
- dct32(tmp, sb_samples);
- offset = *synth_buf_offset;
- synth_buf = synth_buf_ptr + offset;
- for(j=0;j<32;j++) {
- v = tmp[j];
- #if FRAC_BITS <= 15
- /* NOTE: can cause a loss in precision if very high amplitude
- sound */
- if (v > 32767)
- v = 32767;
- else if (v < -32768)
- v = -32768;
- #endif
- synth_buf[j] = v;
- }
- /* copy to avoid wrap */
- memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
- samples2 = samples + 31 * incr;
- w = window;
- w2 = window + 31;
- sum = *dither_state;
- p = synth_buf + 16;
- SUM8(sum, +=, w, p);
- p = synth_buf + 48;
- SUM8(sum, -=, w + 32, p);
- *samples = round_sample(&sum);
- samples += incr;
- w++;
- /* we calculate two samples at the same time to avoid one memory
- access per two sample */
- for(j=1;j<16;j++) {
- sum2 = 0;
- p = synth_buf + 16 + j;
- SUM8P2(sum, +=, sum2, -=, w, w2, p);
- p = synth_buf + 48 - j;
- SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
- *samples = round_sample(&sum);
- samples += incr;
- sum += sum2;
- *samples2 = round_sample(&sum);
- samples2 -= incr;
- w++;
- w2--;
- }
- p = synth_buf + 32;
- SUM8(sum, -=, w + 32, p);
- *samples = round_sample(&sum);
- *dither_state= sum;
- offset = (offset - 32) & 511;
- *synth_buf_offset = offset;
- }
- #define C3 FIXHR(0.86602540378443864676/2)
- /* 0.5 / cos(pi*(2*i+1)/36) */
- static const int icos36[9] = {
- FIXR(0.50190991877167369479),
- FIXR(0.51763809020504152469), //0
- FIXR(0.55168895948124587824),
- FIXR(0.61038729438072803416),
- FIXR(0.70710678118654752439), //1
- FIXR(0.87172339781054900991),
- FIXR(1.18310079157624925896),
- FIXR(1.93185165257813657349), //2
- FIXR(5.73685662283492756461),
- };
- /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
- cases. */
- static void imdct12(int *out, int *in)
- {
- int in0, in1, in2, in3, in4, in5, t1, t2;
- in0= in[0*3];
- in1= in[1*3] + in[0*3];
- in2= in[2*3] + in[1*3];
- in3= in[3*3] + in[2*3];
- in4= in[4*3] + in[3*3];
- in5= in[5*3] + in[4*3];
- in5 += in3;
- in3 += in1;
- in2= MULH(2*in2, C3);
- in3= MULH(2*in3, C3);
- t1 = in0 - in4;
- t2 = MULL(in1 - in5, icos36[4]);
- out[ 7]=
- out[10]= t1 + t2;
- out[ 1]=
- out[ 4]= t1 - t2;
- in0 += in4>>1;
- in4 = in0 + in2;
- in1 += in5>>1;
- in5 = MULL(in1 + in3, icos36[1]);
- out[ 8]=
- out[ 9]= in4 + in5;
- out[ 2]=
- out[ 3]= in4 - in5;
- in0 -= in2;
- in1 = MULL(in1 - in3, icos36[7]);
- out[ 0]=
- out[ 5]= in0 - in1;
- out[ 6]=
- out[11]= in0 + in1;
- }
- /* cos(pi*i/18) */
- #define C1 FIXHR(0.98480775301220805936/2)
- #define C2 FIXHR(0.93969262078590838405/2)
- #define C3 FIXHR(0.86602540378443864676/2)
- #define C4 FIXHR(0.76604444311897803520/2)
- #define C5 FIXHR(0.64278760968653932632/2)
- #define C6 FIXHR(0.5/2)
- #define C7 FIXHR(0.34202014332566873304/2)
- #define C8 FIXHR(0.17364817766693034885/2)
- /* using Lee like decomposition followed by hand coded 9 points DCT */
- static void imdct36(int *out, int *buf, int *in, int *win)
- {
- int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
- int tmp[18], *tmp1, *in1;
- for(i=17;i>=1;i--)
- in[i] += in[i-1];
- for(i=17;i>=3;i-=2)
- in[i] += in[i-2];
- for(j=0;j<2;j++) {
- tmp1 = tmp + j;
- in1 = in + j;
- #if 0
- //more accurate but slower
- int64_t t0, t1, t2, t3;
- t2 = in1[2*4] + in1[2*8] - in1[2*2];
- t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
- t1 = in1[2*0] - in1[2*6];
- tmp1[ 6] = t1 - (t2>>1);
- tmp1[16] = t1 + t2;
- t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
- t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
- t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
- tmp1[10] = (t3 - t0 - t2) >> 32;
- tmp1[ 2] = (t3 + t0 + t1) >> 32;
- tmp1[14] = (t3 + t2 - t1) >> 32;
- tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
- t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
- t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
- t0 = MUL64(2*in1[2*3], C3);
- t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
- tmp1[ 0] = (t2 + t3 + t0) >> 32;
- tmp1[12] = (t2 + t1 - t0) >> 32;
- tmp1[ 8] = (t3 - t1 - t0) >> 32;
- #else
- t2 = in1[2*4] + in1[2*8] - in1[2*2];
- t3 = in1[2*0] + (in1[2*6]>>1);
- t1 = in1[2*0] - in1[2*6];
- tmp1[ 6] = t1 - (t2>>1);
- tmp1[16] = t1 + t2;
- t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
- t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
- t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
- tmp1[10] = t3 - t0 - t2;
- tmp1[ 2] = t3 + t0 + t1;
- tmp1[14] = t3 + t2 - t1;
- tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
- t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
- t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
- t0 = MULH(2*in1[2*3], C3);
- t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
- tmp1[ 0] = t2 + t3 + t0;
- tmp1[12] = t2 + t1 - t0;
- tmp1[ 8] = t3 - t1 - t0;
- #endif
- }
- i = 0;
- for(j=0;j<4;j++) {
- t0 = tmp[i];
- t1 = tmp[i + 2];
- s0 = t1 + t0;
- s2 = t1 - t0;
- t2 = tmp[i + 1];
- t3 = tmp[i + 3];
- s1 = MULL(t3 + t2, icos36[j]);
- s3 = MULL(t3 - t2, icos36[8 - j]);
- t0 = s0 + s1;
- t1 = s0 - s1;
- out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
- out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
- buf[9 + j] = MULH(t0, win[18 + 9 + j]);
- buf[8 - j] = MULH(t0, win[18 + 8 - j]);
- t0 = s2 + s3;
- t1 = s2 - s3;
- out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
- out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
- buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
- buf[ + j] = MULH(t0, win[18 + j]);
- i += 4;
- }
- s0 = tmp[16];
- s1 = MULL(tmp[17], icos36[4]);
- t0 = s0 + s1;
- t1 = s0 - s1;
- out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
- out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
- buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
- buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
- }
- /* header decoding. MUST check the header before because no
- consistency check is done there. Return 1 if free format found and
- that the frame size must be computed externally */
- static int decode_header(MPADecodeContext *s, uint32_t header)
- {
- int sample_rate, frame_size, mpeg25, padding;
- int sample_rate_index, bitrate_index;
- if (header & (1<<20)) {
- s->lsf = (header & (1<<19)) ? 0 : 1;
- mpeg25 = 0;
- } else {
- s->lsf = 1;
- mpeg25 = 1;
- }
- s->layer = 4 - ((header >> 17) & 3);
- /* extract frequency */
- sample_rate_index = (header >> 10) & 3;
- sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
- sample_rate_index += 3 * (s->lsf + mpeg25);
- s->sample_rate_index = sample_rate_index;
- s->error_protection = ((header >> 16) & 1) ^ 1;
- s->sample_rate = sample_rate;
- bitrate_index = (header >> 12) & 0xf;
- padding = (header >> 9) & 1;
- //extension = (header >> 8) & 1;
- s->mode = (header >> 6) & 3;
- s->mode_ext = (header >> 4) & 3;
- //copyright = (header >> 3) & 1;
- //original = (header >> 2) & 1;
- //emphasis = header & 3;
- if (s->mode == MPA_MONO)
- s->nb_channels = 1;
- else
- s->nb_channels = 2;
- if (bitrate_index != 0) {
- frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
- s->bit_rate = frame_size * 1000;
- switch(s->layer) {
- case 1:
- frame_size = (frame_size * 12000) / sample_rate;
- frame_size = (frame_size + padding) * 4;
- break;
- case 2:
- frame_size = (frame_size * 144000) / sample_rate;
- frame_size += padding;
- break;
- default:
- case 3:
- frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
- frame_size += padding;
- break;
- }
- s->frame_size = frame_size;
- } else {
- /* if no frame size computed, signal it */
- if (!s->free_format_frame_size)
- return 1;
- /* free format: compute bitrate and real frame size from the
- frame size we extracted by reading the bitstream */
- s->frame_size = s->free_format_frame_size;
- switch(s->layer) {
- case 1:
- s->frame_size += padding * 4;
- s->bit_rate = (s->frame_size * sample_rate) / 48000;
- break;
- case 2:
- s->frame_size += padding;
- s->bit_rate = (s->frame_size * sample_rate) / 144000;
- break;
- default:
- case 3:
- s->frame_size += padding;
- s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
- break;
- }
- }
- #if defined(DEBUG)
- printf("layer%d, %d Hz, %d kbits/s, ",
- s->layer, s->sample_rate, s->bit_rate);
- if (s->nb_channels == 2) {
- if (s->layer == 3) {
- if (s->mode_ext & MODE_EXT_MS_STEREO)
- printf("ms-");
- if (s->mode_ext & MODE_EXT_I_STEREO)
- printf("i-");
- }
- printf("stereo");
- } else {
- printf("mono");
- }
- printf("n");
- #endif
- return 0;
- }
- /* useful helper to get mpeg audio stream infos. Return -1 if error in
- header, otherwise the coded frame size in bytes */
- int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
- {
- MPADecodeContext s1, *s = &s1;
- memset( s, 0, sizeof(MPADecodeContext) );
- if (ff_mpa_check_header(head) != 0)
- return -1;
- if (decode_header(s, head) != 0) {
- return -1;
- }
- switch(s->layer) {
- case 1:
- avctx->frame_size = 384;
- break;
- case 2:
- avctx->frame_size = 1152;
- break;
- default:
- case 3:
- if (s->lsf)
- avctx->frame_size = 576;
- else
- avctx->frame_size = 1152;
- break;
- }
- avctx->sample_rate = s->sample_rate;
- avctx->channels = s->nb_channels;
- avctx->bit_rate = s->bit_rate;
- avctx->sub_id = s->layer;
- return s->frame_size;
- }
- /* return the number of decoded frames */
- static int mp_decode_layer1(MPADecodeContext *s)
- {
- int bound, i, v, n, ch, j, mant;
- uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
- uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
- if (s->mode == MPA_JSTEREO)
- bound = (s->mode_ext + 1) * 4;
- else
- bound = SBLIMIT;
- /* allocation bits */
- for(i=0;i<bound;i++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- allocation[ch][i] = get_bits(&s->gb, 4);
- }
- }
- for(i=bound;i<SBLIMIT;i++) {
- allocation[0][i] = get_bits(&s->gb, 4);
- }
- /* scale factors */
- for(i=0;i<bound;i++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- if (allocation[ch][i])
- scale_factors[ch][i] = get_bits(&s->gb, 6);
- }
- }
- for(i=bound;i<SBLIMIT;i++) {
- if (allocation[0][i]) {
- scale_factors[0][i] = get_bits(&s->gb, 6);
- scale_factors[1][i] = get_bits(&s->gb, 6);
- }
- }
- /* compute samples */
- for(j=0;j<12;j++) {
- for(i=0;i<bound;i++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- n = allocation[ch][i];
- if (n) {
- mant = get_bits(&s->gb, n + 1);
- v = l1_unscale(n, mant, scale_factors[ch][i]);
- } else {
- v = 0;
- }
- s->sb_samples[ch][j][i] = v;
- }
- }
- for(i=bound;i<SBLIMIT;i++) {
- n = allocation[0][i];
- if (n) {
- mant = get_bits(&s->gb, n + 1);
- v = l1_unscale(n, mant, scale_factors[0][i]);
- s->sb_samples[0][j][i] = v;
- v = l1_unscale(n, mant, scale_factors[1][i]);
- s->sb_samples[1][j][i] = v;
- } else {
- s->sb_samples[0][j][i] = 0;
- s->sb_samples[1][j][i] = 0;
- }
- }
- }
- return 12;
- }
- /* bitrate is in kb/s */
- int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
- {
- int ch_bitrate, table;
- ch_bitrate = bitrate / nb_channels;
- if (!lsf) {
- if ((freq == 48000 && ch_bitrate >= 56) ||
- (ch_bitrate >= 56 && ch_bitrate <= 80))
- table = 0;
- else if (freq != 48000 && ch_bitrate >= 96)
- table = 1;
- else if (freq != 32000 && ch_bitrate <= 48)
- table = 2;
- else
- table = 3;
- } else {
- table = 4;
- }
- return table;
- }
- static int mp_decode_layer2(MPADecodeContext *s)
- {
- int sblimit; /* number of used subbands */
- const unsigned char *alloc_table;
- int table, bit_alloc_bits, i, j, ch, bound, v;
- unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
- unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
- unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
- int scale, qindex, bits, steps, k, l, m, b;
- /* select decoding table */
- table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
- s->sample_rate, s->lsf);
- sblimit = sblimit_table[table];
- alloc_table = alloc_tables[table];
- if (s->mode == MPA_JSTEREO)
- bound = (s->mode_ext + 1) * 4;
- else
- bound = sblimit;
- dprintf("bound=%d sblimit=%dn", bound, sblimit);
- /* sanity check */
- if( bound > sblimit ) bound = sblimit;
- /* parse bit allocation */
- j = 0;
- for(i=0;i<bound;i++) {
- bit_alloc_bits = alloc_table[j];
- for(ch=0;ch<s->nb_channels;ch++) {
- bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
- }
- j += 1 << bit_alloc_bits;
- }
- for(i=bound;i<sblimit;i++) {
- bit_alloc_bits = alloc_table[j];
- v = get_bits(&s->gb, bit_alloc_bits);
- bit_alloc[0][i] = v;
- bit_alloc[1][i] = v;
- j += 1 << bit_alloc_bits;
- }
- #ifdef DEBUG
- {
- for(ch=0;ch<s->nb_channels;ch++) {
- for(i=0;i<sblimit;i++)
- printf(" %d", bit_alloc[ch][i]);
- printf("n");
- }
- }
- #endif
- /* scale codes */
- for(i=0;i<sblimit;i++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- if (bit_alloc[ch][i])
- scale_code[ch][i] = get_bits(&s->gb, 2);
- }
- }
- /* scale factors */
- for(i=0;i<sblimit;i++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- if (bit_alloc[ch][i]) {
- sf = scale_factors[ch][i];
- switch(scale_code[ch][i]) {
- default:
- case 0:
- sf[0] = get_bits(&s->gb, 6);
- sf[1] = get_bits(&s->gb, 6);
- sf[2] = get_bits(&s->gb, 6);
- break;
- case 2:
- sf[0] = get_bits(&s->gb, 6);
- sf[1] = sf[0];
- sf[2] = sf[0];
- break;
- case 1:
- sf[0] = get_bits(&s->gb, 6);
- sf[2] = get_bits(&s->gb, 6);
- sf[1] = sf[0];
- break;
- case 3:
- sf[0] = get_bits(&s->gb, 6);
- sf[2] = get_bits(&s->gb, 6);
- sf[1] = sf[2];
- break;
- }
- }
- }
- }
- #ifdef DEBUG
- for(ch=0;ch<s->nb_channels;ch++) {
- for(i=0;i<sblimit;i++) {
- if (bit_alloc[ch][i]) {
- sf = scale_factors[ch][i];
- printf(" %d %d %d", sf[0], sf[1], sf[2]);
- } else {
- printf(" -");
- }
- }
- printf("n");
- }
- #endif
- /* samples */
- for(k=0;k<3;k++) {
- for(l=0;l<12;l+=3) {
- j = 0;
- for(i=0;i<bound;i++) {
- bit_alloc_bits = alloc_table[j];
- for(ch=0;ch<s->nb_channels;ch++) {
- b = bit_alloc[ch][i];
- if (b) {
- scale = scale_factors[ch][i][k];
- qindex = alloc_table[j+b];
- bits = quant_bits[qindex];
- if (bits < 0) {
- /* 3 values at the same time */
- v = get_bits(&s->gb, -bits);
- steps = quant_steps[qindex];
- s->sb_samples[ch][k * 12 + l + 0][i] =
- l2_unscale_group(steps, v % steps, scale);
- v = v / steps;
- s->sb_samples[ch][k * 12 + l + 1][i] =
- l2_unscale_group(steps, v % steps, scale);
- v = v / steps;
- s->sb_samples[ch][k * 12 + l + 2][i] =
- l2_unscale_group(steps, v, scale);
- } else {
- for(m=0;m<3;m++) {
- v = get_bits(&s->gb, bits);
- v = l1_unscale(bits - 1, v, scale);
- s->sb_samples[ch][k * 12 + l + m][i] = v;
- }
- }
- } else {
- s->sb_samples[ch][k * 12 + l + 0][i] = 0;
- s->sb_samples[ch][k * 12 + l + 1][i] = 0;
- s->sb_samples[ch][k * 12 + l + 2][i] = 0;
- }
- }
- /* next subband in alloc table */
- j += 1 << bit_alloc_bits;
- }
- /* XXX: find a way to avoid this duplication of code */
- for(i=bound;i<sblimit;i++) {
- bit_alloc_bits = alloc_table[j];
- b = bit_alloc[0][i];
- if (b) {
- int mant, scale0, scale1;
- scale0 = scale_factors[0][i][k];
- scale1 = scale_factors[1][i][k];
- qindex = alloc_table[j+b];
- bits = quant_bits[qindex];
- if (bits < 0) {
- /* 3 values at the same time */
- v = get_bits(&s->gb, -bits);
- steps = quant_steps[qindex];
- mant = v % steps;
- v = v / steps;
- s->sb_samples[0][k * 12 + l + 0][i] =
- l2_unscale_group(steps, mant, scale0);
- s->sb_samples[1][k * 12 + l + 0][i] =
- l2_unscale_group(steps, mant, scale1);
- mant = v % steps;
- v = v / steps;
- s->sb_samples[0][k * 12 + l + 1][i] =
- l2_unscale_group(steps, mant, scale0);
- s->sb_samples[1][k * 12 + l + 1][i] =
- l2_unscale_group(steps, mant, scale1);
- s->sb_samples[0][k * 12 + l + 2][i] =
- l2_unscale_group(steps, v, scale0);
- s->sb_samples[1][k * 12 + l + 2][i] =
- l2_unscale_group(steps, v, scale1);
- } else {
- for(m=0;m<3;m++) {
- mant = get_bits(&s->gb, bits);
- s->sb_samples[0][k * 12 + l + m][i] =
- l1_unscale(bits - 1, mant, scale0);
- s->sb_samples[1][k * 12 + l + m][i] =
- l1_unscale(bits - 1, mant, scale1);
- }
- }
- } else {
- s->sb_samples[0][k * 12 + l + 0][i] = 0;
- s->sb_samples[0][k * 12 + l + 1][i] = 0;
- s->sb_samples[0][k * 12 + l + 2][i] = 0;
- s->sb_samples[1][k * 12 + l + 0][i] = 0;
- s->sb_samples[1][k * 12 + l + 1][i] = 0;
- s->sb_samples[1][k * 12 + l + 2][i] = 0;
- }
- /* next subband in alloc table */
- j += 1 << bit_alloc_bits;
- }
- /* fill remaining samples to zero */
- for(i=sblimit;i<SBLIMIT;i++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- s->sb_samples[ch][k * 12 + l + 0][i] = 0;
- s->sb_samples[ch][k * 12 + l + 1][i] = 0;
- s->sb_samples[ch][k * 12 + l + 2][i] = 0;
- }
- }
- }
- }
- return 3 * 12;
- }
- /*
- * Seek back in the stream for backstep bytes (at most 511 bytes)
- */
- static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
- {
- uint8_t *ptr;
- /* compute current position in stream */
- ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
- /* copy old data before current one */
- ptr -= backstep;
- memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
- BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
- /* init get bits again */
- init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
- /* prepare next buffer */
- s->inbuf_index ^= 1;
- s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
- s->old_frame_size = s->frame_size;
- }
- static inline void lsf_sf_expand(int *slen,
- int sf, int n1, int n2, int n3)
- {
- if (n3) {
- slen[3] = sf % n3;
- sf /= n3;
- } else {
- slen[3] = 0;
- }
- if (n2) {
- slen[2] = sf % n2;
- sf /= n2;
- } else {
- slen[2] = 0;
- }
- slen[1] = sf % n1;
- sf /= n1;
- slen[0] = sf;
- }
- static void exponents_from_scale_factors(MPADecodeContext *s,
- GranuleDef *g,
- int16_t *exponents)
- {
- const uint8_t *bstab, *pretab;
- int len, i, j, k, l, v0, shift, gain, gains[3];
- int16_t *exp_ptr;
- exp_ptr = exponents;
- gain = g->global_gain - 210;
- shift = g->scalefac_scale + 1;
- bstab = band_size_long[s->sample_rate_index];
- pretab = mpa_pretab[g->preflag];
- for(i=0;i<g->long_end;i++) {
- v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
- len = bstab[i];
- for(j=len;j>0;j--)
- *exp_ptr++ = v0;
- }
- if (g->short_start < 13) {
- bstab = band_size_short[s->sample_rate_index];
- gains[0] = gain - (g->subblock_gain[0] << 3);
- gains[1] = gain - (g->subblock_gain[1] << 3);
- gains[2] = gain - (g->subblock_gain[2] << 3);
- k = g->long_end;
- for(i=g->short_start;i<13;i++) {
- len = bstab[i];
- for(l=0;l<3;l++) {
- v0 = gains[l] - (g->scale_factors[k++] << shift);
- for(j=len;j>0;j--)
- *exp_ptr++ = v0;
- }
- }
- }
- }
- /* handle n = 0 too */
- static inline int get_bitsz(GetBitContext *s, int n)
- {
- if (n == 0)
- return 0;
- else
- return get_bits(s, n);
- }
- static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
- int16_t *exponents, int end_pos)
- {
- int s_index;
- int linbits, code, x, y, l, v, i, j, k, pos;
- GetBitContext last_gb;
- VLC *vlc;
- uint8_t *code_table;
- /* low frequencies (called big values) */
- s_index = 0;
- for(i=0;i<3;i++) {
- j = g->region_size[i];
- if (j == 0)
- continue;
- /* select vlc table */
- k = g->table_select[i];
- l = mpa_huff_data[k][0];
- linbits = mpa_huff_data[k][1];
- vlc = &huff_vlc[l];
- code_table = huff_code_table[l];
- /* read huffcode and compute each couple */
- for(;j>0;j--) {
- if (get_bits_count(&s->gb) >= end_pos)
- break;
- if (code_table) {
- code = get_vlc(&s->gb, vlc);
- if (code < 0)
- return -1;
- y = code_table[code];
- x = y >> 4;
- y = y & 0x0f;
- } else {
- x = 0;
- y = 0;
- }
- dprintf("region=%d n=%d x=%d y=%d exp=%dn",
- i, g->region_size[i] - j, x, y, exponents[s_index]);
- if (x) {
- if (x == 15)
- x += get_bitsz(&s->gb, linbits);
- v = l3_unscale(x, exponents[s_index]);
- if (get_bits1(&s->gb))
- v = -v;
- } else {
- v = 0;
- }
- g->sb_hybrid[s_index++] = v;
- if (y) {
- if (y == 15)
- y += get_bitsz(&s->gb, linbits);
- v = l3_unscale(y, exponents[s_index]);
- if (get_bits1(&s->gb))
- v = -v;
- } else {
- v = 0;
- }
- g->sb_hybrid[s_index++] = v;
- }
- }
- /* high frequencies */
- vlc = &huff_quad_vlc[g->count1table_select];
- last_gb.buffer = NULL;
- while (s_index <= 572) {
- pos = get_bits_count(&s->gb);
- if (pos >= end_pos) {
- if (pos > end_pos && last_gb.buffer != NULL) {
- /* some encoders generate an incorrect size for this
- part. We must go back into the data */
- s_index -= 4;
- s->gb = last_gb;
- }
- break;
- }
- last_gb= s->gb;
- code = get_vlc(&s->gb, vlc);
- dprintf("t=%d code=%dn", g->count1table_select, code);
- if (code < 0)
- return -1;
- for(i=0;i<4;i++) {
- if (code & (8 >> i)) {
- /* non zero value. Could use a hand coded function for
- 'one' value */
- v = l3_unscale(1, exponents[s_index]);
- if(get_bits1(&s->gb))
- v = -v;
- } else {
- v = 0;
- }
- g->sb_hybrid[s_index++] = v;
- }
- }
- while (s_index < 576)
- g->sb_hybrid[s_index++] = 0;
- return 0;
- }
- /* Reorder short blocks from bitstream order to interleaved order. It
- would be faster to do it in parsing, but the code would be far more
- complicated */
- static void reorder_block(MPADecodeContext *s, GranuleDef *g)
- {
- int i, j, k, len;
- int32_t *ptr, *dst, *ptr1;
- int32_t tmp[576];
- if (g->block_type != 2)
- return;
- if (g->switch_point) {
- if (s->sample_rate_index != 8) {
- ptr = g->sb_hybrid + 36;
- } else {
- ptr = g->sb_hybrid + 48;
- }
- } else {
- ptr = g->sb_hybrid;
- }
- for(i=g->short_start;i<13;i++) {
- len = band_size_short[s->sample_rate_index][i];
- ptr1 = ptr;
- for(k=0;k<3;k++) {
- dst = tmp + k;
- for(j=len;j>0;j--) {
- *dst = *ptr++;
- dst += 3;
- }
- }
- memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
- }
- }
- #define ISQRT2 FIXR(0.70710678118654752440)
- static void compute_stereo(MPADecodeContext *s,
- GranuleDef *g0, GranuleDef *g1)
- {
- int i, j, k, l;
- int32_t v1, v2;
- int sf_max, tmp0, tmp1, sf, len, non_zero_found;
- int32_t (*is_tab)[16];
- int32_t *tab0, *tab1;
- int non_zero_found_short[3];
- /* intensity stereo */
- if (s->mode_ext & MODE_EXT_I_STEREO) {
- if (!s->lsf) {
- is_tab = is_table;
- sf_max = 7;
- } else {
- is_tab = is_table_lsf[g1->scalefac_compress & 1];
- sf_max = 16;
- }
- tab0 = g0->sb_hybrid + 576;
- tab1 = g1->sb_hybrid + 576;
- non_zero_found_short[0] = 0;
- non_zero_found_short[1] = 0;
- non_zero_found_short[2] = 0;
- k = (13 - g1->short_start) * 3 + g1->long_end - 3;
- for(i = 12;i >= g1->short_start;i--) {
- /* for last band, use previous scale factor */
- if (i != 11)
- k -= 3;
- len = band_size_short[s->sample_rate_index][i];
- for(l=2;l>=0;l--) {
- tab0 -= len;
- tab1 -= len;
- if (!non_zero_found_short[l]) {
- /* test if non zero band. if so, stop doing i-stereo */
- for(j=0;j<len;j++) {
- if (tab1[j] != 0) {
- non_zero_found_short[l] = 1;
- goto found1;
- }
- }
- sf = g1->scale_factors[k + l];
- if (sf >= sf_max)
- goto found1;
- v1 = is_tab[0][sf];
- v2 = is_tab[1][sf];
- for(j=0;j<len;j++) {
- tmp0 = tab0[j];
- tab0[j] = MULL(tmp0, v1);
- tab1[j] = MULL(tmp0, v2);
- }
- } else {
- found1:
- if (s->mode_ext & MODE_EXT_MS_STEREO) {
- /* lower part of the spectrum : do ms stereo
- if enabled */
- for(j=0;j<len;j++) {
- tmp0 = tab0[j];
- tmp1 = tab1[j];
- tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
- tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
- }
- }
- }
- }
- }
- non_zero_found = non_zero_found_short[0] |
- non_zero_found_short[1] |
- non_zero_found_short[2];
- for(i = g1->long_end - 1;i >= 0;i--) {
- len = band_size_long[s->sample_rate_index][i];
- tab0 -= len;
- tab1 -= len;
- /* test if non zero band. if so, stop doing i-stereo */
- if (!non_zero_found) {
- for(j=0;j<len;j++) {
- if (tab1[j] != 0) {
- non_zero_found = 1;
- goto found2;
- }
- }
- /* for last band, use previous scale factor */
- k = (i == 21) ? 20 : i;
- sf = g1->scale_factors[k];
- if (sf >= sf_max)
- goto found2;
- v1 = is_tab[0][sf];
- v2 = is_tab[1][sf];
- for(j=0;j<len;j++) {
- tmp0 = tab0[j];
- tab0[j] = MULL(tmp0, v1);
- tab1[j] = MULL(tmp0, v2);
- }
- } else {
- found2:
- if (s->mode_ext & MODE_EXT_MS_STEREO) {
- /* lower part of the spectrum : do ms stereo
- if enabled */
- for(j=0;j<len;j++) {
- tmp0 = tab0[j];
- tmp1 = tab1[j];
- tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
- tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
- }
- }
- }
- }
- } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
- /* ms stereo ONLY */
- /* NOTE: the 1/sqrt(2) normalization factor is included in the
- global gain */
- tab0 = g0->sb_hybrid;
- tab1 = g1->sb_hybrid;
- for(i=0;i<576;i++) {
- tmp0 = tab0[i];
- tmp1 = tab1[i];
- tab0[i] = tmp0 + tmp1;
- tab1[i] = tmp0 - tmp1;
- }
- }
- }
- static void compute_antialias_integer(MPADecodeContext *s,
- GranuleDef *g)
- {
- int32_t *ptr, *csa;
- int n, i;
- /* we antialias only "long" bands */
- if (g->block_type == 2) {
- if (!g->switch_point)
- return;
- /* XXX: check this for 8000Hz case */
- n = 1;
- } else {
- n = SBLIMIT - 1;
- }
- ptr = g->sb_hybrid + 18;
- for(i = n;i > 0;i--) {
- int tmp0, tmp1, tmp2;
- csa = &csa_table[0][0];
- #define INT_AA(j)
- tmp0 = ptr[-1-j];
- tmp1 = ptr[ j];
- tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);
- ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));
- ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
- INT_AA(0)
- INT_AA(1)
- INT_AA(2)
- INT_AA(3)
- INT_AA(4)
- INT_AA(5)
- INT_AA(6)
- INT_AA(7)
- ptr += 18;
- }
- }
- static void compute_antialias_float(MPADecodeContext *s,
- GranuleDef *g)
- {
- int32_t *ptr;
- int n, i;
- /* we antialias only "long" bands */
- if (g->block_type == 2) {
- if (!g->switch_point)
- return;
- /* XXX: check this for 8000Hz case */
- n = 1;
- } else {
- n = SBLIMIT - 1;
- }
- ptr = g->sb_hybrid + 18;
- for(i = n;i > 0;i--) {
- float tmp0, tmp1;
- float *csa = &csa_table_float[0][0];
- #define FLOAT_AA(j)
- tmp0= ptr[-1-j];
- tmp1= ptr[ j];
- ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);
- ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
- FLOAT_AA(0)
- FLOAT_AA(1)
- FLOAT_AA(2)
- FLOAT_AA(3)
- FLOAT_AA(4)
- FLOAT_AA(5)
- FLOAT_AA(6)
- FLOAT_AA(7)
- ptr += 18;
- }
- }
- static void compute_imdct(MPADecodeContext *s,
- GranuleDef *g,
- int32_t *sb_samples,
- int32_t *mdct_buf)
- {
- int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
- int32_t out2[12];
- int i, j, mdct_long_end, v, sblimit;
- /* find last non zero block */
- ptr = g->sb_hybrid + 576;
- ptr1 = g->sb_hybrid + 2 * 18;
- while (ptr >= ptr1) {
- ptr -= 6;
- v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
- if (v != 0)
- break;
- }
- sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
- if (g->block_type == 2) {
- /* XXX: check for 8000 Hz */
- if (g->switch_point)
- mdct_long_end = 2;
- else
- mdct_long_end = 0;
- } else {
- mdct_long_end = sblimit;
- }
- buf = mdct_buf;
- ptr = g->sb_hybrid;
- for(j=0;j<mdct_long_end;j++) {
- /* apply window & overlap with previous buffer */
- out_ptr = sb_samples + j;
- /* select window */
- if (g->switch_point && j < 2)
- win1 = mdct_win[0];
- else
- win1 = mdct_win[g->block_type];
- /* select frequency inversion */
- win = win1 + ((4 * 36) & -(j & 1));
- imdct36(out_ptr, buf, ptr, win);
- out_ptr += 18*SBLIMIT;
- ptr += 18;
- buf += 18;
- }
- for(j=mdct_long_end;j<sblimit;j++) {
- /* select frequency inversion */
- win = mdct_win[2] + ((4 * 36) & -(j & 1));
- out_ptr = sb_samples + j;
- for(i=0; i<6; i++){
- *out_ptr = buf[i];
- out_ptr += SBLIMIT;
- }
- imdct12(out2, ptr + 0);
- for(i=0;i<6;i++) {
- *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
- buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
- out_ptr += SBLIMIT;
- }
- imdct12(out2, ptr + 1);
- for(i=0;i<6;i++) {
- *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
- buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
- out_ptr += SBLIMIT;
- }
- imdct12(out2, ptr + 2);
- for(i=0;i<6;i++) {
- buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
- buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
- buf[i + 6*2] = 0;
- }
- ptr += 18;
- buf += 18;
- }
- /* zero bands */
- for(j=sblimit;j<SBLIMIT;j++) {
- /* overlap */
- out_ptr = sb_samples + j;
- for(i=0;i<18;i++) {
- *out_ptr = buf[i];
- buf[i] = 0;
- out_ptr += SBLIMIT;
- }
- buf += 18;
- }
- }
- #if defined(DEBUG)
- void sample_dump(int fnum, int32_t *tab, int n)
- {
- static FILE *files[16], *f;
- char buf[512];
- int i;
- int32_t v;
- f = files[fnum];
- if (!f) {
- snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
- fnum,
- #ifdef USE_HIGHPRECISION
- "hp"
- #else
- "lp"
- #endif
- );
- f = fopen(buf, "w");
- if (!f)
- return;
- files[fnum] = f;
- }
- if (fnum == 0) {
- static int pos = 0;
- av_log(NULL, AV_LOG_DEBUG, "pos=%dn", pos);
- for(i=0;i<n;i++) {
- av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
- if ((i % 18) == 17)
- av_log(NULL, AV_LOG_DEBUG, "n");
- }
- pos += n;
- }
- for(i=0;i<n;i++) {
- /* normalize to 23 frac bits */
- v = tab[i] << (23 - FRAC_BITS);
- fwrite(&v, 1, sizeof(int32_t), f);
- }
- }
- #endif
- /* main layer3 decoding function */
- static int mp_decode_layer3(MPADecodeContext *s)
- {
- int nb_granules, main_data_begin, private_bits;
- int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
- GranuleDef granules[2][2], *g;
- int16_t exponents[576];
- /* read side info */
- if (s->lsf) {
- main_data_begin = get_bits(&s->gb, 8);
- if (s->nb_channels == 2)
- private_bits = get_bits(&s->gb, 2);
- else
- private_bits = get_bits(&s->gb, 1);
- nb_granules = 1;
- } else {
- main_data_begin = get_bits(&s->gb, 9);
- if (s->nb_channels == 2)
- private_bits = get_bits(&s->gb, 3);
- else
- private_bits = get_bits(&s->gb, 5);
- nb_granules = 2;
- for(ch=0;ch<s->nb_channels;ch++) {
- granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
- granules[ch][1].scfsi = get_bits(&s->gb, 4);
- }
- }
- for(gr=0;gr<nb_granules;gr++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- dprintf("gr=%d ch=%d: side_infon", gr, ch);
- g = &granules[ch][gr];
- g->part2_3_length = get_bits(&s->gb, 12);
- g->big_values = get_bits(&s->gb, 9);
- g->global_gain = get_bits(&s->gb, 8);
- /* if MS stereo only is selected, we precompute the
- 1/sqrt(2) renormalization factor */
- if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
- MODE_EXT_MS_STEREO)
- g->global_gain -= 2;
- if (s->lsf)
- g->scalefac_compress = get_bits(&s->gb, 9);
- else
- g->scalefac_compress = get_bits(&s->gb, 4);
- blocksplit_flag = get_bits(&s->gb, 1);
- if (blocksplit_flag) {
- g->block_type = get_bits(&s->gb, 2);
- if (g->block_type == 0)
- return -1;
- g->switch_point = get_bits(&s->gb, 1);
- for(i=0;i<2;i++)
- g->table_select[i] = get_bits(&s->gb, 5);
- for(i=0;i<3;i++)
- g->subblock_gain[i] = get_bits(&s->gb, 3);
- /* compute huffman coded region sizes */
- if (g->block_type == 2)
- g->region_size[0] = (36 / 2);
- else {
- if (s->sample_rate_index <= 2)
- g->region_size[0] = (36 / 2);
- else if (s->sample_rate_index != 8)
- g->region_size[0] = (54 / 2);
- else
- g->region_size[0] = (108 / 2);
- }
- g->region_size[1] = (576 / 2);
- } else {
- int region_address1, region_address2, l;
- g->block_type = 0;
- g->switch_point = 0;
- for(i=0;i<3;i++)
- g->table_select[i] = get_bits(&s->gb, 5);
- /* compute huffman coded region sizes */
- region_address1 = get_bits(&s->gb, 4);
- region_address2 = get_bits(&s->gb, 3);
- dprintf("region1=%d region2=%dn",
- region_address1, region_address2);
- g->region_size[0] =
- band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
- l = region_address1 + region_address2 + 2;
- /* should not overflow */
- if (l > 22)
- l = 22;
- g->region_size[1] =
- band_index_long[s->sample_rate_index][l] >> 1;
- }
- /* convert region offsets to region sizes and truncate
- size to big_values */
- g->region_size[2] = (576 / 2);
- j = 0;
- for(i=0;i<3;i++) {
- k = g->region_size[i];
- if (k > g->big_values)
- k = g->big_values;
- g->region_size[i] = k - j;
- j = k;
- }
- /* compute band indexes */
- if (g->block_type == 2) {
- if (g->switch_point) {
- /* if switched mode, we handle the 36 first samples as
- long blocks. For 8000Hz, we handle the 48 first
- exponents as long blocks (XXX: check this!) */
- if (s->sample_rate_index <= 2)
- g->long_end = 8;
- else if (s->sample_rate_index != 8)
- g->long_end = 6;
- else
- g->long_end = 4; /* 8000 Hz */
- if (s->sample_rate_index != 8)
- g->short_start = 3;
- else
- g->short_start = 2;
- } else {
- g->long_end = 0;
- g->short_start = 0;
- }
- } else {
- g->short_start = 13;
- g->long_end = 22;
- }
- g->preflag = 0;
- if (!s->lsf)
- g->preflag = get_bits(&s->gb, 1);
- g->scalefac_scale = get_bits(&s->gb, 1);
- g->count1table_select = get_bits(&s->gb, 1);
- dprintf("block_type=%d switch_point=%dn",
- g->block_type, g->switch_point);
- }
- }
- if (!s->adu_mode) {
- /* now we get bits from the main_data_begin offset */
- dprintf("seekback: %dn", main_data_begin);
- seek_to_maindata(s, main_data_begin);
- }
- for(gr=0;gr<nb_granules;gr++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- g = &granules[ch][gr];
- bits_pos = get_bits_count(&s->gb);
- if (!s->lsf) {
- uint8_t *sc;
- int slen, slen1, slen2;
- /* MPEG1 scale factors */
- slen1 = slen_table[0][g->scalefac_compress];
- slen2 = slen_table[1][g->scalefac_compress];
- dprintf("slen1=%d slen2=%dn", slen1, slen2);
- if (g->block_type == 2) {
- n = g->switch_point ? 17 : 18;
- j = 0;
- for(i=0;i<n;i++)
- g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
- for(i=0;i<18;i++)
- g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
- for(i=0;i<3;i++)
- g->scale_factors[j++] = 0;
- } else {
- sc = granules[ch][0].scale_factors;
- j = 0;
- for(k=0;k<4;k++) {
- n = (k == 0 ? 6 : 5);
- if ((g->scfsi & (0x8 >> k)) == 0) {
- slen = (k < 2) ? slen1 : slen2;
- for(i=0;i<n;i++)
- g->scale_factors[j++] = get_bitsz(&s->gb, slen);
- } else {
- /* simply copy from last granule */
- for(i=0;i<n;i++) {
- g->scale_factors[j] = sc[j];
- j++;
- }
- }
- }
- g->scale_factors[j++] = 0;
- }
- #if defined(DEBUG)
- {
- printf("scfsi=%x gr=%d ch=%d scale_factors:n",
- g->scfsi, gr, ch);
- for(i=0;i<j;i++)
- printf(" %d", g->scale_factors[i]);
- printf("n");
- }
- #endif
- } else {
- int tindex, tindex2, slen[4], sl, sf;
- /* LSF scale factors */
- if (g->block_type == 2) {
- tindex = g->switch_point ? 2 : 1;
- } else {
- tindex = 0;
- }
- sf = g->scalefac_compress;
- if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
- /* intensity stereo case */
- sf >>= 1;
- if (sf < 180) {
- lsf_sf_expand(slen, sf, 6, 6, 0);
- tindex2 = 3;
- } else if (sf < 244) {
- lsf_sf_expand(slen, sf - 180, 4, 4, 0);
- tindex2 = 4;
- } else {
- lsf_sf_expand(slen, sf - 244, 3, 0, 0);
- tindex2 = 5;
- }
- } else {
- /* normal case */
- if (sf < 400) {
- lsf_sf_expand(slen, sf, 5, 4, 4);
- tindex2 = 0;
- } else if (sf < 500) {
- lsf_sf_expand(slen, sf - 400, 5, 4, 0);
- tindex2 = 1;
- } else {
- lsf_sf_expand(slen, sf - 500, 3, 0, 0);
- tindex2 = 2;
- g->preflag = 1;
- }
- }
- j = 0;
- for(k=0;k<4;k++) {
- n = lsf_nsf_table[tindex2][tindex][k];
- sl = slen[k];
- for(i=0;i<n;i++)
- g->scale_factors[j++] = get_bitsz(&s->gb, sl);
- }
- /* XXX: should compute exact size */
- for(;j<40;j++)
- g->scale_factors[j] = 0;
- #if defined(DEBUG)
- {
- printf("gr=%d ch=%d scale_factors:n",
- gr, ch);
- for(i=0;i<40;i++)
- printf(" %d", g->scale_factors[i]);
- printf("n");
- }
- #endif
- }
- exponents_from_scale_factors(s, g, exponents);
- /* read Huffman coded residue */
- if (huffman_decode(s, g, exponents,
- bits_pos + g->part2_3_length) < 0)
- return -1;
- #if defined(DEBUG)
- sample_dump(0, g->sb_hybrid, 576);
- #endif
- /* skip extension bits */
- bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
- if (bits_left < 0) {
- dprintf("bits_left=%dn", bits_left);
- return -1;
- }
- while (bits_left >= 16) {
- skip_bits(&s->gb, 16);
- bits_left -= 16;
- }
- if (bits_left > 0)
- skip_bits(&s->gb, bits_left);
- } /* ch */
- if (s->nb_channels == 2)
- compute_stereo(s, &granules[0][gr], &granules[1][gr]);
- for(ch=0;ch<s->nb_channels;ch++) {
- g = &granules[ch][gr];
- reorder_block(s, g);
- #if defined(DEBUG)
- sample_dump(0, g->sb_hybrid, 576);
- #endif
- s->compute_antialias(s, g);
- #if defined(DEBUG)
- sample_dump(1, g->sb_hybrid, 576);
- #endif
- compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
- #if defined(DEBUG)
- sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
- #endif
- }
- } /* gr */
- return nb_granules * 18;
- }
- static int mp_decode_frame(MPADecodeContext *s,
- OUT_INT *samples)
- {
- int i, nb_frames, ch;
- OUT_INT *samples_ptr;
- init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
- (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
- /* skip error protection field */
- if (s->error_protection)
- get_bits(&s->gb, 16);
- dprintf("frame %d:n", s->frame_count);
- switch(s->layer) {
- case 1:
- nb_frames = mp_decode_layer1(s);
- break;
- case 2:
- nb_frames = mp_decode_layer2(s);
- break;
- case 3:
- default:
- nb_frames = mp_decode_layer3(s);
- break;
- }
- #if defined(DEBUG)
- for(i=0;i<nb_frames;i++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- int j;
- printf("%d-%d:", i, ch);
- for(j=0;j<SBLIMIT;j++)
- printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
- printf("n");
- }
- }
- #endif
- /* apply the synthesis filter */
- for(ch=0;ch<s->nb_channels;ch++) {
- samples_ptr = samples + ch;
- for(i=0;i<nb_frames;i++) {
- ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
- window, &s->dither_state,
- samples_ptr, s->nb_channels,
- s->sb_samples[ch][i]);
- samples_ptr += 32 * s->nb_channels;
- }
- }
- #ifdef DEBUG
- s->frame_count++;
- #endif
- return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
- }
- static int decode_frame(AVCodecContext * avctx,
- void *data, int *data_size,
- uint8_t * buf, int buf_size)
- {
- MPADecodeContext *s = avctx->priv_data;
- uint32_t header;
- uint8_t *buf_ptr;
- int len, out_size;
- OUT_INT *out_samples = data;
- buf_ptr = buf;
- while (buf_size > 0) {
- len = s->inbuf_ptr - s->inbuf;
- if (s->frame_size == 0) {
- /* special case for next header for first frame in free
- format case (XXX: find a simpler method) */
- if (s->free_format_next_header != 0) {
- s->inbuf[0] = s->free_format_next_header >> 24;
- s->inbuf[1] = s->free_format_next_header >> 16;
- s->inbuf[2] = s->free_format_next_header >> 8;
- s->inbuf[3] = s->free_format_next_header;
- s->inbuf_ptr = s->inbuf + 4;
- s->free_format_next_header = 0;
- goto got_header;
- }
- /* no header seen : find one. We need at least HEADER_SIZE
- bytes to parse it */
- len = HEADER_SIZE - len;
- if (len > buf_size)
- len = buf_size;
- if (len > 0) {
- memcpy(s->inbuf_ptr, buf_ptr, len);
- buf_ptr += len;
- buf_size -= len;
- s->inbuf_ptr += len;
- }
- if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
- got_header:
- header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
- (s->inbuf[2] << 8) | s->inbuf[3];
- if (ff_mpa_check_header(header) < 0) {
- /* no sync found : move by one byte (inefficient, but simple!) */
- memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
- s->inbuf_ptr--;
- dprintf("skip %xn", header);
- /* reset free format frame size to give a chance
- to get a new bitrate */
- s->free_format_frame_size = 0;
- } else {
- if (decode_header(s, header) == 1) {
- /* free format: prepare to compute frame size */
- s->frame_size = -1;
- }
- /* update codec info */
- avctx->sample_rate = s->sample_rate;
- avctx->channels = s->nb_channels;
- avctx->bit_rate = s->bit_rate;
- avctx->sub_id = s->layer;
- switch(s->layer) {
- case 1:
- avctx->frame_size = 384;
- break;
- case 2:
- avctx->frame_size = 1152;
- break;
- case 3:
- if (s->lsf)
- avctx->frame_size = 576;
- else
- avctx->frame_size = 1152;
- break;
- }
- }
- }
- } else if (s->frame_size == -1) {
- /* free format : find next sync to compute frame size */
- len = MPA_MAX_CODED_FRAME_SIZE - len;
- if (len > buf_size)
- len = buf_size;
- if (len == 0) {
- /* frame too long: resync */
- s->frame_size = 0;
- memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
- s->inbuf_ptr--;
- } else {
- uint8_t *p, *pend;
- uint32_t header1;
- int padding;
- memcpy(s->inbuf_ptr, buf_ptr, len);
- /* check for header */
- p = s->inbuf_ptr - 3;
- pend = s->inbuf_ptr + len - 4;
- while (p <= pend) {
- header = (p[0] << 24) | (p[1] << 16) |
- (p[2] << 8) | p[3];
- header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
- (s->inbuf[2] << 8) | s->inbuf[3];
- /* check with high probability that we have a
- valid header */
- if ((header & SAME_HEADER_MASK) ==
- (header1 & SAME_HEADER_MASK)) {
- /* header found: update pointers */
- len = (p + 4) - s->inbuf_ptr;
- buf_ptr += len;
- buf_size -= len;
- s->inbuf_ptr = p;
- /* compute frame size */
- s->free_format_next_header = header;
- s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
- padding = (header1 >> 9) & 1;
- if (s->layer == 1)
- s->free_format_frame_size -= padding * 4;
- else
- s->free_format_frame_size -= padding;
- dprintf("free frame size=%d padding=%dn",
- s->free_format_frame_size, padding);
- decode_header(s, header1);
- goto next_data;
- }
- p++;
- }
- /* not found: simply increase pointers */
- buf_ptr += len;
- s->inbuf_ptr += len;
- buf_size -= len;
- }
- } else if (len < s->frame_size) {
- if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
- s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
- len = s->frame_size - len;
- if (len > buf_size)
- len = buf_size;
- memcpy(s->inbuf_ptr, buf_ptr, len);
- buf_ptr += len;
- s->inbuf_ptr += len;
- buf_size -= len;
- }
- next_data:
- if (s->frame_size > 0 &&
- (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
- if (avctx->parse_only) {
- /* simply return the frame data */
- *(uint8_t **)data = s->inbuf;
- out_size = s->inbuf_ptr - s->inbuf;
- } else {
- out_size = mp_decode_frame(s, out_samples);
- }
- s->inbuf_ptr = s->inbuf;
- s->frame_size = 0;
- if(out_size>=0)
- *data_size = out_size;
- else
- av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio framen"); //FIXME return -1 / but also return the number of bytes consumed
- break;
- }
- }
- return buf_ptr - buf;
- }
- static int decode_frame_adu(AVCodecContext * avctx,
- void *data, int *data_size,
- uint8_t * buf, int buf_size)
- {
- MPADecodeContext *s = avctx->priv_data;
- uint32_t header;
- int len, out_size;
- OUT_INT *out_samples = data;
- len = buf_size;
- // Discard too short frames
- if (buf_size < HEADER_SIZE) {
- *data_size = 0;
- return buf_size;
- }
- if (len > MPA_MAX_CODED_FRAME_SIZE)
- len = MPA_MAX_CODED_FRAME_SIZE;
- memcpy(s->inbuf, buf, len);
- s->inbuf_ptr = s->inbuf + len;
- // Get header and restore sync word
- header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
- (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
- if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
- *data_size = 0;
- return buf_size;
- }
- decode_header(s, header);
- /* update codec info */
- avctx->sample_rate = s->sample_rate;
- avctx->channels = s->nb_channels;
- avctx->bit_rate = s->bit_rate;
- avctx->sub_id = s->layer;
- avctx->frame_size=s->frame_size = len;
- if (avctx->parse_only) {
- /* simply return the frame data */
- *(uint8_t **)data = s->inbuf;
- out_size = s->inbuf_ptr - s->inbuf;
- } else {
- out_size = mp_decode_frame(s, out_samples);
- }
- *data_size = out_size;
- return buf_size;
- }
- /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
- static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
- static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
- /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
- static int chan_offset[9][5] = {
- {0},
- {0}, // C
- {0}, // FLR
- {2,0}, // C FLR
- {2,0,3}, // C FLR BS
- {4,0,2}, // C FLR BLRS
- {4,0,2,5}, // C FLR BLRS LFE
- {4,0,2,6,5}, // C FLR BLRS BLR LFE
- {0,2} // FLR BLRS
- };
- static int decode_init_mp3on4(AVCodecContext * avctx)
- {
- MP3On4DecodeContext *s = avctx->priv_data;
- int i;
- if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
- av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.n");
- return -1;
- }
- s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
- s->frames = mp3Frames[s->chan_cfg];
- if(!s->frames) {
- av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.n");
- return -1;
- }
- avctx->channels = mp3Channels[s->chan_cfg];
- /* Init the first mp3 decoder in standard way, so that all tables get builded
- * We replace avctx->priv_data with the context of the first decoder so that
- * decode_init() does not have to be changed.
- * Other decoders will be inited here copying data from the first context
- */
- // Allocate zeroed memory for the first decoder context
- s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
- // Put decoder context in place to make init_decode() happy
- avctx->priv_data = s->mp3decctx[0];
- decode_init(avctx);
- // Restore mp3on4 context pointer
- avctx->priv_data = s;
- s->mp3decctx[0]->adu_mode = 1; // Set adu mode
- /* Create a separate codec/context for each frame (first is already ok).
- * Each frame is 1 or 2 channels - up to 5 frames allowed
- */
- for (i = 1; i < s->frames; i++) {
- s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
- s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
- s->mp3decctx[i]->inbuf = &s->mp3decctx[i]->inbuf1[0][BACKSTEP_SIZE];
- s->mp3decctx[i]->inbuf_ptr = s->mp3decctx[i]->inbuf;
- s->mp3decctx[i]->adu_mode = 1;
- }
- return 0;
- }
- static int decode_close_mp3on4(AVCodecContext * avctx)
- {
- MP3On4DecodeContext *s = avctx->priv_data;
- int i;
- for (i = 0; i < s->frames; i++)
- if (s->mp3decctx[i])
- av_free(s->mp3decctx[i]);
- return 0;
- }
- static int decode_frame_mp3on4(AVCodecContext * avctx,
- void *data, int *data_size,
- uint8_t * buf, int buf_size)
- {
- MP3On4DecodeContext *s = avctx->priv_data;
- MPADecodeContext *m;
- int len, out_size = 0;
- uint32_t header;
- OUT_INT *out_samples = data;
- OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
- OUT_INT *outptr, *bp;
- int fsize;
- unsigned char *start2 = buf, *start;
- int fr, i, j, n;
- int off = avctx->channels;
- int *coff = chan_offset[s->chan_cfg];
- len = buf_size;
- // Discard too short frames
- if (buf_size < HEADER_SIZE) {
- *data_size = 0;
- return buf_size;
- }
- // If only one decoder interleave is not needed
- outptr = s->frames == 1 ? out_samples : decoded_buf;
- for (fr = 0; fr < s->frames; fr++) {
- start = start2;
- fsize = (start[0] << 4) | (start[1] >> 4);
- start2 += fsize;
- if (fsize > len)
- fsize = len;
- len -= fsize;
- if (fsize > MPA_MAX_CODED_FRAME_SIZE)
- fsize = MPA_MAX_CODED_FRAME_SIZE;
- m = s->mp3decctx[fr];
- assert (m != NULL);
- /* copy original to new */
- m->inbuf_ptr = m->inbuf + fsize;
- memcpy(m->inbuf, start, fsize);
- // Get header
- header = (m->inbuf[0] << 24) | (m->inbuf[1] << 16) |
- (m->inbuf[2] << 8) | m->inbuf[3] | 0xfff00000;
- if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
- *data_size = 0;
- return buf_size;
- }
- decode_header(m, header);
- mp_decode_frame(m, decoded_buf);
- n = MPA_FRAME_SIZE * m->nb_channels;
- out_size += n * sizeof(OUT_INT);
- if(s->frames > 1) {
- /* interleave output data */
- bp = out_samples + coff[fr];
- if(m->nb_channels == 1) {
- for(j = 0; j < n; j++) {
- *bp = decoded_buf[j];
- bp += off;
- }
- } else {
- for(j = 0; j < n; j++) {
- bp[0] = decoded_buf[j++];
- bp[1] = decoded_buf[j];
- bp += off;
- }
- }
- }
- }
- /* update codec info */
- avctx->sample_rate = s->mp3decctx[0]->sample_rate;
- avctx->frame_size= buf_size;
- avctx->bit_rate = 0;
- for (i = 0; i < s->frames; i++)
- avctx->bit_rate += s->mp3decctx[i]->bit_rate;
- *data_size = out_size;
- return buf_size;
- }
- AVCodec mp2_decoder =
- {
- "mp2",
- CODEC_TYPE_AUDIO,
- CODEC_ID_MP2,
- sizeof(MPADecodeContext),
- decode_init,
- NULL,
- NULL,
- decode_frame,
- CODEC_CAP_PARSE_ONLY,
- };
- AVCodec mp3_decoder =
- {
- "mp3",
- CODEC_TYPE_AUDIO,
- CODEC_ID_MP3,
- sizeof(MPADecodeContext),
- decode_init,
- NULL,
- NULL,
- decode_frame,
- CODEC_CAP_PARSE_ONLY,
- };
- AVCodec mp3adu_decoder =
- {
- "mp3adu",
- CODEC_TYPE_AUDIO,
- CODEC_ID_MP3ADU,
- sizeof(MPADecodeContext),
- decode_init,
- NULL,
- NULL,
- decode_frame_adu,
- CODEC_CAP_PARSE_ONLY,
- };
- AVCodec mp3on4_decoder =
- {
- "mp3on4",
- CODEC_TYPE_AUDIO,
- CODEC_ID_MP3ON4,
- sizeof(MP3On4DecodeContext),
- decode_init_mp3on4,
- NULL,
- decode_close_mp3on4,
- decode_frame_mp3on4,
- 0
- };