lsp.c
资源名称:tcpmp.rar [点击查看]
上传用户:wstnjxml
上传日期:2014-04-03
资源大小:7248k
文件大小:16k
源码类别:
Windows CE
开发平台:
C/C++
- /*---------------------------------------------------------------------------*
- Original copyright
- FILE........: AKSLSPD.C
- TYPE........: Turbo C
- COMPANY.....: Voicetronix
- AUTHOR......: David Rowe
- DATE CREATED: 24/2/93
- Heavily modified by Jean-Marc Valin (fixed-point, optimizations,
- additional functions, ...)
- This file contains functions for converting Linear Prediction
- Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the
- LSP coefficients are not in radians format but in the x domain of the
- unit circle.
- Speex License:
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- - Neither the name of the Xiph.org Foundation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include <math.h>
- #include "lsp.h"
- #include "stack_alloc.h"
- #include "math_approx.h"
- #ifndef M_PI
- #define M_PI 3.14159265358979323846 /* pi */
- #endif
- #ifndef NULL
- #define NULL 0
- #endif
- #ifdef FIXED_POINT
- #define C1 8192
- #define C2 -4096
- #define C3 340
- #define C4 -10
- static spx_word16_t spx_cos(spx_word16_t x)
- {
- spx_word16_t x2;
- if (x<12868)
- {
- x2 = MULT16_16_P13(x,x);
- return ADD32(C1, MULT16_16_P13(x2, ADD32(C2, MULT16_16_P13(x2, ADD32(C3, MULT16_16_P13(C4, x2))))));
- } else {
- x = SUB16(25736,x);
- x2 = MULT16_16_P13(x,x);
- return SUB32(-C1, MULT16_16_P13(x2, ADD32(C2, MULT16_16_P13(x2, ADD32(C3, MULT16_16_P13(C4, x2))))));
- /*return SUB32(-C1, MULT16_16_Q13(x2, ADD32(C2, MULT16_16_Q13(C3, x2))));*/
- }
- }
- #define FREQ_SCALE 16384
- /*#define ANGLE2X(a) (32768*cos(((a)/8192.)))*/
- #define ANGLE2X(a) (SHL16(spx_cos(a),2))
- /*#define X2ANGLE(x) (acos(.00006103515625*(x))*LSP_SCALING)*/
- #define X2ANGLE(x) (spx_acos(x))
- #else
- /*#define C1 0.99940307
- #define C2 -0.49558072
- #define C3 0.03679168*/
- #define C1 0.9999932946f
- #define C2 -0.4999124376f
- #define C3 0.0414877472f
- #define C4 -0.0012712095f
- #define SPX_PI_2 1.5707963268
- static inline spx_word16_t spx_cos(spx_word16_t x)
- {
- if (x<SPX_PI_2)
- {
- x *= x;
- return C1 + x*(C2+x*(C3+C4*x));
- } else {
- x = M_PI-x;
- x *= x;
- return NEG16(C1 + x*(C2+x*(C3+C4*x)));
- }
- }
- #define FREQ_SCALE 1.
- #define ANGLE2X(a) (spx_cos(a))
- #define X2ANGLE(x) (acos(x))
- #endif
- /*---------------------------------------------------------------------------*
- FUNCTION....: cheb_poly_eva()
- AUTHOR......: David Rowe
- DATE CREATED: 24/2/93
- This function evaluates a series of Chebyshev polynomials
- *---------------------------------------------------------------------------*/
- #ifdef FIXED_POINT
- static inline spx_word32_t cheb_poly_eva(spx_word32_t *coef,spx_word16_t x,int m,char *stack)
- /* float coef[] coefficients of the polynomial to be evaluated */
- /* float x the point where polynomial is to be evaluated */
- /* int m order of the polynomial */
- {
- int i;
- VARDECL(spx_word16_t *T);
- spx_word32_t sum;
- int m2=m>>1;
- VARDECL(spx_word16_t *coefn);
- /*Prevents overflows*/
- if (x>16383)
- x = 16383;
- if (x<-16383)
- x = -16383;
- /* Allocate memory for Chebyshev series formulation */
- ALLOC(T, m2+1, spx_word16_t);
- ALLOC(coefn, m2+1, spx_word16_t);
- for (i=0;i<m2+1;i++)
- {
- coefn[i] = coef[i];
- /*printf ("%f ", coef[i]);*/
- }
- /*printf ("n");*/
- /* Initialise values */
- T[0]=16384;
- T[1]=x;
- /* Evaluate Chebyshev series formulation using iterative approach */
- /* Evaluate polynomial and return value also free memory space */
- sum = ADD32(EXTEND32(coefn[m2]), EXTEND32(MULT16_16_P14(coefn[m2-1],x)));
- /*x *= 2;*/
- for(i=2;i<=m2;i++)
- {
- T[i] = SUB16(MULT16_16_Q13(x,T[i-1]), T[i-2]);
- sum = ADD32(sum, EXTEND32(MULT16_16_P14(coefn[m2-i],T[i])));
- /*printf ("%f ", sum);*/
- }
- /*printf ("n");*/
- return sum;
- }
- #else
- static float cheb_poly_eva(spx_word32_t *coef,float x,int m,char *stack)
- /* float coef[] coefficients of the polynomial to be evaluated */
- /* float x the point where polynomial is to be evaluated */
- /* int m order of the polynomial */
- {
- int i;
- VARDECL(float *T);
- float sum;
- int m2=m>>1;
- /* Allocate memory for Chebyshev series formulation */
- ALLOC(T, m2+1, float);
- /* Initialise values */
- T[0]=1;
- T[1]=x;
- /* Evaluate Chebyshev series formulation using iterative approach */
- /* Evaluate polynomial and return value also free memory space */
- sum = coef[m2] + coef[m2-1]*x;
- x *= 2;
- for(i=2;i<=m2;i++)
- {
- T[i] = x*T[i-1] - T[i-2];
- sum += coef[m2-i] * T[i];
- }
- return sum;
- }
- #endif
- /*---------------------------------------------------------------------------*
- FUNCTION....: lpc_to_lsp()
- AUTHOR......: David Rowe
- DATE CREATED: 24/2/93
- This function converts LPC coefficients to LSP
- coefficients.
- *---------------------------------------------------------------------------*/
- #ifdef FIXED_POINT
- #define SIGN_CHANGE(a,b) (((a)&0x70000000)^((b)&0x70000000)||(b==0))
- #else
- #define SIGN_CHANGE(a,b) (((a)*(b))<0.0)
- #endif
- int lpc_to_lsp (spx_coef_t *a,int lpcrdr,spx_lsp_t *freq,int nb,spx_word16_t delta, char *stack)
- /* float *a lpc coefficients */
- /* int lpcrdr order of LPC coefficients (10) */
- /* float *freq LSP frequencies in the x domain */
- /* int nb number of sub-intervals (4) */
- /* float delta grid spacing interval (0.02) */
- {
- spx_word16_t temp_xr,xl,xr,xm=0;
- spx_word32_t psuml,psumr,psumm,temp_psumr/*,temp_qsumr*/;
- int i,j,m,flag,k;
- VARDECL(spx_word32_t *Q); /* ptrs for memory allocation */
- VARDECL(spx_word32_t *P);
- spx_word32_t *px; /* ptrs of respective P'(z) & Q'(z) */
- spx_word32_t *qx;
- spx_word32_t *p;
- spx_word32_t *q;
- spx_word32_t *pt; /* ptr used for cheb_poly_eval()
- whether P' or Q' */
- int roots=0; /* DR 8/2/94: number of roots found */
- flag = 1; /* program is searching for a root when,
- 1 else has found one */
- m = lpcrdr/2; /* order of P'(z) & Q'(z) polynomials */
- /* Allocate memory space for polynomials */
- ALLOC(Q, (m+1), spx_word32_t);
- ALLOC(P, (m+1), spx_word32_t);
- /* determine P'(z)'s and Q'(z)'s coefficients where
- P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */
- px = P; /* initialise ptrs */
- qx = Q;
- p = px;
- q = qx;
- #ifdef FIXED_POINT
- *px++ = LPC_SCALING;
- *qx++ = LPC_SCALING;
- for(i=0;i<m;i++){
- *px++ = SUB32(ADD32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *p++);
- *qx++ = ADD32(SUB32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *q++);
- }
- px = P;
- qx = Q;
- for(i=0;i<m;i++)
- {
- /*if (fabs(*px)>=32768)
- speex_warning_int("px", *px);
- if (fabs(*qx)>=32768)
- speex_warning_int("qx", *qx);*/
- *px = PSHR32(*px,2);
- *qx = PSHR32(*qx,2);
- px++;
- qx++;
- }
- /* The reason for this lies in the way cheb_poly_eva() is implemented for fixed-point */
- P[m] = PSHR32(P[m],3);
- Q[m] = PSHR32(Q[m],3);
- #else
- *px++ = LPC_SCALING;
- *qx++ = LPC_SCALING;
- for(i=0;i<m;i++){
- *px++ = (a[i]+a[lpcrdr-1-i]) - *p++;
- *qx++ = (a[i]-a[lpcrdr-1-i]) + *q++;
- }
- px = P;
- qx = Q;
- for(i=0;i<m;i++){
- *px = 2**px;
- *qx = 2**qx;
- px++;
- qx++;
- }
- #endif
- px = P; /* re-initialise ptrs */
- qx = Q;
- /* Search for a zero in P'(z) polynomial first and then alternate to Q'(z).
- Keep alternating between the two polynomials as each zero is found */
- xr = 0; /* initialise xr to zero */
- xl = FREQ_SCALE; /* start at point xl = 1 */
- for(j=0;j<lpcrdr;j++){
- if(j&1) /* determines whether P' or Q' is eval. */
- pt = qx;
- else
- pt = px;
- psuml = cheb_poly_eva(pt,xl,lpcrdr,stack); /* evals poly. at xl */
- flag = 1;
- while(flag && (xr >= -FREQ_SCALE)){
- spx_word16_t dd;
- /* Modified by JMV to provide smaller steps around x=+-1 */
- #ifdef FIXED_POINT
- dd = MULT16_16_Q15(delta,SUB16(FREQ_SCALE, MULT16_16_Q14(MULT16_16_Q14(xl,xl),14000)));
- if (psuml<512 && psuml>-512)
- dd = PSHR16(dd,1);
- #else
- dd=delta*(1-.9*xl*xl);
- if (fabs(psuml)<.2)
- dd *= .5;
- #endif
- xr = SUB16(xl, dd); /* interval spacing */
- psumr = cheb_poly_eva(pt,xr,lpcrdr,stack);/* poly(xl-delta_x) */
- temp_psumr = psumr;
- temp_xr = xr;
- /* if no sign change increment xr and re-evaluate poly(xr). Repeat til
- sign change.
- if a sign change has occurred the interval is bisected and then
- checked again for a sign change which determines in which
- interval the zero lies in.
- If there is no sign change between poly(xm) and poly(xl) set interval
- between xm and xr else set interval between xl and xr and repeat till
- root is located within the specified limits */
- if(SIGN_CHANGE(psumr,psuml))
- {
- roots++;
- psumm=psuml;
- for(k=0;k<=nb;k++){
- #ifdef FIXED_POINT
- xm = ADD16(PSHR16(xl,1),PSHR16(xr,1)); /* bisect the interval */
- #else
- xm = .5*(xl+xr); /* bisect the interval */
- #endif
- psumm=cheb_poly_eva(pt,xm,lpcrdr,stack);
- /*if(psumm*psuml>0.)*/
- if(!SIGN_CHANGE(psumm,psuml))
- {
- psuml=psumm;
- xl=xm;
- } else {
- psumr=psumm;
- xr=xm;
- }
- }
- /* once zero is found, reset initial interval to xr */
- freq[j] = X2ANGLE(xm);
- xl = xm;
- flag = 0; /* reset flag for next search */
- }
- else{
- psuml=temp_psumr;
- xl=temp_xr;
- }
- }
- }
- return(roots);
- }
- /*---------------------------------------------------------------------------*
- FUNCTION....: lsp_to_lpc()
- AUTHOR......: David Rowe
- DATE CREATED: 24/2/93
- lsp_to_lpc: This function converts LSP coefficients to LPC
- coefficients.
- *---------------------------------------------------------------------------*/
- #ifdef FIXED_POINT
- void lsp_to_lpc(spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
- /* float *freq array of LSP frequencies in the x domain */
- /* float *ak array of LPC coefficients */
- /* int lpcrdr order of LPC coefficients */
- {
- int i,j;
- spx_word32_t xout1,xout2,xin1,xin2;
- VARDECL(spx_word32_t *Wp);
- spx_word32_t *pw,*n1,*n2,*n3,*n4=NULL;
- VARDECL(spx_word16_t *freqn);
- int m = lpcrdr>>1;
- ALLOC(freqn, lpcrdr, spx_word16_t);
- for (i=0;i<lpcrdr;i++)
- freqn[i] = ANGLE2X(freq[i]);
- ALLOC(Wp, 4*m+2, spx_word32_t);
- pw = Wp;
- /* initialise contents of array */
- for(i=0;i<=4*m+1;i++){ /* set contents of buffer to 0 */
- *pw++ = 0;
- }
- /* Set pointers up */
- pw = Wp;
- xin1 = 1048576;
- xin2 = 1048576;
- /* reconstruct P(z) and Q(z) by cascading second order
- polynomials in form 1 - 2xz(-1) +z(-2), where x is the
- LSP coefficient */
- for(j=0;j<=lpcrdr;j++){
- spx_word16_t *fr=freqn;
- for(i=0;i<m;i++){
- n1 = pw+(i<<2);
- n2 = n1 + 1;
- n3 = n2 + 1;
- n4 = n3 + 1;
- xout1 = ADD32(SUB32(xin1, MULT16_32_Q14(*fr,*n1)), *n2);
- fr++;
- xout2 = ADD32(SUB32(xin2, MULT16_32_Q14(*fr,*n3)), *n4);
- fr++;
- *n2 = *n1;
- *n4 = *n3;
- *n1 = xin1;
- *n3 = xin2;
- xin1 = xout1;
- xin2 = xout2;
- }
- xout1 = xin1 + *(n4+1);
- xout2 = xin2 - *(n4+2);
- /* FIXME: perhaps apply bandwidth expansion in case of overflow? */
- if (j>0)
- {
- if (xout1 + xout2>SHL32(EXTEND32(32766),8))
- ak[j-1] = 32767;
- else if (xout1 + xout2 < -SHL32(EXTEND32(32766),8))
- ak[j-1] = -32767;
- else
- ak[j-1] = EXTRACT16(PSHR32(ADD32(xout1,xout2),8));
- } else {/*speex_warning_int("ak[0] = ", EXTRACT16(PSHR32(ADD32(xout1,xout2),8)));*/}
- *(n4+1) = xin1;
- *(n4+2) = xin2;
- xin1 = 0;
- xin2 = 0;
- }
- }
- #else
- void lsp_to_lpc(spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
- /* float *freq array of LSP frequencies in the x domain */
- /* float *ak array of LPC coefficients */
- /* int lpcrdr order of LPC coefficients */
- {
- int i,j;
- float xout1,xout2,xin1,xin2;
- VARDECL(float *Wp);
- float *pw,*n1,*n2,*n3,*n4=NULL;
- VARDECL(float *x_freq);
- int m = lpcrdr>>1;
- ALLOC(Wp, 4*m+2, float);
- pw = Wp;
- /* initialise contents of array */
- for(i=0;i<=4*m+1;i++){ /* set contents of buffer to 0 */
- *pw++ = 0.0;
- }
- /* Set pointers up */
- pw = Wp;
- xin1 = 1.0;
- xin2 = 1.0;
- ALLOC(x_freq, lpcrdr, float);
- for (i=0;i<lpcrdr;i++)
- x_freq[i] = ANGLE2X(freq[i]);
- /* reconstruct P(z) and Q(z) by cascading second order
- polynomials in form 1 - 2xz(-1) +z(-2), where x is the
- LSP coefficient */
- for(j=0;j<=lpcrdr;j++){
- int i2=0;
- for(i=0;i<m;i++,i2+=2){
- n1 = pw+(i*4);
- n2 = n1 + 1;
- n3 = n2 + 1;
- n4 = n3 + 1;
- xout1 = xin1 - 2.f*x_freq[i2] * *n1 + *n2;
- xout2 = xin2 - 2.f*x_freq[i2+1] * *n3 + *n4;
- *n2 = *n1;
- *n4 = *n3;
- *n1 = xin1;
- *n3 = xin2;
- xin1 = xout1;
- xin2 = xout2;
- }
- xout1 = xin1 + *(n4+1);
- xout2 = xin2 - *(n4+2);
- if (j>0)
- ak[j-1] = (xout1 + xout2)*0.5f;
- *(n4+1) = xin1;
- *(n4+2) = xin2;
- xin1 = 0.0;
- xin2 = 0.0;
- }
- }
- #endif
- #ifdef FIXED_POINT
- /*Makes sure the LSPs are stable*/
- void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin)
- {
- int i;
- spx_word16_t m = margin;
- spx_word16_t m2 = 25736-margin;
- if (lsp[0]<m)
- lsp[0]=m;
- if (lsp[len-1]>m2)
- lsp[len-1]=m2;
- for (i=1;i<len-1;i++)
- {
- if (lsp[i]<lsp[i-1]+m)
- lsp[i]=lsp[i-1]+m;
- if (lsp[i]>lsp[i+1]-m)
- lsp[i]= SHR16(lsp[i],1) + SHR16(lsp[i+1]-m,1);
- }
- }
- void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes)
- {
- int i;
- spx_word16_t tmp = DIV32_16(SHL32(EXTEND32(1 + subframe),14),nb_subframes);
- spx_word16_t tmp2 = 16384-tmp;
- for (i=0;i<len;i++)
- {
- interp_lsp[i] = MULT16_16_P14(tmp2,old_lsp[i]) + MULT16_16_P14(tmp,new_lsp[i]);
- }
- }
- #else
- /*Makes sure the LSPs are stable*/
- void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin)
- {
- int i;
- if (lsp[0]<LSP_SCALING*margin)
- lsp[0]=LSP_SCALING*margin;
- if (lsp[len-1]>LSP_SCALING*(M_PI-margin))
- lsp[len-1]=LSP_SCALING*(M_PI-margin);
- for (i=1;i<len-1;i++)
- {
- if (lsp[i]<lsp[i-1]+LSP_SCALING*margin)
- lsp[i]=lsp[i-1]+LSP_SCALING*margin;
- if (lsp[i]>lsp[i+1]-LSP_SCALING*margin)
- lsp[i]= .5f* (lsp[i] + lsp[i+1]-LSP_SCALING*margin);
- }
- }
- void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes)
- {
- int i;
- float tmp = (1.0f + subframe)/nb_subframes;
- for (i=0;i<len;i++)
- {
- interp_lsp[i] = (1-tmp)*old_lsp[i] + tmp*new_lsp[i];
- }
- }
- #endif