mdf.c
资源名称:tcpmp.rar [点击查看]
上传用户:wstnjxml
上传日期:2014-04-03
资源大小:7248k
文件大小:16k
源码类别:
Windows CE
开发平台:
C/C++
- /* Copyright (C) 2003-2005 Jean-Marc Valin
- File: speex_echo.c
- Echo cancelling based on the MDF algorithm described in:
- J. S. Soo, K. K. Pang Multidelay block frequency adaptive filter,
- IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-38, No. 2,
- February 1990.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- 3. The name of the author may not be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
- INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
- */
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include "misc.h"
- #include "speex/speex_echo.h"
- #include "smallft.h"
- #include <math.h>
- #ifndef M_PI
- #define M_PI 3.14159265358979323846
- #endif
- #undef BETA
- #define BETA .65
- #define min(a,b) ((a)<(b) ? (a) : (b))
- #define max(a,b) ((a)>(b) ? (a) : (b))
- /** Compute inner product of two real vectors */
- static inline float inner_prod(float *x, float *y, int N)
- {
- int i;
- float ret=0;
- for (i=0;i<N;i++)
- ret += x[i]*y[i];
- return ret;
- }
- /** Compute power spectrum of a half-complex (packed) vector */
- static inline void power_spectrum(float *X, float *ps, int N)
- {
- int i, j;
- ps[0]=X[0]*X[0];
- for (i=1,j=1;i<N-1;i+=2,j++)
- {
- ps[j] = X[i]*X[i] + X[i+1]*X[i+1];
- }
- ps[j]=X[i]*X[i];
- }
- /** Compute cross-power spectrum of a half-complex (packed) vectors and add to acc */
- static inline void spectral_mul_accum(float *X, float *Y, float *acc, int N)
- {
- int i;
- acc[0] += X[0]*Y[0];
- for (i=1;i<N-1;i+=2)
- {
- acc[i] += (X[i]*Y[i] - X[i+1]*Y[i+1]);
- acc[i+1] += (X[i+1]*Y[i] + X[i]*Y[i+1]);
- }
- acc[i] += X[i]*Y[i];
- }
- /** Compute cross-power spectrum of a half-complex (packed) vector with conjugate */
- static inline void spectral_mul_conj(float *X, float *Y, float *prod, int N)
- {
- int i;
- prod[0] = X[0]*Y[0];
- for (i=1;i<N-1;i+=2)
- {
- prod[i] = (X[i]*Y[i] + X[i+1]*Y[i+1]);
- prod[i+1] = (-X[i+1]*Y[i] + X[i]*Y[i+1]);
- }
- prod[i] = X[i]*Y[i];
- }
- /** Compute weighted cross-power spectrum of a half-complex (packed) vector with conjugate */
- static inline void weighted_spectral_mul_conj(float *w, float *X, float *Y, float *prod, int N)
- {
- int i, j;
- prod[0] = w[0]*X[0]*Y[0];
- for (i=1,j=1;i<N-1;i+=2,j++)
- {
- prod[i] = w[j]*(X[i]*Y[i] + X[i+1]*Y[i+1]);
- prod[i+1] = w[j]*(-X[i+1]*Y[i] + X[i]*Y[i+1]);
- }
- prod[i] = w[j]*X[i]*Y[i];
- }
- /** Creates a new echo canceller state */
- SpeexEchoState *speex_echo_state_init(int frame_size, int filter_length)
- {
- int i,j,N,M;
- SpeexEchoState *st = (SpeexEchoState *)speex_alloc(sizeof(SpeexEchoState));
- st->frame_size = frame_size;
- st->window_size = 2*frame_size;
- N = st->window_size;
- M = st->M = (filter_length+st->frame_size-1)/frame_size;
- st->cancel_count=0;
- st->adapt_rate = .01f;
- st->sum_adapt = 0;
- st->Sey = 0;
- st->Syy = 0;
- st->See = 0;
- st->fft_lookup = (struct drft_lookup*)speex_alloc(sizeof(struct drft_lookup));
- spx_drft_init(st->fft_lookup, N);
- st->x = (float*)speex_alloc(N*sizeof(float));
- st->d = (float*)speex_alloc(N*sizeof(float));
- st->y = (float*)speex_alloc(N*sizeof(float));
- st->y2 = (float*)speex_alloc(N*sizeof(float));
- st->Yps = (float*)speex_alloc(N*sizeof(float));
- st->last_y = (float*)speex_alloc(N*sizeof(float));
- st->Yf = (float*)speex_alloc((st->frame_size+1)*sizeof(float));
- st->Rf = (float*)speex_alloc((st->frame_size+1)*sizeof(float));
- st->Xf = (float*)speex_alloc((st->frame_size+1)*sizeof(float));
- st->fratio = (float*)speex_alloc((st->frame_size+1)*sizeof(float));
- st->regul = (float*)speex_alloc(N*sizeof(float));
- st->X = (float*)speex_alloc(M*N*sizeof(float));
- st->D = (float*)speex_alloc(N*sizeof(float));
- st->Y = (float*)speex_alloc(N*sizeof(float));
- st->Y2 = (float*)speex_alloc(N*sizeof(float));
- st->E = (float*)speex_alloc(N*sizeof(float));
- st->W = (float*)speex_alloc(M*N*sizeof(float));
- st->PHI = (float*)speex_alloc(M*N*sizeof(float));
- st->power = (float*)speex_alloc((frame_size+1)*sizeof(float));
- st->power_1 = (float*)speex_alloc((frame_size+1)*sizeof(float));
- st->grad = (float*)speex_alloc(N*M*sizeof(float));
- for (i=0;i<N*M;i++)
- {
- st->W[i] = st->PHI[i] = 0;
- }
- st->regul[0] = (.01+(10.)/((4.)*(4.)))/M;
- for (i=1,j=1;i<N-1;i+=2,j++)
- {
- st->regul[i] = .01+((10.)/((j+4.)*(j+4.)))/M;
- st->regul[i+1] = .01+((10.)/((j+4.)*(j+4.)))/M;
- }
- st->regul[i] = .01+((10.)/((j+4.)*(j+4.)))/M;
- st->adapted = 0;
- return st;
- }
- /** Resets echo canceller state */
- void speex_echo_state_reset(SpeexEchoState *st)
- {
- int i, M, N;
- st->cancel_count=0;
- st->adapt_rate = .01f;
- N = st->window_size;
- M = st->M;
- for (i=0;i<N*M;i++)
- {
- st->W[i] = 0;
- st->X[i] = 0;
- }
- for (i=0;i<=st->frame_size;i++)
- st->power[i] = 0;
- st->adapted = 0;
- st->adapt_rate = .01f;
- st->sum_adapt = 0;
- st->Sey = 0;
- st->Syy = 0;
- st->See = 0;
- }
- /** Destroys an echo canceller state */
- void speex_echo_state_destroy(SpeexEchoState *st)
- {
- spx_drft_clear(st->fft_lookup);
- speex_free(st->fft_lookup);
- speex_free(st->x);
- speex_free(st->d);
- speex_free(st->y);
- speex_free(st->last_y);
- speex_free(st->Yps);
- speex_free(st->Yf);
- speex_free(st->Rf);
- speex_free(st->Xf);
- speex_free(st->fratio);
- speex_free(st->regul);
- speex_free(st->X);
- speex_free(st->D);
- speex_free(st->Y);
- speex_free(st->E);
- speex_free(st->W);
- speex_free(st->PHI);
- speex_free(st->power);
- speex_free(st->power_1);
- speex_free(st->grad);
- speex_free(st);
- }
- /** Performs echo cancellation on a frame */
- void speex_echo_cancel(SpeexEchoState *st, short *ref, short *echo, short *out, float *Yout)
- {
- int i,j,m;
- int N,M;
- float scale;
- float ESR;
- float SER;
- float Sry=0,Srr=0,Syy=0,Sey=0,See=0,Sxx=0;
- float leak_estimate;
- /*leak_estimate = .1+(.9/(1+2*st->sum_adapt));*/
- leak_estimate = (.1 + (1-st->sum_adapt)*(1-st->sum_adapt))/(.9*st->sum_adapt*st->sum_adapt + .1);
- N = st->window_size;
- M = st->M;
- scale = 1.0f/N;
- st->cancel_count++;
- /* Copy input data to buffer */
- for (i=0;i<st->frame_size;i++)
- {
- st->x[i] = st->x[i+st->frame_size];
- st->x[i+st->frame_size] = echo[i];
- st->d[i] = st->d[i+st->frame_size];
- st->d[i+st->frame_size] = ref[i];
- }
- /* Shift memory: this could be optimized eventually*/
- for (i=0;i<N*(M-1);i++)
- st->X[i]=st->X[i+N];
- /* Copy new echo frame */
- for (i=0;i<N;i++)
- st->X[(M-1)*N+i]=st->x[i];
- /* Convert x (echo input) to frequency domain */
- spx_drft_forward(st->fft_lookup, &st->X[(M-1)*N]);
- /* Compute filter response Y */
- for (i=0;i<N;i++)
- st->Y[i] = 0;
- for (j=0;j<M;j++)
- spectral_mul_accum(&st->X[j*N], &st->W[j*N], st->Y, N);
- /* Convert Y (filter response) to time domain */
- for (i=0;i<N;i++)
- st->y[i] = st->Y[i];
- spx_drft_backward(st->fft_lookup, st->y);
- for (i=0;i<N;i++)
- st->y[i] *= scale;
- /* Transform d (reference signal) to frequency domain */
- for (i=0;i<N;i++)
- st->D[i]=st->d[i];
- spx_drft_forward(st->fft_lookup, st->D);
- /* Compute error signal (signal with echo removed) */
- for (i=0;i<st->frame_size;i++)
- {
- float tmp_out;
- tmp_out = (float)ref[i] - st->y[i+st->frame_size];
- st->E[i] = 0;
- st->E[i+st->frame_size] = tmp_out;
- /* Saturation */
- if (tmp_out>32767)
- tmp_out = 32767;
- else if (tmp_out<-32768)
- tmp_out = -32768;
- out[i] = tmp_out;
- }
- /* This bit of code is optional and provides faster adaptation by doing a projection
- of the previous gradient on the "MMSE surface" */
- if (1)
- {
- float Sge, Sgg, Syy;
- float gain;
- Syy = inner_prod(st->y+st->frame_size, st->y+st->frame_size, st->frame_size);
- for (i=0;i<N;i++)
- st->Y2[i] = 0;
- for (j=0;j<M;j++)
- spectral_mul_accum(&st->X[j*N], &st->PHI[j*N], st->Y2, N);
- for (i=0;i<N;i++)
- st->y2[i] = st->Y2[i];
- spx_drft_backward(st->fft_lookup, st->y2);
- for (i=0;i<N;i++)
- st->y2[i] *= scale;
- Sge = inner_prod(st->y2+st->frame_size, st->E+st->frame_size, st->frame_size);
- Sgg = inner_prod(st->y2+st->frame_size, st->y2+st->frame_size, st->frame_size);
- /* Compute projection gain */
- gain = Sge/(N+.03*Syy+Sgg);
- if (gain>2)
- gain = 2;
- if (gain < -2)
- gain = -2;
- /* Apply gain to weights, echo estimates, output */
- for (i=0;i<N;i++)
- st->Y[i] += gain*st->Y2[i];
- for (i=0;i<st->frame_size;i++)
- {
- st->y[i+st->frame_size] += gain*st->y2[i+st->frame_size];
- st->E[i+st->frame_size] -= gain*st->y2[i+st->frame_size];
- }
- for (i=0;i<M*N;i++)
- st->W[i] += gain*st->PHI[i];
- }
- /* Compute power spectrum of output (D-Y) and filter response (Y) */
- for (i=0;i<N;i++)
- st->D[i] -= st->Y[i];
- power_spectrum(st->D, st->Rf, N);
- power_spectrum(st->Y, st->Yf, N);
- /* Compute frequency-domain adaptation mask */
- for (j=0;j<=st->frame_size;j++)
- {
- float r;
- r = leak_estimate*st->Yf[j] / (1+st->Rf[j]);
- if (r>1)
- r = 1;
- st->fratio[j] = r;
- }
- /* Compute a bunch of correlations */
- Sry = inner_prod(st->y+st->frame_size, st->d+st->frame_size, st->frame_size);
- Sey = inner_prod(st->y+st->frame_size, st->E+st->frame_size, st->frame_size);
- See = inner_prod(st->E+st->frame_size, st->E+st->frame_size, st->frame_size);
- Syy = inner_prod(st->y+st->frame_size, st->y+st->frame_size, st->frame_size);
- Srr = inner_prod(st->d+st->frame_size, st->d+st->frame_size, st->frame_size);
- Sxx = inner_prod(st->x+st->frame_size, st->x+st->frame_size, st->frame_size);
- /* Compute smoothed cross-correlation and energy */
- st->Sey = .98*st->Sey + .02*Sey;
- st->Syy = .98*st->Syy + .02*Syy;
- st->See = .98*st->See + .02*See;
- /* Check if filter is completely mis-adapted (if so, reset filter) */
- if (st->Sey/(1+st->Syy + .01*st->See) < -1)
- {
- /*fprintf (stderr, "reset at %dn", st->cancel_count);*/
- speex_echo_state_reset(st);
- return;
- }
- SER = Srr / (1+Sxx);
- ESR = leak_estimate*Syy / (1+See);
- if (ESR>1)
- ESR = 1;
- #if 1
- /* If over-cancellation (creating echo with 180 phase) damp filter */
- if (st->Sey/(1+st->Syy) < -.1 && (ESR > .3))
- {
- for (i=0;i<M*N;i++)
- st->W[i] *= .95;
- st->Sey *= .5;
- st->sum_adapt*= .95;
- /*fprintf (stderr, "corrected downn");*/
- }
- #endif
- #if 1
- /* If under-cancellation (leaving echo with 0 phase) scale filter up */
- if (st->Sey/(1+st->Syy) > .1 && (ESR > .1 || SER < 10))
- {
- for (i=0;i<M*N;i++)
- st->W[i] *= 1.05;
- st->Sey *= .5;
- /*fprintf (stderr, "corrected up %dn", st->cancel_count);*/
- }
- #endif
- /* We consider that the filter is adapted if the following is true*/
- if (ESR>.6 && st->sum_adapt > .7 && !st->adapted)
- {
- /*fprintf(stderr, "Adapted at %d %fn", st->cancel_count, st->sum_adapt);*/
- st->adapted = 1;
- } else if (st->sum_adapt < .5 && st->adapted)
- {
- /*fprintf(stderr, "Un-adapted at %d %fn", st->cancel_count, st->sum_adapt);*/
- st->adapted = 0;
- }
- /* Update frequency-dependent energy ratio with the total energy ratio */
- for (i=0;i<=st->frame_size;i++)
- {
- st->fratio[i] = (.2*ESR+.8*min(ESR,st->fratio[i]));
- }
- if (st->adapted)
- {
- st->adapt_rate = .95f/(2+M);
- /* How much have we adapted so far? */
- st->sum_adapt = (1-st->adapt_rate)*st->sum_adapt + st->adapt_rate;
- } else {
- /* Temporary adaption rate if filter is not adapted correctly */
- if (SER<.1)
- st->adapt_rate =.5/(2+M);
- else if (SER<1)
- st->adapt_rate =.3/(2+M);
- else if (SER<10)
- st->adapt_rate =.2/(2+M);
- else if (SER<30)
- st->adapt_rate =.08/(2+M);
- else
- st->adapt_rate = 0;
- /* How much have we adapted so far? */
- st->sum_adapt = (1-ESR*st->adapt_rate)*st->sum_adapt + ESR*st->adapt_rate;
- }
- /* How much have we adapted so far? */
- /*st->sum_adapt += st->adapt_rate;*/
- /* Compute echo power in each frequency bin */
- {
- float ss = 1.0f/st->cancel_count;
- if (ss < .3/M)
- ss=.3/M;
- power_spectrum(&st->X[(M-1)*N], st->Xf, N);
- /* Smooth echo energy estimate over time */
- for (j=0;j<=st->frame_size;j++)
- st->power[j] = (1-ss)*st->power[j] + ss*st->Xf[j];
- /* Combine adaptation rate to the the inverse energy estimate */
- if (st->adapted)
- {
- /* If filter is adapted, include the frequency-dependent ratio too */
- for (i=0;i<=st->frame_size;i++)
- st->power_1[i] = st->adapt_rate*st->fratio[i] /(1.f+st->power[i]);
- } else {
- for (i=0;i<=st->frame_size;i++)
- st->power_1[i] = st->adapt_rate/(1.f+st->power[i]);
- }
- }
- /* Convert error to frequency domain */
- spx_drft_forward(st->fft_lookup, st->E);
- /* Do some regularization (prevents problems when system is ill-conditoned) */
- for (m=0;m<M;m++)
- for (i=0;i<N;i++)
- st->W[m*N+i] *= 1-st->regul[i]*ESR;
- /* Compute weight gradient */
- for (j=0;j<M;j++)
- {
- weighted_spectral_mul_conj(st->power_1, &st->X[j*N], st->E, st->PHI+N*j, N);
- }
- /* Gradient descent */
- for (i=0;i<M*N;i++)
- st->W[i] += st->PHI[i];
- /* AUMDF weight constraint */
- for (j=0;j<M;j++)
- {
- /* Remove the "if" to make this an MDF filter */
- if (st->cancel_count%M == j)
- {
- spx_drft_backward(st->fft_lookup, &st->W[j*N]);
- for (i=0;i<N;i++)
- st->W[j*N+i]*=scale;
- for (i=st->frame_size;i<N;i++)
- {
- st->W[j*N+i]=0;
- }
- spx_drft_forward(st->fft_lookup, &st->W[j*N]);
- }
- }
- /* Compute spectrum of estimated echo for use in an echo post-filter (if necessary)*/
- if (Yout)
- {
- if (st->adapted)
- {
- /* If the filter is adapted, take the filtered echo */
- for (i=0;i<st->frame_size;i++)
- st->last_y[i] = st->last_y[st->frame_size+i];
- for (i=0;i<st->frame_size;i++)
- st->last_y[st->frame_size+i] = st->y[st->frame_size+i];
- } else {
- /* If filter isn't adapted yet, all we can do is take the echo signal directly */
- for (i=0;i<N;i++)
- st->last_y[i] = st->x[i];
- }
- /* Apply hanning window (should pre-compute it)*/
- for (i=0;i<N;i++)
- st->Yps[i] = (.5-.5*cos(2*M_PI*i/N))*st->last_y[i];
- /* Compute power spectrum of the echo */
- spx_drft_forward(st->fft_lookup, st->Yps);
- power_spectrum(st->Yps, st->Yps, N);
- /* Estimate residual echo */
- for (i=0;i<=st->frame_size;i++)
- Yout[i] = 2*leak_estimate*st->Yps[i];
- }
- }