NeuQuant.cs
上传用户:lqb116
上传日期:2014-04-04
资源大小:2712k
文件大小:13k
- using System;
- namespace LanMsg.Gif.Components
- {
- public class NeuQuant
- {
- protected static readonly int netsize = 256; /* number of colours used */
- /* four primes near 500 - assume no image has a length so large */
- /* that it is divisible by all four primes */
- protected static readonly int prime1 = 499;
- protected static readonly int prime2 = 491;
- protected static readonly int prime3 = 487;
- protected static readonly int prime4 = 503;
- protected static readonly int minpicturebytes = ( 3 * prime4 );
- /* minimum size for input image */
- /* Program Skeleton
- ----------------
- [select samplefac in range 1..30]
- [read image from input file]
- pic = (unsigned char*) malloc(3*width*height);
- initnet(pic,3*width*height,samplefac);
- learn();
- unbiasnet();
- [write output image header, using writecolourmap(f)]
- inxbuild();
- write output image using inxsearch(b,g,r) */
- /* Network Definitions
- ------------------- */
- protected static readonly int maxnetpos = (netsize - 1);
- protected static readonly int netbiasshift = 4; /* bias for colour values */
- protected static readonly int ncycles = 100; /* no. of learning cycles */
- /* defs for freq and bias */
- protected static readonly int intbiasshift = 16; /* bias for fractions */
- protected static readonly int intbias = (((int) 1) << intbiasshift);
- protected static readonly int gammashift = 10; /* gamma = 1024 */
- protected static readonly int gamma = (((int) 1) << gammashift);
- protected static readonly int betashift = 10;
- protected static readonly int beta = (intbias >> betashift); /* beta = 1/1024 */
- protected static readonly int betagamma =
- (intbias << (gammashift - betashift));
- /* defs for decreasing radius factor */
- protected static readonly int initrad = (netsize >> 3); /* for 256 cols, radius starts */
- protected static readonly int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
- protected static readonly int radiusbias = (((int) 1) << radiusbiasshift);
- protected static readonly int initradius = (initrad * radiusbias); /* and decreases by a */
- protected static readonly int radiusdec = 30; /* factor of 1/30 each cycle */
- /* defs for decreasing alpha factor */
- protected static readonly int alphabiasshift = 10; /* alpha starts at 1.0 */
- protected static readonly int initalpha = (((int) 1) << alphabiasshift);
- protected int alphadec; /* biased by 10 bits */
- /* radbias and alpharadbias used for radpower calculation */
- protected static readonly int radbiasshift = 8;
- protected static readonly int radbias = (((int) 1) << radbiasshift);
- protected static readonly int alpharadbshift = (alphabiasshift + radbiasshift);
- protected static readonly int alpharadbias = (((int) 1) << alpharadbshift);
- /* Types and Global Variables
- -------------------------- */
- protected byte[] thepicture; /* the input image itself */
- protected int lengthcount; /* lengthcount = H*W*3 */
- protected int samplefac; /* sampling factor 1..30 */
- // typedef int pixel[4]; /* BGRc */
- protected int[][] network; /* the network itself - [netsize][4] */
- protected int[] netindex = new int[256];
- /* for network lookup - really 256 */
- protected int[] bias = new int[netsize];
- /* bias and freq arrays for learning */
- protected int[] freq = new int[netsize];
- protected int[] radpower = new int[initrad];
- /* radpower for precomputation */
- /* Initialise network in range (0,0,0) to (255,255,255) and set parameters
- ----------------------------------------------------------------------- */
- public NeuQuant(byte[] thepic, int len, int sample)
- {
- int i;
- int[] p;
- thepicture = thepic;
- lengthcount = len;
- samplefac = sample;
- network = new int[netsize][];
- for (i = 0; i < netsize; i++)
- {
- network[i] = new int[4];
- p = network[i];
- p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
- freq[i] = intbias / netsize; /* 1/netsize */
- bias[i] = 0;
- }
- }
-
- public byte[] ColorMap()
- {
- byte[] map = new byte[3 * netsize];
- int[] index = new int[netsize];
- for (int i = 0; i < netsize; i++)
- index[network[i][3]] = i;
- int k = 0;
- for (int i = 0; i < netsize; i++)
- {
- int j = index[i];
- map[k++] = (byte) (network[j][0]);
- map[k++] = (byte) (network[j][1]);
- map[k++] = (byte) (network[j][2]);
- }
- return map;
- }
-
- /* Insertion sort of network and building of netindex[0..255] (to do after unbias)
- ------------------------------------------------------------------------------- */
- public void Inxbuild()
- {
- int i, j, smallpos, smallval;
- int[] p;
- int[] q;
- int previouscol, startpos;
- previouscol = 0;
- startpos = 0;
- for (i = 0; i < netsize; i++)
- {
- p = network[i];
- smallpos = i;
- smallval = p[1]; /* index on g */
- /* find smallest in i..netsize-1 */
- for (j = i + 1; j < netsize; j++)
- {
- q = network[j];
- if (q[1] < smallval)
- { /* index on g */
- smallpos = j;
- smallval = q[1]; /* index on g */
- }
- }
- q = network[smallpos];
- /* swap p (i) and q (smallpos) entries */
- if (i != smallpos)
- {
- j = q[0];
- q[0] = p[0];
- p[0] = j;
- j = q[1];
- q[1] = p[1];
- p[1] = j;
- j = q[2];
- q[2] = p[2];
- p[2] = j;
- j = q[3];
- q[3] = p[3];
- p[3] = j;
- }
- /* smallval entry is now in position i */
- if (smallval != previouscol)
- {
- netindex[previouscol] = (startpos + i) >> 1;
- for (j = previouscol + 1; j < smallval; j++)
- netindex[j] = i;
- previouscol = smallval;
- startpos = i;
- }
- }
- netindex[previouscol] = (startpos + maxnetpos) >> 1;
- for (j = previouscol + 1; j < 256; j++)
- netindex[j] = maxnetpos; /* really 256 */
- }
-
- /* Main Learning Loop
- ------------------ */
- public void Learn()
- {
- int i, j, b, g, r;
- int radius, rad, alpha, step, delta, samplepixels;
- byte[] p;
- int pix, lim;
- if (lengthcount < minpicturebytes)
- samplefac = 1;
- alphadec = 30 + ((samplefac - 1) / 3);
- p = thepicture;
- pix = 0;
- lim = lengthcount;
- samplepixels = lengthcount / (3 * samplefac);
- delta = samplepixels / ncycles;
- alpha = initalpha;
- radius = initradius;
- rad = radius >> radiusbiasshift;
- if (rad <= 1)
- rad = 0;
- for (i = 0; i < rad; i++)
- radpower[i] =
- alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
- //fprintf(stderr,"beginning 1D learning: initial radius=%dn", rad);
- if (lengthcount < minpicturebytes)
- step = 3;
- else if ((lengthcount % prime1) != 0)
- step = 3 * prime1;
- else
- {
- if ((lengthcount % prime2) != 0)
- step = 3 * prime2;
- else
- {
- if ((lengthcount % prime3) != 0)
- step = 3 * prime3;
- else
- step = 3 * prime4;
- }
- }
- i = 0;
- while (i < samplepixels)
- {
- b = (p[pix + 0] & 0xff) << netbiasshift;
- g = (p[pix + 1] & 0xff) << netbiasshift;
- r = (p[pix + 2] & 0xff) << netbiasshift;
- j = Contest(b, g, r);
- Altersingle(alpha, j, b, g, r);
- if (rad != 0)
- Alterneigh(rad, j, b, g, r); /* alter neighbours */
- pix += step;
- if (pix >= lim)
- pix -= lengthcount;
- i++;
- if (delta == 0)
- delta = 1;
- if (i % delta == 0)
- {
- alpha -= alpha / alphadec;
- radius -= radius / radiusdec;
- rad = radius >> radiusbiasshift;
- if (rad <= 1)
- rad = 0;
- for (j = 0; j < rad; j++)
- radpower[j] =
- alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
- }
- }
- //fprintf(stderr,"finished 1D learning: readonly alpha=%f !n",((float)alpha)/initalpha);
- }
-
- /* Search for BGR values 0..255 (after net is unbiased) and return colour index
- ---------------------------------------------------------------------------- */
- public int Map(int b, int g, int r)
- {
- int i, j, dist, a, bestd;
- int[] p;
- int best;
- bestd = 1000; /* biggest possible dist is 256*3 */
- best = -1;
- i = netindex[g]; /* index on g */
- j = i - 1; /* start at netindex[g] and work outwards */
- while ((i < netsize) || (j >= 0))
- {
- if (i < netsize)
- {
- p = network[i];
- dist = p[1] - g; /* inx key */
- if (dist >= bestd)
- i = netsize; /* stop iter */
- else
- {
- i++;
- if (dist < 0)
- dist = -dist;
- a = p[0] - b;
- if (a < 0)
- a = -a;
- dist += a;
- if (dist < bestd)
- {
- a = p[2] - r;
- if (a < 0)
- a = -a;
- dist += a;
- if (dist < bestd)
- {
- bestd = dist;
- best = p[3];
- }
- }
- }
- }
- if (j >= 0)
- {
- p = network[j];
- dist = g - p[1]; /* inx key - reverse dif */
- if (dist >= bestd)
- j = -1; /* stop iter */
- else
- {
- j--;
- if (dist < 0)
- dist = -dist;
- a = p[0] - b;
- if (a < 0)
- a = -a;
- dist += a;
- if (dist < bestd)
- {
- a = p[2] - r;
- if (a < 0)
- a = -a;
- dist += a;
- if (dist < bestd)
- {
- bestd = dist;
- best = p[3];
- }
- }
- }
- }
- }
- return (best);
- }
- public byte[] Process()
- {
- Learn();
- Unbiasnet();
- Inxbuild();
- return ColorMap();
- }
-
- /* Unbias network to give byte values 0..255 and record position i to prepare for sort
- ----------------------------------------------------------------------------------- */
- public void Unbiasnet()
- {
- int i, j;
- for (i = 0; i < netsize; i++)
- {
- network[i][0] >>= netbiasshift;
- network[i][1] >>= netbiasshift;
- network[i][2] >>= netbiasshift;
- network[i][3] = i; /* record colour no */
- }
- }
-
- /* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
- --------------------------------------------------------------------------------- */
- protected void Alterneigh(int rad, int i, int b, int g, int r)
- {
- int j, k, lo, hi, a, m;
- int[] p;
- lo = i - rad;
- if (lo < -1)
- lo = -1;
- hi = i + rad;
- if (hi > netsize)
- hi = netsize;
- j = i + 1;
- k = i - 1;
- m = 1;
- while ((j < hi) || (k > lo))
- {
- a = radpower[m++];
- if (j < hi)
- {
- p = network[j++];
- try
- {
- p[0] -= (a * (p[0] - b)) / alpharadbias;
- p[1] -= (a * (p[1] - g)) / alpharadbias;
- p[2] -= (a * (p[2] - r)) / alpharadbias;
- }
- catch (Exception e)
- {
- } // prevents 1.3 miscompilation
- }
- if (k > lo)
- {
- p = network[k--];
- try
- {
- p[0] -= (a * (p[0] - b)) / alpharadbias;
- p[1] -= (a * (p[1] - g)) / alpharadbias;
- p[2] -= (a * (p[2] - r)) / alpharadbias;
- }
- catch (Exception e)
- {
- }
- }
- }
- }
-
- /* Move neuron i towards biased (b,g,r) by factor alpha
- ---------------------------------------------------- */
- protected void Altersingle(int alpha, int i, int b, int g, int r)
- {
- /* alter hit neuron */
- int[] n = network[i];
- n[0] -= (alpha * (n[0] - b)) / initalpha;
- n[1] -= (alpha * (n[1] - g)) / initalpha;
- n[2] -= (alpha * (n[2] - r)) / initalpha;
- }
-
- /* Search for biased BGR values
- ---------------------------- */
- protected int Contest(int b, int g, int r)
- {
- /* finds closest neuron (min dist) and updates freq */
- /* finds best neuron (min dist-bias) and returns position */
- /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
- /* bias[i] = gamma*((1/netsize)-freq[i]) */
- int i, dist, a, biasdist, betafreq;
- int bestpos, bestbiaspos, bestd, bestbiasd;
- int[] n;
- bestd = ~(((int) 1) << 31);
- bestbiasd = bestd;
- bestpos = -1;
- bestbiaspos = bestpos;
- for (i = 0; i < netsize; i++)
- {
- n = network[i];
- dist = n[0] - b;
- if (dist < 0)
- dist = -dist;
- a = n[1] - g;
- if (a < 0)
- a = -a;
- dist += a;
- a = n[2] - r;
- if (a < 0)
- a = -a;
- dist += a;
- if (dist < bestd)
- {
- bestd = dist;
- bestpos = i;
- }
- biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
- if (biasdist < bestbiasd)
- {
- bestbiasd = biasdist;
- bestbiaspos = i;
- }
- betafreq = (freq[i] >> betashift);
- freq[i] -= betafreq;
- bias[i] += (betafreq << gammashift);
- }
- freq[bestpos] += beta;
- bias[bestpos] -= betagamma;
- return (bestbiaspos);
- }
- }
- }