Swingmeu.m
资源名称:power.rar [点击查看]
上传用户:eighthdate
上传日期:2014-05-24
资源大小:270k
文件大小:2k
源码类别:
其他行业
开发平台:
Matlab
- % This program solves the swing equation of a one-machine system
- % when subjected to a three-phase fault with subsequent clearance
- % of the fault. Modified Euler method
- %
- % Copyright (c) 1998 H. Saadat
- %
- function swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt)
- %global Pm f H E V X1 X2 X3
- clear t
- if exist('Pm')~=1
- Pm = input('Generator output power in p.u. Pm = '); else, end
- if exist('E')~=1
- E = input('Generator e.m.f. in p.u. E = '); else, end
- if exist('V')~=1
- V = input('Infinite bus-bar voltage in p.u. V = '); else, end
- if exist('X1')~=1
- X1 = input('Reactance before Fault in p.u. X1 = '); else, end
- if exist('X2')~=1
- X2 = input('Reactance during Fault X2 = '); else, end
- if exist('X3')~=1
- X3 = input('Reactance after Fault X3 = '); else, end
- if exist('H')~=1
- H = input('Generator Inertia constant in sec. H = '); else, end
- if exist('f')~=1
- f = input('System frequency in Hz f = '); else, end
- if exist('Dt')~=1
- Dt = input('Time interval Dt = '); else, end
- if exist('tc')~=1
- tc = input('Clearing time of fault in sec tc = '); else, end
- if exist('tf')~=1
- tf = input('Final time for swing equation in sec tf = '); else, end
- Pe1max = E*V/X1; Pe2max=E*V/X2; Pe3max=E*V/X3;
- clear t x1 x2 delta
- d0 =asin(Pm/Pe1max);
- t(1) = 0;
- x1(1)= d0;
- x2(1)=0;
- np=tf /Dt;
- Pemax=Pe2max;
- ck=pi*f/H;
- for k = 1:np
- if t(k) >= tc
- Pemax=Pe3max;
- else, end
- t(k+1)=t(k)+Dt;
- Dx1b=x2(k);
- Dx2b=ck*(Pm-Pemax*sin(x1(k)));
- x1(k+1)=x1(k)+Dx1b*Dt;
- x2(k+1)=x2(k)+Dx2b*Dt;
- Dx1e=x2(k+1);
- Dx2e=ck*(Pm-Pemax*sin(x1(k+1)));
- Dx1=(Dx1b+Dx1e)/2;
- Dx2=(Dx2b+Dx2e)/2;
- x1(k+1)=x1(k)+Dx1*Dt;
- x2(k+1)=x2(k)+Dx2*Dt;
- end
- delta=180*x1/pi;
- clc
- fprintf('nFault is cleared at %4.3f Sec. n', tc)
- head=[' '
- ' time delta Dw '
- ' s degrees rad/s'
- ' '];
- disp(head)
- disp([t', delta' x2'])
- h=figure; figure(h)
- plot(t, delta), grid
- title(['One-machine system swing curve. Fault cleared at ', num2str(tc),'s'])
- xlabel('t, sec'), ylabel('Delta, degree')
- cctime(Pm, E, V, X1, X2, X3, H, f) % Obtains the critical clearing time