Frqpid.m
资源名称:power.rar [点击查看]
上传用户:eighthdate
上传日期:2014-05-24
资源大小:270k
文件大小:5k
源码类别:
其他行业
开发平台:
Matlab
- function [numopen, denopen, denclsd] = frqpid(num, den)
- % Hadi Saadat, 1998
- %discr=[
- %' '
- %' The function [numopen,denopen,denclsd]=frqpid(num, den) is used for the '
- %' frequency response design of a PID controller. num & den are '
- %' row vectors of polynomial coefficients of the uncompensated open-loop '
- %' plant transfer function. Design is based on the phase margin criterion. '
- %' The user is prompted to enter the gain KI to achieve a desired steady- '
- %' state error and the desired Phase Margin. The program finds and displays '
- %' a compensated gain crossover frequency range for an stable controller. '
- %' The user is then prompted to enter the gain crossover frequency in this '
- %' range. The controller transfer function and the frequency-domain '
- %' specifications before and after compensation are found. The function '
- %' returns the open-loop and the closed-loop numerator and denominator of '
- %' the compensated system transfer function. '];
- %disp(discr);
- r=abs(roots(den));
- i=find(r>0); rp=r(i);
- rmx=max(rp); rmn=min(rp); wst=0.1*round(rmn); wf=20*round(rmx);;dw=wf/800;
- w=wst:dw:wf;
- clc
- KI=input('Enter the integrator gain KI -> ');
- pm=input('Enter the desired phase margin -> ');
- [mag, phase] = bode(num, den, w);
- phase=180/pi*unwrap(phase*pi/180);
- if phase(1) > (-180+pm)
- i = find(phase < (-180 + pm));
- else
- i = find(phase > (-180 + pm));
- end
- if length(i)==0
- disp('Phase does not cross (-180 + P.M.).')
- return, else
- i2=i(1); i1 = i2 -1;
- if i1 ==0 wpm=w(i2); else
- wa = w(i1); wb = w(i2); p1 = phase(i1); p2 = phase(i2);
- wpm = wa + (-180+pm - p1)/(p2-p1)*(wb-wa);
- end
- end
- w1= wpm;
- [M,ph]=bode(num, den, w1); % Returns the mag. and phase of G(w)H(w1)
- thta=-180 + pm - ph;
- thtar=thta*pi/180;
- wmx=round(10*w1); dw1=wmx/100;
- wmn=w1/10; dw2=w1/10;
- stab=0;
- while sin(thtar)/(M*w1) +KI/(w1^2) < 0 | cos(thtar) < 0 & w1 < wmx
- w1=w1+dw1;
- [M,ph]=bode(num, den, w1); % Returns the mag. and phase of G(w)H(w1)
- thta=-180 + pm - ph;
- thtar=thta*pi/180;
- end
- wmp=w1;
- while sin(thtar)/(M*w1)+KI/(w1^2) > 0 & cos(thtar) > 0 & w1>wmn
- stab=stab+1;
- w1=w1-dw2;
- [M,ph]=bode(num, den, w1); % Returns the mag. and phase of G(w)H(w1)
- thta=-180 + pm - ph;
- thtar=thta*pi/180;
- end
- w1mn=w1+dw2;
- w1=wpm;
- [M,ph]=bode(num, den, w1); % Returns the mag. and phase of G(w)H(w1)
- thta=-180 + pm - ph;
- thtar=thta*pi/180;
- while sin(thtar)/(M*w1)+KI/(w1^2) >0 & cos(thtar) > 0 & w1 <wmx
- stab=stab+1;
- w1=w1+dw1;
- [M,ph]=bode(num, den, w1); % Returns the mag. and phase of G(w)H(w1)
- thta=-180 + pm - ph;
- thtar=thta*pi/180;
- end
- w1mx=w1- dw1;
- if stab==0
- fprint('Unstable controller change Phase KI or Margin and repeat')
- return
- else
- fprintf('For a stable controller select a compensated gain crossovern')
- fprintf('frequency wgc between %7.3g',w1mn),fprintf(' and %7.3gn',w1mx)
- end
- w1=input('Enter wgc -> ');
- [M,ph]=bode(num, den, w1); % Returns the mag. and phase of G(w)H(w1)
- thta=-180 + pm - ph;
- thtar=thta*pi/180;
- Kp= cos(thtar)/M;
- KD=KI/(w1^2) + sin(thtar)/(M*w1);
- clc
- fprintf('Uncompensated control system n')
- [Gm1, Pm1, wpc1, wgc1]=margin(mag, phase, w);
- fprintf('Gain Margin = %7.3g',Gm1),fprintf(' Gain crossover w = %7.3gn',wgc1)
- fprintf('Phase Margin = %7.3g',Pm1),fprintf(' Phase crossover w = %7.3gn',wpc1)
- fprintf('n')
- fprintf('Controller transfer function n')
- fprintf(' Gc = %g',Kp),fprintf(' + %g',KI),fprintf('/s + '),
- fprintf('%g',KD),fprintf('s nn')
- % the following statements will form the characteristic Equation
- % of the compensated system.
- m=length(num); n=length(den);
- if n > m
- o=zeros(1,n-m); mk=[o,1]; num1=conv(num,mk);
- else, num1=num, end
- numgc=[KD,Kp,KI]; numopen=conv(numgc,num1);
- dengc=[0, 1, 0]; denopen=conv(dengc, den);
- denclsd=denopen+numopen;
- numopen=numopen(n-m+1:length(numopen)); % new 11/24/96
- denopen =denopen(2:length(denopen)); % new
- denclsd=denclsd(2:length(denclsd)); % new
- %fprintf('Row vectors of polynomial coefficients of the compensated system:n')
- %fprintf('Open-loop num. '),disp(numopen)
- %fprintf('Open-loop den. '),disp(denopen)
- %fprintf('Closed-loop den'),disp(denclsd)
- fprintf('Compensated open-loop ')
- GH = tf(numopen, denopen)
- fprintf('Compensated closed-loop ')
- T = tf(numopen, denclsd)
- [magp,phasep]=bode(numopen,denopen,w);
- [Gm, Pm, wpc,wgc]=margin(magp,phasep,w);
- if Pm>360 Pm=Pm-360; else, end
- fprintf('Gain Margin = %7.3g',Gm),fprintf(' Gain crossover w = %7.3gn',wgc)
- fprintf('Phase Margin = %7.3g',Pm),fprintf(' Phase crossover w = %7.3gn',wpc)
- fprintf('n')
- [M,ph]=bode(numopen,denclsd, w);
- frqspec(w,M)
- discr2=[
- 'Roots of the compensated characteristic equation: '];
- disp(discr2)
- r=roots(denclsd);
- disp(r)
- rreal=real(r);
- for l=1:n-1
- if rreal(l) >=0
- fprintf(' Root on the RHP, system is unstable. Change KI or phase margin & repeat.nn')
- else,end
- end