psymodel.c
资源名称:NETVIDEO.rar [点击查看]
上传用户:sun1608
上传日期:2007-02-02
资源大小:6116k
文件大小:33k
源码类别:
流媒体/Mpeg4/MP4
开发平台:
Visual C++
- /**********************************************************************
- * date programmers comment *
- * 2/25/91 Davis Pan start of version 1.0 records *
- * 5/10/91 W. Joseph Carter Ported to Macintosh and Unix. *
- * 7/10/91 Earle Jennings Ported to MsDos. *
- * replace of floats with FLOAT *
- * 2/11/92 W. Joseph Carter Fixed mem_alloc() arg for "absthr". *
- * 3/16/92 Masahiro Iwadare Modification for Layer III *
- * 17/4/93 Masahiro Iwadare Updated for IS Modification *
- **********************************************************************/
- #include "util.h"
- #include "encoder.h"
- #include "psymodel.h"
- #include "l3side.h"
- #include <assert.h>
- #ifdef HAVEGTK
- #include "gtkanal.h"
- #endif
- #include "tables.h"
- #include "fft.h"
- #ifdef M_LN10
- #define LN_TO_LOG10 (M_LN10/10)
- #else
- #define LN_TO_LOG10 0.2302585093
- #endif
- void L3para_read( FLOAT8 sfreq, int numlines[CBANDS],int numlines_s[CBANDS], int partition_l[HBLKSIZE],
- FLOAT8 minval[CBANDS], FLOAT8 qthr_l[CBANDS],
- FLOAT8 s3_l[CBANDS + 1][CBANDS + 1],
- FLOAT8 s3_s[CBANDS + 1][CBANDS + 1],
- FLOAT8 qthr_s[CBANDS],
- FLOAT8 SNR_s[CBANDS],
- int bu_l[SBPSY_l], int bo_l[SBPSY_l],
- FLOAT8 w1_l[SBPSY_l], FLOAT8 w2_l[SBPSY_l],
- int bu_s[SBPSY_s], int bo_s[SBPSY_s],
- FLOAT8 w1_s[SBPSY_s], FLOAT8 w2_s[SBPSY_s] );
- void L3psycho_anal( lame_global_flags *gfp,
- short int *buffer[2],int gr_out ,
- FLOAT8 *ms_ratio,
- FLOAT8 *ms_ratio_next,
- FLOAT8 *ms_ener_ratio,
- III_psy_ratio masking_ratio[2][2],
- III_psy_ratio masking_MS_ratio[2][2],
- FLOAT8 percep_entropy[2],FLOAT8 percep_MS_entropy[2],
- int blocktype_d[2])
- {
- /* to get a good cache performance, one has to think about
- * the sequence, in which the variables are used
- */
- /* The static variables "r", "phi_sav", "new", "old" and "oldest" have */
- /* to be remembered for the unpredictability measure. For "r" and */
- /* "phi_sav", the first index from the left is the channel select and */
- /* the second index is the "age" of the data. */
- static FLOAT8 minval[CBANDS],qthr_l[CBANDS];
- static FLOAT8 qthr_s[CBANDS];
- static FLOAT8 nb_1[4][CBANDS], nb_2[4][CBANDS];
- static FLOAT8 s3_s[CBANDS + 1][CBANDS + 1];
- static FLOAT8 s3_l[CBANDS + 1][CBANDS + 1];
- static III_psy_xmin thm[4];
- static III_psy_xmin en[4];
- /* unpredictability calculation
- */
- static int cw_upper_index;
- static int cw_lower_index;
- static FLOAT ax_sav[4][2][HBLKSIZE];
- static FLOAT bx_sav[4][2][HBLKSIZE];
- static FLOAT rx_sav[4][2][HBLKSIZE];
- static FLOAT cw[HBLKSIZE];
- /* fft and energy calculation
- */
- FLOAT (*wsamp_l)[BLKSIZE];
- FLOAT (*wsamp_s)[3][BLKSIZE_s];
- FLOAT tot_ener[4];
- static FLOAT wsamp_L[2][BLKSIZE];
- static FLOAT energy[HBLKSIZE];
- static FLOAT wsamp_S[2][3][BLKSIZE_s];
- static FLOAT energy_s[3][HBLKSIZE_s];
- /* convolution
- */
- static FLOAT8 eb[CBANDS];
- static FLOAT8 cb[CBANDS];
- static FLOAT8 thr[CBANDS];
- /* Scale Factor Bands
- */
- static FLOAT8 w1_l[SBPSY_l], w2_l[SBPSY_l];
- static FLOAT8 w1_s[SBPSY_s], w2_s[SBPSY_s];
- static FLOAT8 mld_l[SBPSY_l],mld_s[SBPSY_s];
- static int bu_l[SBPSY_l],bo_l[SBPSY_l] ;
- static int bu_s[SBPSY_s],bo_s[SBPSY_s] ;
- static int npart_l,npart_s;
- static int npart_l_orig,npart_s_orig;
- static int s3ind[CBANDS][2];
- static int s3ind_s[CBANDS][2];
- static int numlines_s[CBANDS] ;
- static int numlines_l[CBANDS];
- static int partition_l[HBLKSIZE];
- /* frame analyzer
- */
- #ifdef HAVEGTK
- static FLOAT energy_save[4][HBLKSIZE];
- static FLOAT8 pe_save[4];
- static FLOAT8 ers_save[4];
- #endif
- /* ratios
- */
- static FLOAT8 pe[4]={0,0,0,0};
- static FLOAT8 ms_ratio_s_old=0,ms_ratio_l_old=0;
- static FLOAT8 ms_ener_ratio_old=.25;
- FLOAT8 ms_ratio_l=0,ms_ratio_s=0;
- /* block type
- */
- static int blocktype_old[2];
- int blocktype[2],uselongblock[2];
- /* usual variables like loop indices, etc..
- */
- int numchn, chn;
- int b, i, j, k;
- int sb,sblock;
- FLOAT cwlimit;
- /* initialization of static variables
- */
- if((gfp->frameNum==0) && (gr_out==0)){
- FLOAT8 SNR_s[CBANDS];
- blocktype_old[0]=STOP_TYPE;
- blocktype_old[1]=STOP_TYPE;
- i = gfp->out_samplerate;
- switch(i){
- case 32000: break;
- case 44100: break;
- case 48000: break;
- case 16000: break;
- case 22050: break;
- case 24000: break;
- default: fprintf(stderr,"error, invalid sampling frequency: %d Hzn",i);
- exit(-1);
- }
- /* reset states used in unpredictability measure */
- memset (rx_sav,0, sizeof(rx_sav));
- memset (ax_sav,0, sizeof(ax_sav));
- memset (bx_sav,0, sizeof(bx_sav));
- memset (en,0, sizeof(en));
- memset (thm,0, sizeof(thm));
- /* gfp->cwlimit = sfreq*j/1024.0; */
- cw_lower_index=6;
- if (gfp->cwlimit>0)
- cwlimit=gfp->cwlimit;
- else
- cwlimit=8.8717;
- cw_upper_index = cwlimit*1000.0*1024.0/((FLOAT8) gfp->out_samplerate);
- cw_upper_index=Min(HBLKSIZE-4,cw_upper_index); /* j+3 < HBLKSIZE-1 */
- cw_upper_index=Max(6,cw_upper_index);
- for ( j = 0; j < HBLKSIZE; j++ )
- cw[j] = 0.4;
- /* setup stereo demasking thresholds */
- /* formula reverse enginerred from plot in paper */
- for ( sb = 0; sb < SBPSY_s; sb++ ) {
- FLOAT8 mld = 1.25*(1-cos(PI*sb/SBPSY_s))-2.5;
- mld_s[sb] = pow(10.0,mld);
- }
- for ( sb = 0; sb < SBPSY_l; sb++ ) {
- FLOAT8 mld = 1.25*(1-cos(PI*sb/SBPSY_l))-2.5;
- mld_l[sb] = pow(10.0,mld);
- }
- for (i=0;i<HBLKSIZE;i++) partition_l[i]=-1;
- L3para_read( (FLOAT8) gfp->out_samplerate,numlines_l,numlines_s,partition_l,minval,qthr_l,s3_l,s3_s,
- qthr_s,SNR_s,
- bu_l,bo_l,w1_l,w2_l, bu_s,bo_s,w1_s,w2_s );
- /* npart_l_orig = number of partition bands before convolution */
- /* npart_l = number of partition bands after convolution */
- npart_l_orig=0; npart_s_orig=0;
- for (i=0;i<HBLKSIZE;i++)
- if (partition_l[i]>npart_l_orig) npart_l_orig=partition_l[i];
- npart_l_orig++;
- for (i=0;numlines_s[i]>=0;i++)
- ;
- npart_s_orig = i;
- npart_l=bo_l[SBPSY_l-1]+1;
- npart_s=bo_s[SBPSY_s-1]+1;
- /* MPEG2 tables are screwed up
- * the mapping from paritition bands to scalefactor bands will use
- * more paritition bands than we have.
- * So we will not compute these fictitious partition bands by reducing
- * npart_l below. */
- if (npart_l > npart_l_orig) {
- npart_l=npart_l_orig;
- bo_l[SBPSY_l-1]=npart_l-1;
- w2_l[SBPSY_l-1]=1.0;
- }
- if (npart_s > npart_s_orig) {
- npart_s=npart_s_orig;
- bo_s[SBPSY_s-1]=npart_s-1;
- w2_s[SBPSY_s-1]=1.0;
- }
- for (i=0; i<npart_l; i++) {
- for (j = 0; j < npart_l_orig; j++) {
- if (s3_l[i][j] != 0.0)
- break;
- }
- s3ind[i][0] = j;
- for (j = npart_l_orig - 1; j > 0; j--) {
- if (s3_l[i][j] != 0.0)
- break;
- }
- s3ind[i][1] = j;
- }
- for (i=0; i<npart_s; i++) {
- for (j = 0; j < npart_s_orig; j++) {
- if (s3_s[i][j] != 0.0)
- break;
- }
- s3ind_s[i][0] = j;
- for (j = npart_s_orig - 1; j > 0; j--) {
- if (s3_s[i][j] != 0.0)
- break;
- }
- s3ind_s[i][1] = j;
- }
- /*
- #include "debugscalefac.c"
- */
- #define AACS3
- #define NEWS3XX
- #ifdef AACS3
- /* AAC values, results in more masking over MP3 values */
- # define TMN 18
- # define NMT 6
- #else
- /* MP3 values */
- # define TMN 29
- # define NMT 6
- #endif
- #define rpelev 2
- #define rpelev2 16
- /* compute norm_l, norm_s instead of relying on table data */
- for ( b = 0;b < npart_l; b++ ) {
- FLOAT8 norm=0;
- for ( k = s3ind[b][0]; k <= s3ind[b][1]; k++ ) {
- norm += s3_l[b][k];
- }
- for ( k = s3ind[b][0]; k <= s3ind[b][1]; k++ ) {
- s3_l[b][k] *= exp(-LN_TO_LOG10 * NMT) / norm;
- }
- /*printf("%i norm=%f norm_l=%f n",b,1/norm,norm_l[b]);*/
- }
- /* MPEG1 SNR_s data is given in db, convert to energy */
- if (gfp->version == 1) {
- for ( b = 0;b < npart_s; b++ ) {
- SNR_s[b]=exp( (FLOAT8) SNR_s[b] * LN_TO_LOG10 );
- }
- }
- for ( b = 0;b < npart_s; b++ ) {
- FLOAT8 norm=0;
- for ( k = s3ind_s[b][0]; k <= s3ind_s[b][1]; k++ ) {
- norm += s3_s[b][k];
- }
- for ( k = s3ind_s[b][0]; k <= s3ind_s[b][1]; k++ ) {
- s3_s[b][k] *= SNR_s[b] / norm;
- }
- /*printf("%i norm=%f norm_s=%f n",b,1/norm,norm_l[b]);*/
- }
- init_fft();
- }
- /************************* End of Initialization *****************************/
- numchn = gfp->stereo;
- /* chn=2 and 3 = Mid and Side channels */
- if (gfp->mode == MPG_MD_JOINT_STEREO) numchn=4;
- for (chn=0; chn<numchn; chn++) {
- wsamp_s = wsamp_S+(chn & 1);
- wsamp_l = wsamp_L+(chn & 1);
- if (chn<2) {
- /**********************************************************************
- * compute FFTs
- **********************************************************************/
- fft_long ( *wsamp_l, chn, buffer);
- fft_short( *wsamp_s, chn, buffer);
- /* LR maskings */
- percep_entropy[chn] = pe[chn];
- masking_ratio[gr_out][chn].thm = thm[chn];
- masking_ratio[gr_out][chn].en = en[chn];
- }else{
- /* MS maskings */
- percep_MS_entropy[chn-2] = pe[chn];
- masking_MS_ratio[gr_out][chn-2].en = en[chn];
- masking_MS_ratio[gr_out][chn-2].thm = thm[chn];
- if (chn == 2)
- {
- for (j = BLKSIZE-1; j >=0 ; --j)
- {
- FLOAT l = wsamp_L[0][j];
- FLOAT r = wsamp_L[1][j];
- wsamp_L[0][j] = (l+r)*(FLOAT)(SQRT2*0.5);
- wsamp_L[1][j] = (l-r)*(FLOAT)(SQRT2*0.5);
- }
- for (b = 2; b >= 0; --b)
- {
- for (j = BLKSIZE_s-1; j >= 0 ; --j)
- {
- FLOAT l = wsamp_S[0][b][j];
- FLOAT r = wsamp_S[1][b][j];
- wsamp_S[0][b][j] = (l+r)*(FLOAT)(SQRT2*0.5);
- wsamp_S[1][b][j] = (l-r)*(FLOAT)(SQRT2*0.5);
- }
- }
- }
- }
- /**********************************************************************
- * compute energies
- **********************************************************************/
- energy[0] = (*wsamp_l)[0];
- energy[0] *= energy[0];
- tot_ener[chn] = energy[0]; /* sum total energy at nearly no extra cost */
- for (j=BLKSIZE/2-1; j >= 0; --j)
- {
- FLOAT re = (*wsamp_l)[BLKSIZE/2-j];
- FLOAT im = (*wsamp_l)[BLKSIZE/2+j];
- energy[BLKSIZE/2-j] = (re * re + im * im) * (FLOAT)0.5;
- tot_ener[chn] += energy[BLKSIZE/2-j];
- }
- for (b = 2; b >= 0; --b)
- {
- energy_s[b][0] = (*wsamp_s)[b][0];
- energy_s[b][0] *= energy_s [b][0];
- for (j=BLKSIZE_s/2-1; j >= 0; --j)
- {
- FLOAT re = (*wsamp_s)[b][BLKSIZE_s/2-j];
- FLOAT im = (*wsamp_s)[b][BLKSIZE_s/2+j];
- energy_s[b][BLKSIZE_s/2-j] = (re * re + im * im) * (FLOAT)0.5;
- }
- }
- #ifdef HAVEGTK
- if(gfp->gtkflag) {
- for (j=0; j<HBLKSIZE ; j++) {
- pinfo->energy[gr_out][chn][j]=energy_save[chn][j];
- energy_save[chn][j]=energy[j];
- }
- }
- #endif
- /**********************************************************************
- * compute unpredicatability of first six spectral lines *
- **********************************************************************/
- for ( j = 0; j < cw_lower_index; j++ )
- { /* calculate unpredictability measure cw */
- FLOAT an, a1, a2;
- FLOAT bn, b1, b2;
- FLOAT rn, r1, r2;
- FLOAT numre, numim, den;
- a2 = ax_sav[chn][1][j];
- b2 = bx_sav[chn][1][j];
- r2 = rx_sav[chn][1][j];
- a1 = ax_sav[chn][1][j] = ax_sav[chn][0][j];
- b1 = bx_sav[chn][1][j] = bx_sav[chn][0][j];
- r1 = rx_sav[chn][1][j] = rx_sav[chn][0][j];
- an = ax_sav[chn][0][j] = (*wsamp_l)[j];
- bn = bx_sav[chn][0][j] = j==0 ? (*wsamp_l)[0] : (*wsamp_l)[BLKSIZE-j];
- rn = rx_sav[chn][0][j] = sqrt(energy[j]);
- { /* square (x1,y1) */
- if( r1 != 0 ) {
- numre = (a1*b1);
- numim = (a1*a1-b1*b1)*(FLOAT)0.5;
- den = r1*r1;
- } else {
- numre = 1;
- numim = 0;
- den = 1;
- }
- }
- { /* multiply by (x2,-y2) */
- if( r2 != 0 ) {
- FLOAT tmp2 = (numim+numre)*(a2+b2)*(FLOAT)0.5;
- FLOAT tmp1 = -a2*numre+tmp2;
- numre = -b2*numim+tmp2;
- numim = tmp1;
- den *= r2;
- } else {
- /* do nothing */
- }
- }
- { /* r-prime factor */
- FLOAT tmp = (2*r1-r2)/den;
- numre *= tmp;
- numim *= tmp;
- }
- den=rn+fabs(2*r1-r2);
- if( den != 0 ) {
- numre = (an+bn)*(FLOAT)0.5-numre;
- numim = (an-bn)*(FLOAT)0.5-numim;
- den = sqrt(numre*numre+numim*numim)/den;
- }
- cw[j] = den;
- }
- /**********************************************************************
- * compute unpredicatibility of next 200 spectral lines *
- **********************************************************************/
- for ( j = cw_lower_index; j < cw_upper_index; j += 4 )
- {/* calculate unpredictability measure cw */
- FLOAT rn, r1, r2;
- FLOAT numre, numim, den;
- k = (j+2) / 4;
- { /* square (x1,y1) */
- r1 = energy_s[0][k];
- if( r1 != 0 ) {
- FLOAT a1 = (*wsamp_s)[0][k];
- FLOAT b1 = (*wsamp_s)[0][BLKSIZE_s-k]; /* k is never 0 */
- numre = (a1*b1);
- numim = (a1*a1-b1*b1)*(FLOAT)0.5;
- den = r1;
- r1 = sqrt(r1);
- } else {
- numre = 1;
- numim = 0;
- den = 1;
- }
- }
- { /* multiply by (x2,-y2) */
- r2 = energy_s[2][k];
- if( r2 != 0 ) {
- FLOAT a2 = (*wsamp_s)[2][k];
- FLOAT b2 = (*wsamp_s)[2][BLKSIZE_s-k];
- FLOAT tmp2 = (numim+numre)*(a2+b2)*(FLOAT)0.5;
- FLOAT tmp1 = -a2*numre+tmp2;
- numre = -b2*numim+tmp2;
- numim = tmp1;
- r2 = sqrt(r2);
- den *= r2;
- } else {
- /* do nothing */
- }
- }
- { /* r-prime factor */
- FLOAT tmp = (2*r1-r2)/den;
- numre *= tmp;
- numim *= tmp;
- }
- rn = sqrt(energy_s[1][k]);
- den=rn+fabs(2*r1-r2);
- if( den != 0 ) {
- FLOAT an = (*wsamp_s)[1][k];
- FLOAT bn = (*wsamp_s)[1][BLKSIZE_s-k];
- numre = (an+bn)*(FLOAT)0.5-numre;
- numim = (an-bn)*(FLOAT)0.5-numim;
- den = sqrt(numre*numre+numim*numim)/den;
- }
- cw[j+1] = cw[j+2] = cw[j+3] = cw[j] = den;
- }
- #if 0
- for ( j = 14; j < HBLKSIZE-4; j += 4 )
- {/* calculate energy from short ffts */
- FLOAT8 tot,ave;
- k = (j+2) / 4;
- for (tot=0, sblock=0; sblock < 3; sblock++)
- tot+=energy_s[sblock][k];
- ave = energy[j+1]+ energy[j+2]+ energy[j+3]+ energy[j];
- ave /= 4.;
- /*
- printf("energy / tot %i %5.2f %e %en",j,ave/(tot*16./3.),
- ave,tot*16./3.);
- */
- energy[j+1] = energy[j+2] = energy[j+3] = energy[j]=tot;
- }
- #endif
- /**********************************************************************
- * Calculate the energy and the unpredictability in the threshold *
- * calculation partitions *
- **********************************************************************/
- #if 0
- for ( b = 0; b < CBANDS; b++ )
- {
- eb[b] = 0;
- cb[b] = 0;
- }
- for ( j = 0; j < HBLKSIZE; j++ )
- {
- int tp = partition_l[j];
- if ( tp >= 0 )
- {
- eb[tp] += energy[j];
- cb[tp] += cw[j] * energy[j];
- }
- assert(tp<npart_l_orig);
- }
- #else
- b = 0;
- for (j = 0; j < cw_upper_index;)
- {
- FLOAT8 ebb, cbb;
- int i;
- ebb = energy[j];
- cbb = energy[j] * cw[j];
- j++;
- for (i = numlines_l[b] - 1; i > 0; i--)
- {
- ebb += energy[j];
- cbb += energy[j] * cw[j];
- j++;
- }
- eb[b] = ebb;
- cb[b] = cbb;
- b++;
- }
- for (; b < npart_l_orig; b++ )
- {
- int i;
- FLOAT8 ebb = energy[j++];
- for (i = numlines_l[b] - 1; i > 0; i--)
- {
- ebb += energy[j++];
- }
- eb[b] = ebb;
- cb[b] = ebb * 0.4;
- }
- #endif
- /**********************************************************************
- * convolve the partitioned energy and unpredictability *
- * with the spreading function, s3_l[b][k] *
- ******************************************************************** */
- pe[chn] = 0; /* calculate percetual entropy */
- for ( b = 0;b < npart_l; b++ )
- {
- FLOAT8 tbb,ecb,ctb;
- FLOAT8 temp_1; /* BUG of IS */
- ecb = 0;
- ctb = 0;
- for ( k = s3ind[b][0]; k <= s3ind[b][1]; k++ )
- {
- ecb += s3_l[b][k] * eb[k]; /* sprdngf for Layer III */
- ctb += s3_l[b][k] * cb[k];
- }
- /* calculate the tonality of each threshold calculation partition */
- /* calculate the SNR in each threshhold calculation partition */
- tbb = ecb;
- if (tbb != 0)
- {
- tbb = ctb / tbb;
- if (tbb <= 0.04875584301)
- {
- tbb = exp(-LN_TO_LOG10 * (TMN - NMT));
- }
- else if (tbb > 0.4989003827)
- {
- tbb = 1;
- }
- else
- {
- tbb = log(tbb);
- tbb = exp(((TMN - NMT)*(LN_TO_LOG10*0.299))
- + ((TMN - NMT)*(LN_TO_LOG10*0.43 ))*tbb); /* conv1=-0.299, conv2=-0.43 */
- }
- }
- tbb = Min(minval[b], tbb);
- ecb *= tbb;
- /* pre-echo control */
- /* rpelev=2.0, rpelev2=16.0 */
- temp_1 = Min(ecb, Min(rpelev*nb_1[chn][b],rpelev2*nb_2[chn][b]) );
- thr[b] = Max( qthr_l[b], temp_1 );
- nb_2[chn][b] = nb_1[chn][b];
- nb_1[chn][b] = ecb;
- /* note: all surges in PE are because of the above pre-echo formula
- * for temp_1. it this is not used, PE is always around 600
- */
- if (thr[b] < eb[b])
- {
- /* there's no non sound portition, because thr[b] is
- maximum of qthr_l and temp_1 */
- pe[chn] -= numlines_l[b] * log(thr[b] / eb[b]);
- }
- }
- #ifdef HAVEGTK
- if (gfp->gtkflag) {
- FLOAT mn,mx,ma=0,mb=0,mc=0;
- for ( j = HBLKSIZE_s/2; j < HBLKSIZE_s; j ++)
- {
- ma += energy_s[0][j];
- mb += energy_s[1][j];
- mc += energy_s[2][j];
- }
- mn = Min(ma,mb);
- mn = Min(mn,mc);
- mx = Max(ma,mb);
- mx = Max(mx,mc);
- pinfo->ers[gr_out][chn]=ers_save[chn];
- ers_save[chn]=mx/(1e-12+mn);
- pinfo->pe[gr_out][chn]=pe_save[chn];
- pe_save[chn]=pe[chn];
- }
- #endif
- /***************************************************************
- * determine the block type (window type) based on L & R channels
- *
- ***************************************************************/
- if (chn<2) {
- if (gfp->no_short_blocks){
- uselongblock[chn]=1;
- } else {
- /* tuned for t1.wav. doesnt effect most other samples */
- if (pe[chn] > 3000) {
- uselongblock[chn]=0;
- } else {
- FLOAT mn,mx,ma=0,mb=0,mc=0;
- for ( j = HBLKSIZE_s/2; j < HBLKSIZE_s; j ++)
- {
- ma += energy_s[0][j];
- mb += energy_s[1][j];
- mc += energy_s[2][j];
- }
- mn = Min(ma,mb);
- mn = Min(mn,mc);
- mx = Max(ma,mb);
- mx = Max(mx,mc);
- uselongblock[chn] = 1;
- if ( mx > 30*mn )
- {/* big surge of energy - always use short blocks */
- uselongblock[chn] = 0;
- }
- else if ((mx > 10*mn) && (pe[chn] > 1000))
- {/* medium surge, medium pe - use short blocks */
- uselongblock[chn] = 0;
- }
- }
- }
- }
- /***************************************************************
- * compute masking thresholds for both short and long blocks
- ***************************************************************/
- /* longblock threshold calculation (part 2) */
- for ( sb = 0; sb < SBPSY_l; sb++ )
- {
- FLOAT8 enn = w1_l[sb] * eb[bu_l[sb]] + w2_l[sb] * eb[bo_l[sb]];
- FLOAT8 thmm = w1_l[sb] *thr[bu_l[sb]] + w2_l[sb] * thr[bo_l[sb]];
- for ( b = bu_l[sb]+1; b < bo_l[sb]; b++ )
- {
- enn += eb[b];
- thmm += thr[b];
- }
- en[chn].l[sb] = enn;
- thm[chn].l[sb] = thmm;
- }
- /* threshold calculation for short blocks */
- for ( sblock = 0; sblock < 3; sblock++ )
- {
- j = 0;
- for ( b = 0; b < npart_s_orig; b++ )
- {
- int i;
- FLOAT ecb = energy_s[sblock][j++];
- for (i = numlines_s[b]; i > 0; i--)
- {
- ecb += energy_s[sblock][j++];
- }
- eb[b] = ecb;
- }
- for ( b = 0; b < npart_s; b++ )
- {
- FLOAT8 ecb = 0;
- for ( k = s3ind_s[b][0]; k <= s3ind_s[b][1]; k++ )
- {
- ecb += s3_s[b][k] * eb[k];
- }
- thr[b] = Max (qthr_s[b], ecb);
- }
- for ( sb = 0; sb < SBPSY_s; sb++ )
- {
- FLOAT8 enn = w1_s[sb] * eb[bu_s[sb]] + w2_s[sb] * eb[bo_s[sb]];
- FLOAT8 thmm = w1_s[sb] *thr[bu_s[sb]] + w2_s[sb] * thr[bo_s[sb]];
- for ( b = bu_s[sb]+1; b < bo_s[sb]; b++ )
- {
- enn += eb[b];
- thmm += thr[b];
- }
- en[chn].s[sb][sblock] = enn;
- thm[chn].s[sb][sblock] = thmm;
- }
- }
- } /* end loop over chn */
- /* compute M/S thresholds from Johnston & Ferreira 1992 ICASSP paper */
- if ( numchn==4 /* mid/side and r/l */) {
- FLOAT8 rside,rmid,mld;
- int chmid=2,chside=3;
- for ( sb = 0; sb < SBPSY_l; sb++ ) {
- /* use this fix if L & R masking differs by 2db or less */
- /* if db = 10*log10(x2/x1) < 2 */
- /* if (x2 < 1.58*x1) { */
- if (thm[0].l[sb] <= 1.58*thm[1].l[sb]
- && thm[1].l[sb] <= 1.58*thm[0].l[sb]) {
- mld = mld_l[sb]*en[chside].l[sb];
- rmid = Max(thm[chmid].l[sb], Min(thm[chside].l[sb],mld));
- mld = mld_l[sb]*en[chmid].l[sb];
- rside = Max(thm[chside].l[sb],Min(thm[chmid].l[sb],mld));
- thm[chmid].l[sb]=rmid;
- thm[chside].l[sb]=rside;
- }
- }
- for ( sb = 0; sb < SBPSY_s; sb++ ) {
- for ( sblock = 0; sblock < 3; sblock++ ) {
- if (thm[0].s[sb][sblock] <= 1.58*thm[1].s[sb][sblock]
- && thm[1].s[sb][sblock] <= 1.58*thm[0].s[sb][sblock]) {
- mld = mld_s[sb]*en[chside].s[sb][sblock];
- rmid = Max(thm[chmid].s[sb][sblock],Min(thm[chside].s[sb][sblock],mld));
- mld = mld_s[sb]*en[chmid].s[sb][sblock];
- rside = Max(thm[chside].s[sb][sblock],Min(thm[chmid].s[sb][sblock],mld));
- thm[chmid].s[sb][sblock]=rmid;
- thm[chside].s[sb][sblock]=rside;
- }
- }
- }
- }
- if (gfp->mode == MPG_MD_JOINT_STEREO) {
- /* determin ms_ratio from masking thresholds*/
- /* use ms_stereo (ms_ratio < .35) if average thresh. diff < 5 db */
- FLOAT8 db,x1,x2,sidetot=0,tot=0;
- for (sb= SBPSY_l/4 ; sb< SBPSY_l; sb ++ ) {
- x1 = Min(thm[0].l[sb],thm[1].l[sb]);
- x2 = Max(thm[0].l[sb],thm[1].l[sb]);
- /* thresholds difference in db */
- if (x2 >= 1000*x1) db=3;
- else db = log10(x2/x1);
- /* printf("db = %f %e %e n",db,thm[0].l[sb],thm[1].l[sb]);*/
- sidetot += db;
- tot++;
- }
- ms_ratio_l= (sidetot/tot)*0.7; /* was .35*(sidetot/tot)/5.0*10 */
- ms_ratio_l = Min(ms_ratio_l,0.5);
- sidetot=0; tot=0;
- for ( sblock = 0; sblock < 3; sblock++ )
- for ( sb = SBPSY_s/4; sb < SBPSY_s; sb++ ) {
- x1 = Min(thm[0].s[sb][sblock],thm[1].s[sb][sblock]);
- x2 = Max(thm[0].s[sb][sblock],thm[1].s[sb][sblock]);
- /* thresholds difference in db */
- if (x2 >= 1000*x1) db=3;
- else db = log10(x2/x1);
- sidetot += db;
- tot++;
- }
- ms_ratio_s = (sidetot/tot)*0.7; /* was .35*(sidetot/tot)/5.0*10 */
- ms_ratio_s = Min(ms_ratio_s,.5);
- }
- /***************************************************************
- * determin final block type
- ***************************************************************/
- for (chn=0; chn<gfp->stereo; chn++) {
- blocktype[chn] = NORM_TYPE;
- }
- if (gfp->stereo==2) {
- if (!gfp->allow_diff_short || gfp->mode==MPG_MD_JOINT_STEREO) {
- /* force both channels to use the same block type */
- /* this is necessary if the frame is to be encoded in ms_stereo. */
- /* But even without ms_stereo, FhG does this */
- int bothlong= (uselongblock[0] && uselongblock[1]);
- if (!bothlong) {
- uselongblock[0]=0;
- uselongblock[1]=0;
- }
- }
- }
- /* update the blocktype of the previous granule, since it depends on what
- * happend in this granule */
- for (chn=0; chn<gfp->stereo; chn++) {
- if ( uselongblock[chn])
- { /* no attack : use long blocks */
- switch( blocktype_old[chn] )
- {
- case NORM_TYPE:
- case STOP_TYPE:
- blocktype[chn] = NORM_TYPE;
- break;
- case SHORT_TYPE:
- blocktype[chn] = STOP_TYPE;
- break;
- case START_TYPE:
- fprintf( stderr, "Error in block selectingn" );
- abort();
- break; /* problem */
- }
- } else {
- /* attack : use short blocks */
- blocktype[chn] = SHORT_TYPE;
- if ( blocktype_old[chn] == NORM_TYPE ) {
- blocktype_old[chn] = START_TYPE;
- }
- if ( blocktype_old[chn] == STOP_TYPE ) {
- blocktype_old[chn] = SHORT_TYPE ;
- }
- }
- blocktype_d[chn] = blocktype_old[chn]; /* value returned to calling program */
- blocktype_old[chn] = blocktype[chn]; /* save for next call to l3psy_anal */
- }
- if (blocktype_d[0]==2)
- *ms_ratio = ms_ratio_s_old;
- else
- *ms_ratio = ms_ratio_l_old;
- ms_ratio_s_old = ms_ratio_s;
- ms_ratio_l_old = ms_ratio_l;
- /* we dont know the block type of this frame yet - assume long */
- *ms_ratio_next = ms_ratio_l;
- /*********************************************************************/
- /* compute side_energy / (side+mid)_energy */
- /* 0 = no energy in side channel */
- /* .5 = half of total energy in side channel */
- /*********************************************************************/
- if (numchn==4) {
- FLOAT tmp = tot_ener[3]+tot_ener[2];
- *ms_ener_ratio = ms_ener_ratio_old;
- ms_ener_ratio_old=0;
- if (tmp>0) ms_ener_ratio_old=tot_ener[3]/tmp;
- } else
- /* we didn't compute ms_ener_ratios */
- *ms_ener_ratio = 0;
- }
- void L3para_read(FLOAT8 sfreq, int *numlines_l,int *numlines_s, int *partition_l, FLOAT8 *minval,
- FLOAT8 *qthr_l, FLOAT8 s3_l[64][64], FLOAT8 s3_s[CBANDS + 1][CBANDS + 1],
- FLOAT8 *qthr_s, FLOAT8 *SNR,
- int *bu_l, int *bo_l, FLOAT8 *w1_l, FLOAT8 *w2_l,
- int *bu_s, int *bo_s, FLOAT8 *w1_s, FLOAT8 *w2_s)
- {
- FLOAT8 freq_tp;
- FLOAT8 bval_l[CBANDS], bval_s[CBANDS];
- int cbmax=0, cbmax_tp;
- FLOAT8 *p = psy_data;
- int sbmax ;
- int i,j,k,k2,loop, part_max ;
- int freq_scale=1;
- /* use MPEG1 tables. The MPEG2 tables in tables.c appear to be
- * junk. MPEG2 doc claims data for these tables is the same as the
- * MPEG1 data for 2x sampling frequency */
- /* if (sfreq<32000) freq_scale=2; */
- /* Read long block data */
- for(loop=0;loop<6;loop++)
- {
- freq_tp = *p++;
- cbmax_tp = (int) *p++;
- cbmax_tp++;
- if (sfreq == freq_tp/freq_scale )
- {
- cbmax = cbmax_tp;
- for(i=0,k2=0;i<cbmax_tp;i++)
- {
- j = (int) *p++;
- numlines_l[i] = (int) *p++;
- minval[i] = exp(-((*p++) - NMT) * LN_TO_LOG10);
- qthr_l[i] = *p++;
- /* norm_l[i] = *p++*/ p++;
- bval_l[i] = *p++;
- if (j!=i)
- {
- fprintf(stderr,"1. please check "psy_data"");
- exit(-1);
- }
- for(k=0;k<numlines_l[i];k++)
- partition_l[k2++] = i ;
- }
- }
- else
- p += cbmax_tp * 6;
- }
- #define NEWBARKXXX
- #ifdef NEWBARK
- /* compute bark values of each critical band */
- j = 0;
- for(i=0;i<cbmax;i++)
- {
- FLOAT8 ji, freq, bark;
- ji = j + (numlines_l[i]-1)/2.0;
- freq = sfreq*ji/1024000.0;
- bark = 13*atan(.76*freq) + 3.5*atan(freq*freq/(7.5*7.5));
- printf("%i %i bval_l table=%f f=%f formaula=%f n",i,j,bval_l[i],freq,bark);
- bval_l[i]=bark;
- j += numlines_l[i];
- }
- #endif
- /************************************************************************
- * Now compute the spreading function, s[j][i], the value of the spread-*
- * ing function, centered at band j, for band i, store for later use *
- ************************************************************************/
- /* i.e.: sum over j to spread into signal barkval=i
- NOTE: i and j are used opposite as in the ISO docs */
- part_max = cbmax ;
- for(i=0;i<part_max;i++)
- {
- FLOAT8 tempx,x,tempy,temp;
- for(j=0;j<part_max;j++)
- {
- /*tempx = (bval_l[i] - bval_l[j])*1.05;*/
- if (j>=i) tempx = (bval_l[i] - bval_l[j])*3.0;
- else tempx = (bval_l[i] - bval_l[j])*1.5;
- #ifdef AACS3
- if (i>=j) tempx = (bval_l[i] - bval_l[j])*3.0;
- else tempx = (bval_l[i] - bval_l[j])*1.5;
- #endif
- if(tempx>=0.5 && tempx<=2.5)
- {
- temp = tempx - 0.5;
- x = 8.0 * (temp*temp - 2.0 * temp);
- }
- else x = 0.0;
- tempx += 0.474;
- tempy = 15.811389 + 7.5*tempx - 17.5*sqrt(1.0+tempx*tempx);
- #ifdef NEWS3
- if (j>=i) tempy = (bval_l[j] - bval_l[i])*(-15);
- else tempy = (bval_l[j] - bval_l[i])*25;
- x=0;
- #endif
- /*
- if ((i==part_max/2) && (fabs(bval_l[j] - bval_l[i])) < 3) {
- printf("bark=%f x+tempy = %f n",bval_l[j] - bval_l[i],x+tempy);
- }
- */
- if (tempy <= -60.0) s3_l[i][j] = 0.0;
- else s3_l[i][j] = exp( (x + tempy)*LN_TO_LOG10 );
- }
- }
- /* Read short block data */
- for(loop=0;loop<6;loop++)
- {
- freq_tp = *p++;
- cbmax_tp = (int) *p++;
- cbmax_tp++;
- if (sfreq == freq_tp/freq_scale )
- {
- cbmax = cbmax_tp;
- for(i=0,k2=0;i<cbmax_tp;i++)
- {
- j = (int) *p++;
- numlines_s[i] = (int) *p++;
- qthr_s[i] = *p++;
- /* norm_s[i] =*p++ */ p++;
- SNR[i] = *p++;
- bval_s[i] = *p++;
- if (j!=i)
- {
- fprintf(stderr,"3. please check "psy_data"");
- exit(-1);
- }
- numlines_s[i]--;
- }
- numlines_s[i] = -1;
- }
- else
- p += cbmax_tp * 6;
- }
- #ifdef NEWBARK
- /* compute bark values of each critical band */
- j = 0;
- for(i=0;i<cbmax;i++)
- {
- FLOAT8 ji, freq, bark;
- ji = (j * 2 + numlines_s[i]) / 2.0;
- freq = sfreq*ji/256000.0;
- bark = 13*atan(.76*freq) + 3.5*atan(freq*freq/(7.5*7.5));
- printf("%i %i bval_s = %f %f %f n",i,j,bval_s[i],freq,bark);
- bval_s[i]=bark;
- j += numlines_s[i] + 1;
- }
- #endif
- /************************************************************************
- * Now compute the spreading function, s[j][i], the value of the spread-*
- * ing function, centered at band j, for band i, store for later use *
- ************************************************************************/
- part_max = cbmax ;
- for(i=0;i<part_max;i++)
- {
- FLOAT8 tempx,x,tempy,temp;
- for(j=0;j<part_max;j++)
- {
- /* tempx = (bval_s[i] - bval_s[j])*1.05;*/
- if (j>=i) tempx = (bval_s[i] - bval_s[j])*3.0;
- else tempx = (bval_s[i] - bval_s[j])*1.5;
- #ifdef AACS3
- if (i>=j) tempx = (bval_s[i] - bval_s[j])*3.0;
- else tempx = (bval_s[i] - bval_s[j])*1.5;
- #endif
- if(tempx>=0.5 && tempx<=2.5)
- {
- temp = tempx - 0.5;
- x = 8.0 * (temp*temp - 2.0 * temp);
- }
- else x = 0.0;
- tempx += 0.474;
- tempy = 15.811389 + 7.5*tempx - 17.5*sqrt(1.0+tempx*tempx);
- #ifdef NEWS3
- if (j>=i) tempy = (bval_s[j] - bval_s[i])*(-15);
- else tempy = (bval_s[j] - bval_s[i])*25;
- x=0;
- #endif
- if (tempy <= -60.0) s3_s[i][j] = 0.0;
- else s3_s[i][j] = exp( (x + tempy)*LN_TO_LOG10 );
- }
- }
- /* Read long block data for converting threshold calculation
- partitions to scale factor bands */
- for(loop=0;loop<6;loop++)
- {
- freq_tp = *p++;
- sbmax = (int) *p++;
- sbmax++;
- if (sfreq == freq_tp/freq_scale)
- {
- for(i=0;i<sbmax;i++)
- {
- j = (int) *p++;
- p++;
- bu_l[i] = (int) *p++;
- bo_l[i] = (int) *p++;
- w1_l[i] = (FLOAT8) *p++;
- w2_l[i] = (FLOAT8) *p++;
- if (j!=i)
- { fprintf(stderr,"30:please check "psy_data"n");
- exit(-1);
- }
- if (i!=0)
- if ( (fabs(1.0-w1_l[i]-w2_l[i-1]) > 0.01 ) )
- {
- fprintf(stderr,"31l: please check "psy_data."n");
- fprintf(stderr,"w1,w2: %f %f n",w1_l[i],w2_l[i-1]);
- exit(-1);
- }
- }
- }
- else
- p += sbmax * 6;
- }
- /* Read short block data for converting threshold calculation
- partitions to scale factor bands */
- for(loop=0;loop<6;loop++)
- {
- freq_tp = *p++;
- sbmax = (int) *p++;
- sbmax++;
- if (sfreq == freq_tp/freq_scale)
- {
- for(i=0;i<sbmax;i++)
- {
- j = (int) *p++;
- p++;
- bu_s[i] = (int) *p++;
- bo_s[i] = (int) *p++;
- w1_s[i] = *p++;
- w2_s[i] = *p++;
- if (j!=i)
- { fprintf(stderr,"30:please check "psy_data"n");
- exit(-1);
- }
- if (i!=0)
- if ( (fabs(1.0-w1_s[i]-w2_s[i-1]) > 0.01 ) )
- {
- fprintf(stderr,"31s: please check "psy_data."n");
- fprintf(stderr,"w1,w2: %f %f n",w1_s[i],w2_s[i-1]);
- exit(-1);
- }
- }
- }
- else
- p += sbmax * 6;
- }
- }