ic_predict.c
上传用户:xjjlds
上传日期:2015-12-05
资源大小:22823k
文件大小:7k
- /*
- ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
- ** Copyright (C) 2003-2005 M. Bakker, Ahead Software AG, http://www.nero.com
- **
- ** This program is free software; you can redistribute it and/or modify
- ** it under the terms of the GNU General Public License as published by
- ** the Free Software Foundation; either version 2 of the License, or
- ** (at your option) any later version.
- **
- ** This program is distributed in the hope that it will be useful,
- ** but WITHOUT ANY WARRANTY; without even the implied warranty of
- ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ** GNU General Public License for more details.
- **
- ** You should have received a copy of the GNU General Public License
- ** along with this program; if not, write to the Free Software
- ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- **
- ** Any non-GPL usage of this software or parts of this software is strictly
- ** forbidden.
- **
- ** Software using this code must display the following message visibly in the
- ** software:
- ** "FAAD2 AAC/HE-AAC/HE-AACv2/DRM decoder (c) Ahead Software, www.nero.com"
- ** in, for example, the about-box or help/startup screen.
- **
- ** Commercial non-GPL licensing of this software is possible.
- ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
- **
- ** $Id: ic_predict.c,v 1.2 2005/11/01 21:41:43 gabest Exp $
- **/
- #include "common.h"
- #include "structs.h"
- #ifdef MAIN_DEC
- #include "syntax.h"
- #include "ic_predict.h"
- #include "pns.h"
- static void flt_round(float32_t *pf)
- {
- int32_t flg;
- uint32_t tmp, tmp1, tmp2;
- tmp = *(uint32_t*)pf;
- flg = tmp & (uint32_t)0x00008000;
- tmp &= (uint32_t)0xffff0000;
- tmp1 = tmp;
- /* round 1/2 lsb toward infinity */
- if (flg)
- {
- tmp &= (uint32_t)0xff800000; /* extract exponent and sign */
- tmp |= (uint32_t)0x00010000; /* insert 1 lsb */
- tmp2 = tmp; /* add 1 lsb and elided one */
- tmp &= (uint32_t)0xff800000; /* extract exponent and sign */
-
- *pf = *(float32_t*)&tmp1 + *(float32_t*)&tmp2 - *(float32_t*)&tmp;
- } else {
- *pf = *(float32_t*)&tmp;
- }
- }
- static int16_t quant_pred(float32_t x)
- {
- int16_t q;
- uint32_t *tmp = (uint32_t*)&x;
- q = (int16_t)(*tmp>>16);
- return q;
- }
- static float32_t inv_quant_pred(int16_t q)
- {
- float32_t x;
- uint32_t *tmp = (uint32_t*)&x;
- *tmp = ((uint32_t)q)<<16;
- return x;
- }
- static void ic_predict(pred_state *state, real_t input, real_t *output, uint8_t pred)
- {
- uint16_t tmp;
- int16_t i, j;
- real_t dr1, predictedvalue;
- real_t e0, e1;
- real_t k1, k2;
- real_t r[2];
- real_t COR[2];
- real_t VAR[2];
- r[0] = inv_quant_pred(state->r[0]);
- r[1] = inv_quant_pred(state->r[1]);
- COR[0] = inv_quant_pred(state->COR[0]);
- COR[1] = inv_quant_pred(state->COR[1]);
- VAR[0] = inv_quant_pred(state->VAR[0]);
- VAR[1] = inv_quant_pred(state->VAR[1]);
- #if 1
- tmp = state->VAR[0];
- j = (tmp >> 7);
- i = tmp & 0x7f;
- if (j >= 128)
- {
- j -= 128;
- k1 = COR[0] * exp_table[j] * mnt_table[i];
- } else {
- k1 = REAL_CONST(0);
- }
- #else
- {
- #define B 0.953125
- real_t c = COR[0];
- real_t v = VAR[0];
- real_t tmp;
- if (c == 0 || v <= 1)
- {
- k1 = 0;
- } else {
- tmp = B / v;
- flt_round(&tmp);
- k1 = c * tmp;
- }
- }
- #endif
- if (pred)
- {
- #if 1
- tmp = state->VAR[1];
- j = (tmp >> 7);
- i = tmp & 0x7f;
- if (j >= 128)
- {
- j -= 128;
- k2 = COR[1] * exp_table[j] * mnt_table[i];
- } else {
- k2 = REAL_CONST(0);
- }
- #else
- #define B 0.953125
- real_t c = COR[1];
- real_t v = VAR[1];
- real_t tmp;
- if (c == 0 || v <= 1)
- {
- k2 = 0;
- } else {
- tmp = B / v;
- flt_round(&tmp);
- k2 = c * tmp;
- }
- #endif
- predictedvalue = k1*r[0] + k2*r[1];
- flt_round(&predictedvalue);
- *output = input + predictedvalue;
- }
- /* calculate new state data */
- e0 = *output;
- e1 = e0 - k1*r[0];
- dr1 = k1*e0;
- VAR[0] = ALPHA*VAR[0] + 0.5f * (r[0]*r[0] + e0*e0);
- COR[0] = ALPHA*COR[0] + r[0]*e0;
- VAR[1] = ALPHA*VAR[1] + 0.5f * (r[1]*r[1] + e1*e1);
- COR[1] = ALPHA*COR[1] + r[1]*e1;
- r[1] = A * (r[0]-dr1);
- r[0] = A * e0;
- state->r[0] = quant_pred(r[0]);
- state->r[1] = quant_pred(r[1]);
- state->COR[0] = quant_pred(COR[0]);
- state->COR[1] = quant_pred(COR[1]);
- state->VAR[0] = quant_pred(VAR[0]);
- state->VAR[1] = quant_pred(VAR[1]);
- }
- static void reset_pred_state(pred_state *state)
- {
- state->r[0] = 0;
- state->r[1] = 0;
- state->COR[0] = 0;
- state->COR[1] = 0;
- state->VAR[0] = 0x3F80;
- state->VAR[1] = 0x3F80;
- }
- void pns_reset_pred_state(ic_stream *ics, pred_state *state)
- {
- uint8_t sfb, g, b;
- uint16_t i, offs, offs2;
- /* prediction only for long blocks */
- if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
- return;
- for (g = 0; g < ics->num_window_groups; g++)
- {
- for (b = 0; b < ics->window_group_length[g]; b++)
- {
- for (sfb = 0; sfb < ics->max_sfb; sfb++)
- {
- if (is_noise(ics, g, sfb))
- {
- offs = ics->swb_offset[sfb];
- offs2 = ics->swb_offset[sfb+1];
- for (i = offs; i < offs2; i++)
- reset_pred_state(&state[i]);
- }
- }
- }
- }
- }
- void reset_all_predictors(pred_state *state, uint16_t frame_len)
- {
- uint16_t i;
- for (i = 0; i < frame_len; i++)
- reset_pred_state(&state[i]);
- }
- /* intra channel prediction */
- void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
- uint16_t frame_len, uint8_t sf_index)
- {
- uint8_t sfb;
- uint16_t bin;
- if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
- {
- reset_all_predictors(state, frame_len);
- } else {
- for (sfb = 0; sfb < max_pred_sfb(sf_index); sfb++)
- {
- uint16_t low = ics->swb_offset[sfb];
- uint16_t high = ics->swb_offset[sfb+1];
- for (bin = low; bin < high; bin++)
- {
- ic_predict(&state[bin], spec[bin], &spec[bin],
- (ics->predictor_data_present && ics->pred.prediction_used[sfb]));
- }
- }
- if (ics->predictor_data_present)
- {
- if (ics->pred.predictor_reset)
- {
- for (bin = ics->pred.predictor_reset_group_number - 1;
- bin < frame_len; bin += 30)
- {
- reset_pred_state(&state[bin]);
- }
- }
- }
- }
- }
- #endif