cfft.c
上传用户:xjjlds
上传日期:2015-12-05
资源大小:22823k
文件大小:35k
- /*
- ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
- ** Copyright (C) 2003-2005 M. Bakker, Ahead Software AG, http://www.nero.com
- **
- ** This program is free software; you can redistribute it and/or modify
- ** it under the terms of the GNU General Public License as published by
- ** the Free Software Foundation; either version 2 of the License, or
- ** (at your option) any later version.
- **
- ** This program is distributed in the hope that it will be useful,
- ** but WITHOUT ANY WARRANTY; without even the implied warranty of
- ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ** GNU General Public License for more details.
- **
- ** You should have received a copy of the GNU General Public License
- ** along with this program; if not, write to the Free Software
- ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- **
- ** Any non-GPL usage of this software or parts of this software is strictly
- ** forbidden.
- **
- ** Software using this code must display the following message visibly in the
- ** software:
- ** "FAAD2 AAC/HE-AAC/HE-AACv2/DRM decoder (c) Ahead Software, www.nero.com"
- ** in, for example, the about-box or help/startup screen.
- **
- ** Commercial non-GPL licensing of this software is possible.
- ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
- **
- ** $Id: cfft.c,v 1.2 2005/11/01 21:41:43 gabest Exp $
- **/
- /*
- * Algorithmically based on Fortran-77 FFTPACK
- * by Paul N. Swarztrauber(Version 4, 1985).
- *
- * Does even sized fft only
- */
- /* isign is +1 for backward and -1 for forward transforms */
- #include "common.h"
- #include "structs.h"
- #include <stdlib.h>
- #include "cfft.h"
- #include "cfft_tab.h"
- /* static function declarations */
- static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa);
- static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa);
- static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign);
- static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
- const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
- static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
- const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
- static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
- const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
- const complex_t *wa4, const int8_t isign);
- INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch,
- const uint16_t *ifac, const complex_t *wa, const int8_t isign);
- static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac);
- /*----------------------------------------------------------------------
- passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd.
- ----------------------------------------------------------------------*/
- static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa)
- {
- uint16_t i, k, ah, ac;
- if (ido == 1)
- {
- for (k = 0; k < l1; k++)
- {
- ah = 2*k;
- ac = 4*k;
- RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
- RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
- IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
- IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
- }
- } else {
- for (k = 0; k < l1; k++)
- {
- ah = k*ido;
- ac = 2*k*ido;
- for (i = 0; i < ido; i++)
- {
- complex_t t2;
- RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
- RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]);
- IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
- IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]);
- #if 1
- ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
- IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
- #else
- ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
- RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
- #endif
- }
- }
- }
- }
- static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa)
- {
- uint16_t i, k, ah, ac;
- if (ido == 1)
- {
- for (k = 0; k < l1; k++)
- {
- ah = 2*k;
- ac = 4*k;
- RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
- RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
- IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
- IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
- }
- } else {
- for (k = 0; k < l1; k++)
- {
- ah = k*ido;
- ac = 2*k*ido;
- for (i = 0; i < ido; i++)
- {
- complex_t t2;
- RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
- RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]);
- IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
- IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]);
- #if 1
- ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
- RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
- #else
- ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
- IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
- #endif
- }
- }
- }
- }
- static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa1, const complex_t *wa2,
- const int8_t isign)
- {
- static real_t taur = FRAC_CONST(-0.5);
- static real_t taui = FRAC_CONST(0.866025403784439);
- uint16_t i, k, ac, ah;
- complex_t c2, c3, d2, d3, t2;
- if (ido == 1)
- {
- if (isign == 1)
- {
- for (k = 0; k < l1; k++)
- {
- ac = 3*k+1;
- ah = k;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
- RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
- IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);
- RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
- IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);
- RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
- IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);
- RE(ch[ah+l1]) = RE(c2) - IM(c3);
- IM(ch[ah+l1]) = IM(c2) + RE(c3);
- RE(ch[ah+2*l1]) = RE(c2) + IM(c3);
- IM(ch[ah+2*l1]) = IM(c2) - RE(c3);
- }
- } else {
- for (k = 0; k < l1; k++)
- {
- ac = 3*k+1;
- ah = k;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
- RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
- IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);
- RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
- IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);
- RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
- IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);
- RE(ch[ah+l1]) = RE(c2) + IM(c3);
- IM(ch[ah+l1]) = IM(c2) - RE(c3);
- RE(ch[ah+2*l1]) = RE(c2) - IM(c3);
- IM(ch[ah+2*l1]) = IM(c2) + RE(c3);
- }
- }
- } else {
- if (isign == 1)
- {
- for (k = 0; k < l1; k++)
- {
- for (i = 0; i < ido; i++)
- {
- ac = i + (3*k+1)*ido;
- ah = i + k * ido;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
- RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
- IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);
- RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
- IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);
- RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
- IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);
- RE(d2) = RE(c2) - IM(c3);
- IM(d3) = IM(c2) - RE(c3);
- RE(d3) = RE(c2) + IM(c3);
- IM(d2) = IM(c2) + RE(c3);
- #if 1
- ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
- IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
- IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
- #else
- ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
- RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
- RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
- #endif
- }
- }
- } else {
- for (k = 0; k < l1; k++)
- {
- for (i = 0; i < ido; i++)
- {
- ac = i + (3*k+1)*ido;
- ah = i + k * ido;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
- RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
- IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);
- RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
- IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);
- RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
- IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);
- RE(d2) = RE(c2) + IM(c3);
- IM(d3) = IM(c2) + RE(c3);
- RE(d3) = RE(c2) - IM(c3);
- IM(d2) = IM(c2) - RE(c3);
- #if 1
- ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
- RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
- RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
- #else
- ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
- IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
- IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
- #endif
- }
- }
- }
- }
- }
- static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa1, const complex_t *wa2,
- const complex_t *wa3)
- {
- uint16_t i, k, ac, ah;
- if (ido == 1)
- {
- for (k = 0; k < l1; k++)
- {
- complex_t t1, t2, t3, t4;
- ac = 4*k;
- ah = k;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+2]);
- RE(t1) = RE(cc[ac]) - RE(cc[ac+2]);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+2]);
- IM(t1) = IM(cc[ac]) - IM(cc[ac+2]);
- RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
- IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
- IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
- RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);
- RE(ch[ah]) = RE(t2) + RE(t3);
- RE(ch[ah+2*l1]) = RE(t2) - RE(t3);
- IM(ch[ah]) = IM(t2) + IM(t3);
- IM(ch[ah+2*l1]) = IM(t2) - IM(t3);
- RE(ch[ah+l1]) = RE(t1) + RE(t4);
- RE(ch[ah+3*l1]) = RE(t1) - RE(t4);
- IM(ch[ah+l1]) = IM(t1) + IM(t4);
- IM(ch[ah+3*l1]) = IM(t1) - IM(t4);
- }
- } else {
- for (k = 0; k < l1; k++)
- {
- ac = 4*k*ido;
- ah = k*ido;
- for (i = 0; i < ido; i++)
- {
- complex_t c2, c3, c4, t1, t2, t3, t4;
- RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
- RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
- IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
- IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
- RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
- IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
- IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
- RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);
- RE(c2) = RE(t1) + RE(t4);
- RE(c4) = RE(t1) - RE(t4);
- IM(c2) = IM(t1) + IM(t4);
- IM(c4) = IM(t1) - IM(t4);
- RE(ch[ah+i]) = RE(t2) + RE(t3);
- RE(c3) = RE(t2) - RE(t3);
- IM(ch[ah+i]) = IM(t2) + IM(t3);
- IM(c3) = IM(t2) - IM(t3);
- #if 1
- ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
- IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
- IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
- ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
- IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
- #else
- ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
- RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
- RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
- ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
- RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
- #endif
- }
- }
- }
- }
- static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa1, const complex_t *wa2,
- const complex_t *wa3)
- {
- uint16_t i, k, ac, ah;
- if (ido == 1)
- {
- for (k = 0; k < l1; k++)
- {
- complex_t t1, t2, t3, t4;
- ac = 4*k;
- ah = k;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+2]);
- RE(t1) = RE(cc[ac]) - RE(cc[ac+2]);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+2]);
- IM(t1) = IM(cc[ac]) - IM(cc[ac+2]);
- RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
- IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
- IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
- RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);
- RE(ch[ah]) = RE(t2) + RE(t3);
- RE(ch[ah+2*l1]) = RE(t2) - RE(t3);
- IM(ch[ah]) = IM(t2) + IM(t3);
- IM(ch[ah+2*l1]) = IM(t2) - IM(t3);
- RE(ch[ah+l1]) = RE(t1) - RE(t4);
- RE(ch[ah+3*l1]) = RE(t1) + RE(t4);
- IM(ch[ah+l1]) = IM(t1) - IM(t4);
- IM(ch[ah+3*l1]) = IM(t1) + IM(t4);
- }
- } else {
- for (k = 0; k < l1; k++)
- {
- ac = 4*k*ido;
- ah = k*ido;
- for (i = 0; i < ido; i++)
- {
- complex_t c2, c3, c4, t1, t2, t3, t4;
- RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
- RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
- IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
- IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
- RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
- IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
- IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
- RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);
- RE(c2) = RE(t1) - RE(t4);
- RE(c4) = RE(t1) + RE(t4);
- IM(c2) = IM(t1) - IM(t4);
- IM(c4) = IM(t1) + IM(t4);
- RE(ch[ah+i]) = RE(t2) + RE(t3);
- RE(c3) = RE(t2) - RE(t3);
- IM(ch[ah+i]) = IM(t2) + IM(t3);
- IM(c3) = IM(t2) - IM(t3);
- #if 1
- ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
- RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
- RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
- ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
- RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
- #else
- ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
- IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
- IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
- ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
- IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
- #endif
- }
- }
- }
- }
- static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc,
- complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
- const complex_t *wa4, const int8_t isign)
- {
- static real_t tr11 = FRAC_CONST(0.309016994374947);
- static real_t ti11 = FRAC_CONST(0.951056516295154);
- static real_t tr12 = FRAC_CONST(-0.809016994374947);
- static real_t ti12 = FRAC_CONST(0.587785252292473);
- uint16_t i, k, ac, ah;
- complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5;
- if (ido == 1)
- {
- if (isign == 1)
- {
- for (k = 0; k < l1; k++)
- {
- ac = 5*k + 1;
- ah = k;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
- RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
- IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
- RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
- IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
- RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
- IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);
- RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
- IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);
- RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
- IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
- RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
- IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
- ComplexMult(&RE(c5), &RE(c4),
- ti11, ti12, RE(t5), RE(t4));
- ComplexMult(&IM(c5), &IM(c4),
- ti11, ti12, IM(t5), IM(t4));
- RE(ch[ah+l1]) = RE(c2) - IM(c5);
- IM(ch[ah+l1]) = IM(c2) + RE(c5);
- RE(ch[ah+2*l1]) = RE(c3) - IM(c4);
- IM(ch[ah+2*l1]) = IM(c3) + RE(c4);
- RE(ch[ah+3*l1]) = RE(c3) + IM(c4);
- IM(ch[ah+3*l1]) = IM(c3) - RE(c4);
- RE(ch[ah+4*l1]) = RE(c2) + IM(c5);
- IM(ch[ah+4*l1]) = IM(c2) - RE(c5);
- }
- } else {
- for (k = 0; k < l1; k++)
- {
- ac = 5*k + 1;
- ah = k;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
- RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
- IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
- RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
- IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
- RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
- IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);
- RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
- IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);
- RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
- IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
- RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
- IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
- ComplexMult(&RE(c4), &RE(c5),
- ti12, ti11, RE(t5), RE(t4));
- ComplexMult(&IM(c4), &IM(c5),
- ti12, ti12, IM(t5), IM(t4));
- RE(ch[ah+l1]) = RE(c2) + IM(c5);
- IM(ch[ah+l1]) = IM(c2) - RE(c5);
- RE(ch[ah+2*l1]) = RE(c3) + IM(c4);
- IM(ch[ah+2*l1]) = IM(c3) - RE(c4);
- RE(ch[ah+3*l1]) = RE(c3) - IM(c4);
- IM(ch[ah+3*l1]) = IM(c3) + RE(c4);
- RE(ch[ah+4*l1]) = RE(c2) - IM(c5);
- IM(ch[ah+4*l1]) = IM(c2) + RE(c5);
- }
- }
- } else {
- if (isign == 1)
- {
- for (k = 0; k < l1; k++)
- {
- for (i = 0; i < ido; i++)
- {
- ac = i + (k*5 + 1) * ido;
- ah = i + k * ido;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
- RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
- IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
- RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
- IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
- RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
- IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);
- RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
- IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);
- RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
- IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
- RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
- IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
- ComplexMult(&RE(c5), &RE(c4),
- ti11, ti12, RE(t5), RE(t4));
- ComplexMult(&IM(c5), &IM(c4),
- ti11, ti12, IM(t5), IM(t4));
- IM(d2) = IM(c2) + RE(c5);
- IM(d3) = IM(c3) + RE(c4);
- RE(d4) = RE(c3) + IM(c4);
- RE(d5) = RE(c2) + IM(c5);
- RE(d2) = RE(c2) - IM(c5);
- IM(d5) = IM(c2) - RE(c5);
- RE(d3) = RE(c3) - IM(c4);
- IM(d4) = IM(c3) - RE(c4);
- #if 1
- ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
- IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
- IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
- ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
- IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
- ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
- IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
- #else
- ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
- RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
- RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
- ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
- RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
- ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
- RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
- #endif
- }
- }
- } else {
- for (k = 0; k < l1; k++)
- {
- for (i = 0; i < ido; i++)
- {
- ac = i + (k*5 + 1) * ido;
- ah = i + k * ido;
- RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
- IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
- RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
- IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
- RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
- IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
- RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
- IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);
- RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
- IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);
- RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
- IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
- RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
- IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
- ComplexMult(&RE(c4), &RE(c5),
- ti12, ti11, RE(t5), RE(t4));
- ComplexMult(&IM(c4), &IM(c5),
- ti12, ti12, IM(t5), IM(t4));
- IM(d2) = IM(c2) - RE(c5);
- IM(d3) = IM(c3) - RE(c4);
- RE(d4) = RE(c3) - IM(c4);
- RE(d5) = RE(c2) - IM(c5);
- RE(d2) = RE(c2) + IM(c5);
- IM(d5) = IM(c2) + RE(c5);
- RE(d3) = RE(c3) + IM(c4);
- IM(d4) = IM(c3) + RE(c4);
- #if 1
- ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
- RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
- RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
- ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
- RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
- ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
- RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
- #else
- ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
- IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
- ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
- IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
- ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
- IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
- ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
- IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
- #endif
- }
- }
- }
- }
- }
- /*----------------------------------------------------------------------
- cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs.
- ----------------------------------------------------------------------*/
- static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch,
- const uint16_t *ifac, const complex_t *wa,
- const int8_t isign)
- {
- uint16_t i;
- uint16_t k1, l1, l2;
- uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
- nf = ifac[1];
- na = 0;
- l1 = 1;
- iw = 0;
- for (k1 = 2; k1 <= nf+1; k1++)
- {
- ip = ifac[k1];
- l2 = ip*l1;
- ido = n / l2;
- idl1 = ido*l1;
- switch (ip)
- {
- case 4:
- ix2 = iw + ido;
- ix3 = ix2 + ido;
- if (na == 0)
- passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
- else
- passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
- na = 1 - na;
- break;
- case 2:
- if (na == 0)
- passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
- else
- passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
- na = 1 - na;
- break;
- case 3:
- ix2 = iw + ido;
- if (na == 0)
- passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
- else
- passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
- na = 1 - na;
- break;
- case 5:
- ix2 = iw + ido;
- ix3 = ix2 + ido;
- ix4 = ix3 + ido;
- if (na == 0)
- passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
- else
- passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
- na = 1 - na;
- break;
- }
- l1 = l2;
- iw += (ip-1) * ido;
- }
- if (na == 0)
- return;
- for (i = 0; i < n; i++)
- {
- RE(c[i]) = RE(ch[i]);
- IM(c[i]) = IM(ch[i]);
- }
- }
- static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch,
- const uint16_t *ifac, const complex_t *wa,
- const int8_t isign)
- {
- uint16_t i;
- uint16_t k1, l1, l2;
- uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
- nf = ifac[1];
- na = 0;
- l1 = 1;
- iw = 0;
- for (k1 = 2; k1 <= nf+1; k1++)
- {
- ip = ifac[k1];
- l2 = ip*l1;
- ido = n / l2;
- idl1 = ido*l1;
- switch (ip)
- {
- case 4:
- ix2 = iw + ido;
- ix3 = ix2 + ido;
- if (na == 0)
- passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
- else
- passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
- na = 1 - na;
- break;
- case 2:
- if (na == 0)
- passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
- else
- passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
- na = 1 - na;
- break;
- case 3:
- ix2 = iw + ido;
- if (na == 0)
- passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
- else
- passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
- na = 1 - na;
- break;
- case 5:
- ix2 = iw + ido;
- ix3 = ix2 + ido;
- ix4 = ix3 + ido;
- if (na == 0)
- passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
- else
- passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
- na = 1 - na;
- break;
- }
- l1 = l2;
- iw += (ip-1) * ido;
- }
- if (na == 0)
- return;
- for (i = 0; i < n; i++)
- {
- RE(c[i]) = RE(ch[i]);
- IM(c[i]) = IM(ch[i]);
- }
- }
- void cfftf(cfft_info *cfft, complex_t *c)
- {
- cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1);
- }
- void cfftb(cfft_info *cfft, complex_t *c)
- {
- cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1);
- }
- static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac)
- {
- static uint16_t ntryh[4] = {3, 4, 2, 5};
- #ifndef FIXED_POINT
- real_t arg, argh, argld, fi;
- uint16_t ido, ipm;
- uint16_t i1, k1, l1, l2;
- uint16_t ld, ii, ip;
- #endif
- uint16_t ntry = 0, i, j;
- uint16_t ib;
- uint16_t nf, nl, nq, nr;
- nl = n;
- nf = 0;
- j = 0;
- startloop:
- j++;
- if (j <= 4)
- ntry = ntryh[j-1];
- else
- ntry += 2;
- do
- {
- nq = nl / ntry;
- nr = nl - ntry*nq;
- if (nr != 0)
- goto startloop;
- nf++;
- ifac[nf+1] = ntry;
- nl = nq;
- if (ntry == 2 && nf != 1)
- {
- for (i = 2; i <= nf; i++)
- {
- ib = nf - i + 2;
- ifac[ib+1] = ifac[ib];
- }
- ifac[2] = 2;
- }
- } while (nl != 1);
- ifac[0] = n;
- ifac[1] = nf;
- #ifndef FIXED_POINT
- argh = (real_t)2.0*(real_t)M_PI / (real_t)n;
- i = 0;
- l1 = 1;
- for (k1 = 1; k1 <= nf; k1++)
- {
- ip = ifac[k1+1];
- ld = 0;
- l2 = l1*ip;
- ido = n / l2;
- ipm = ip - 1;
- for (j = 0; j < ipm; j++)
- {
- i1 = i;
- RE(wa[i]) = 1.0;
- IM(wa[i]) = 0.0;
- ld += l1;
- fi = 0;
- argld = ld*argh;
- for (ii = 0; ii < ido; ii++)
- {
- i++;
- fi++;
- arg = fi * argld;
- RE(wa[i]) = (real_t)cos(arg);
- #if 1
- IM(wa[i]) = (real_t)sin(arg);
- #else
- IM(wa[i]) = (real_t)-sin(arg);
- #endif
- }
- if (ip > 5)
- {
- RE(wa[i1]) = RE(wa[i]);
- IM(wa[i1]) = IM(wa[i]);
- }
- }
- l1 = l2;
- }
- #endif
- }
- cfft_info *cffti(uint16_t n)
- {
- cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info));
- cfft->n = n;
- cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t));
- #ifndef FIXED_POINT
- cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t));
- cffti1(n, cfft->tab, cfft->ifac);
- #else
- cffti1(n, NULL, cfft->ifac);
- switch (n)
- {
- case 64: cfft->tab = (complex_t*)cfft_tab_64; break;
- case 512: cfft->tab = (complex_t*)cfft_tab_512; break;
- #ifdef LD_DEC
- case 256: cfft->tab = (complex_t*)cfft_tab_256; break;
- #endif
- #ifdef ALLOW_SMALL_FRAMELENGTH
- case 60: cfft->tab = (complex_t*)cfft_tab_60; break;
- case 480: cfft->tab = (complex_t*)cfft_tab_480; break;
- #ifdef LD_DEC
- case 240: cfft->tab = (complex_t*)cfft_tab_240; break;
- #endif
- #endif
- case 128: cfft->tab = (complex_t*)cfft_tab_128; break;
- }
- #endif
- return cfft;
- }
- void cfftu(cfft_info *cfft)
- {
- if (cfft->work) faad_free(cfft->work);
- #ifndef FIXED_POINT
- if (cfft->tab) faad_free(cfft->tab);
- #endif
- if (cfft) faad_free(cfft);
- }