ps_dec.c
上传用户:xjjlds
上传日期:2015-12-05
资源大小:22823k
文件大小:71k
- /*
- ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
- ** Copyright (C) 2003-2005 M. Bakker, Ahead Software AG, http://www.nero.com
- **
- ** This program is free software; you can redistribute it and/or modify
- ** it under the terms of the GNU General Public License as published by
- ** the Free Software Foundation; either version 2 of the License, or
- ** (at your option) any later version.
- **
- ** This program is distributed in the hope that it will be useful,
- ** but WITHOUT ANY WARRANTY; without even the implied warranty of
- ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ** GNU General Public License for more details.
- **
- ** You should have received a copy of the GNU General Public License
- ** along with this program; if not, write to the Free Software
- ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- **
- ** Any non-GPL usage of this software or parts of this software is strictly
- ** forbidden.
- **
- ** Software using this code must display the following message visibly in the
- ** software:
- ** "FAAD2 AAC/HE-AAC/HE-AACv2/DRM decoder (c) Ahead Software, www.nero.com"
- ** in, for example, the about-box or help/startup screen.
- **
- ** Commercial non-GPL licensing of this software is possible.
- ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
- **
- ** $Id: ps_dec.c,v 1.3 2005/11/01 21:41:43 gabest Exp $
- **/
- #include "common.h"
- #ifdef PS_DEC
- #include <stdlib.h>
- #include "ps_dec.h"
- #include "ps_tables.h"
- /* constants */
- #define NEGATE_IPD_MASK (0x1000)
- #define DECAY_SLOPE FRAC_CONST(0.05)
- #define COEF_SQRT2 COEF_CONST(1.4142135623731)
- /* tables */
- /* filters are mirrored in coef 6, second half left out */
- static const real_t p8_13_20[7] =
- {
- FRAC_CONST(0.00746082949812),
- FRAC_CONST(0.02270420949825),
- FRAC_CONST(0.04546865930473),
- FRAC_CONST(0.07266113929591),
- FRAC_CONST(0.09885108575264),
- FRAC_CONST(0.11793710567217),
- FRAC_CONST(0.125)
- };
- static const real_t p2_13_20[7] =
- {
- FRAC_CONST(0.0),
- FRAC_CONST(0.01899487526049),
- FRAC_CONST(0.0),
- FRAC_CONST(-0.07293139167538),
- FRAC_CONST(0.0),
- FRAC_CONST(0.30596630545168),
- FRAC_CONST(0.5)
- };
- static const real_t p12_13_34[7] =
- {
- FRAC_CONST(0.04081179924692),
- FRAC_CONST(0.03812810994926),
- FRAC_CONST(0.05144908135699),
- FRAC_CONST(0.06399831151592),
- FRAC_CONST(0.07428313801106),
- FRAC_CONST(0.08100347892914),
- FRAC_CONST(0.08333333333333)
- };
- static const real_t p8_13_34[7] =
- {
- FRAC_CONST(0.01565675600122),
- FRAC_CONST(0.03752716391991),
- FRAC_CONST(0.05417891378782),
- FRAC_CONST(0.08417044116767),
- FRAC_CONST(0.10307344158036),
- FRAC_CONST(0.12222452249753),
- FRAC_CONST(0.125)
- };
- static const real_t p4_13_34[7] =
- {
- FRAC_CONST(-0.05908211155639),
- FRAC_CONST(-0.04871498374946),
- FRAC_CONST(0.0),
- FRAC_CONST(0.07778723915851),
- FRAC_CONST(0.16486303567403),
- FRAC_CONST(0.23279856662996),
- FRAC_CONST(0.25)
- };
- #ifdef PARAM_32KHZ
- static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
- { 1, 2, 3 } /* d_24kHz */,
- { 3, 4, 5 } /* d_48kHz */
- };
- #else
- static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
- 3, 4, 5 /* d_48kHz */
- };
- #endif
- static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
- FRAC_CONST(0.65143905753106),
- FRAC_CONST(0.56471812200776),
- FRAC_CONST(0.48954165955695)
- };
- static const uint8_t group_border20[10+12 + 1] =
- {
- 6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
- 9, 8, /* 2 subqmf subbands */
- 10, 11, /* 2 subqmf subbands */
- 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
- };
- static const uint8_t group_border34[32+18 + 1] =
- {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, /* 12 subqmf subbands */
- 12, 13, 14, 15, 16, 17, 18, 19, /* 8 subqmf subbands */
- 20, 21, 22, 23, /* 4 subqmf subbands */
- 24, 25, 26, 27, /* 4 subqmf subbands */
- 28, 29, 30, 31, /* 4 subqmf subbands */
- 32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
- };
- static const uint16_t map_group2bk20[10+12] =
- {
- (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- };
- static const uint16_t map_group2bk34[32+18] =
- {
- 0, 1, 2, 3, 4, 5, 6, 6, 7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
- 10, 10, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 9,
- 14, 11, 12, 13,
- 14, 15, 16, 13,
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
- };
- /* type definitions */
- typedef struct
- {
- uint8_t frame_len;
- uint8_t resolution20[3];
- uint8_t resolution34[5];
- qmf_t *work;
- qmf_t **buffer;
- qmf_t **temp;
- } hyb_info;
- /* static function declarations */
- static void ps_data_decode(ps_info *ps);
- static hyb_info *hybrid_init();
- static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
- qmf_t *buffer, qmf_t **X_hybrid);
- static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
- static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
- qmf_t *buffer, qmf_t **X_hybrid);
- static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
- uint8_t use34);
- static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
- uint8_t use34);
- static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
- static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
- uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
- int8_t min_index, int8_t max_index);
- static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
- uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
- int8_t and_modulo);
- static void map20indexto34(int8_t *index, uint8_t bins);
- #ifdef PS_LOW_POWER
- static void map34indexto20(int8_t *index, uint8_t bins);
- #endif
- static void ps_data_decode(ps_info *ps);
- static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
- qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
- static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
- qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
- /* */
- static hyb_info *hybrid_init()
- {
- uint8_t i;
- hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
- hyb->resolution34[0] = 12;
- hyb->resolution34[1] = 8;
- hyb->resolution34[2] = 4;
- hyb->resolution34[3] = 4;
- hyb->resolution34[4] = 4;
- hyb->resolution20[0] = 8;
- hyb->resolution20[1] = 2;
- hyb->resolution20[2] = 2;
- hyb->frame_len = 32;
- hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
- memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
- hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
- for (i = 0; i < 5; i++)
- {
- hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
- memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
- }
- hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
- for (i = 0; i < hyb->frame_len; i++)
- {
- hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
- }
- return hyb;
- }
- static void hybrid_free(hyb_info *hyb)
- {
- uint8_t i;
- if (hyb->work)
- faad_free(hyb->work);
- for (i = 0; i < 5; i++)
- {
- if (hyb->buffer[i])
- faad_free(hyb->buffer[i]);
- }
- if (hyb->buffer)
- faad_free(hyb->buffer);
- for (i = 0; i < hyb->frame_len; i++)
- {
- if (hyb->temp[i])
- faad_free(hyb->temp[i]);
- }
- if (hyb->temp)
- faad_free(hyb->temp);
- }
- /* real filter, size 2 */
- static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
- qmf_t *buffer, qmf_t **X_hybrid)
- {
- uint8_t i;
- for (i = 0; i < frame_len; i++)
- {
- real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
- real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
- real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
- real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
- real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
- real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
- real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
- real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
- real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
- real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
- real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
- real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
- real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
- real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
- /* q = 0 */
- QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
- QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
- /* q = 1 */
- QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
- QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
- }
- }
- /* complex filter, size 4 */
- static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
- qmf_t *buffer, qmf_t **X_hybrid)
- {
- uint8_t i;
- real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
- for (i = 0; i < frame_len; i++)
- {
- input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
- MUL_F(filter[6], QMF_RE(buffer[i+6]));
- input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
- (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
- MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
- MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
- input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
- MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
- input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
- (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
- MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
- MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
- input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
- MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
- input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
- (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
- MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
- MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
- input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
- MUL_F(filter[6], QMF_IM(buffer[i+6]));
- input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
- (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
- MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
- MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
- /* q == 0 */
- QMF_RE(X_hybrid[i][0]) = input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
- QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
- /* q == 1 */
- QMF_RE(X_hybrid[i][1]) = input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
- QMF_IM(X_hybrid[i][1]) = input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
- /* q == 2 */
- QMF_RE(X_hybrid[i][2]) = input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
- QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
- /* q == 3 */
- QMF_RE(X_hybrid[i][3]) = input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
- QMF_IM(X_hybrid[i][3]) = input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
- }
- }
- static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
- {
- real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
- f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
- f1 = x[0] - f0;
- f2 = x[0] + f0;
- f3 = x[1] + x[3];
- f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
- f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
- f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
- f7 = f4 + f5;
- f8 = f6 - f5;
- y[3] = f2 - f8;
- y[0] = f2 + f8;
- y[2] = f1 - f7;
- y[1] = f1 + f7;
- }
- /* complex filter, size 8 */
- static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
- qmf_t *buffer, qmf_t **X_hybrid)
- {
- uint8_t i, n;
- real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
- real_t x[4];
- for (i = 0; i < frame_len; i++)
- {
- input_re1[0] = MUL_F(filter[6],QMF_RE(buffer[6+i]));
- input_re1[1] = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
- input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
- input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
- input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
- input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
- input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
- input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
- for (n = 0; n < 4; n++)
- {
- x[n] = input_re1[n] - input_im1[3-n];
- }
- DCT3_4_unscaled(x, x);
- QMF_RE(X_hybrid[i][7]) = x[0];
- QMF_RE(X_hybrid[i][5]) = x[2];
- QMF_RE(X_hybrid[i][3]) = x[3];
- QMF_RE(X_hybrid[i][1]) = x[1];
- for (n = 0; n < 4; n++)
- {
- x[n] = input_re1[n] + input_im1[3-n];
- }
- DCT3_4_unscaled(x, x);
- QMF_RE(X_hybrid[i][6]) = x[1];
- QMF_RE(X_hybrid[i][4]) = x[3];
- QMF_RE(X_hybrid[i][2]) = x[2];
- QMF_RE(X_hybrid[i][0]) = x[0];
- input_im2[0] = MUL_F(filter[6],QMF_IM(buffer[6+i]));
- input_im2[1] = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
- input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
- input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
- input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
- input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
- input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
- input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
- for (n = 0; n < 4; n++)
- {
- x[n] = input_im2[n] + input_re2[3-n];
- }
- DCT3_4_unscaled(x, x);
- QMF_IM(X_hybrid[i][7]) = x[0];
- QMF_IM(X_hybrid[i][5]) = x[2];
- QMF_IM(X_hybrid[i][3]) = x[3];
- QMF_IM(X_hybrid[i][1]) = x[1];
- for (n = 0; n < 4; n++)
- {
- x[n] = input_im2[n] - input_re2[3-n];
- }
- DCT3_4_unscaled(x, x);
- QMF_IM(X_hybrid[i][6]) = x[1];
- QMF_IM(X_hybrid[i][4]) = x[3];
- QMF_IM(X_hybrid[i][2]) = x[2];
- QMF_IM(X_hybrid[i][0]) = x[0];
- }
- }
- static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
- {
- real_t f0, f1, f2, f3, f4, f5, f6, f7;
- f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
- f1 = x[0] + f0;
- f2 = x[0] - f0;
- f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
- f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
- f5 = f4 - x[4];
- f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
- f7 = f6 - f3;
- y[0] = f1 + f6 + f4;
- y[1] = f2 + f3 - x[4];
- y[2] = f7 + f2 - f5;
- y[3] = f1 - f7 - f5;
- y[4] = f1 - f3 - x[4];
- y[5] = f2 - f6 + f4;
- }
- /* complex filter, size 12 */
- static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
- qmf_t *buffer, qmf_t **X_hybrid)
- {
- uint8_t i, n;
- real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
- real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
- for (i = 0; i < frame_len; i++)
- {
- for (n = 0; n < 6; n++)
- {
- if (n == 0)
- {
- input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
- input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
- } else {
- input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
- input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
- }
- input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
- input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
- }
- DCT3_6_unscaled(out_re1, input_re1);
- DCT3_6_unscaled(out_re2, input_re2);
- DCT3_6_unscaled(out_im1, input_im1);
- DCT3_6_unscaled(out_im2, input_im2);
- for (n = 0; n < 6; n += 2)
- {
- QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
- QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
- QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
- QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
- QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
- QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
- QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
- QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
- }
- }
- }
- /* Hybrid analysis: further split up QMF subbands
- * to improve frequency resolution
- */
- static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
- uint8_t use34)
- {
- uint8_t k, n, band;
- uint8_t offset = 0;
- uint8_t qmf_bands = (use34) ? 5 : 3;
- uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
- for (band = 0; band < qmf_bands; band++)
- {
- /* build working buffer */
- memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
- /* add new samples */
- for (n = 0; n < hyb->frame_len; n++)
- {
- QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
- QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
- }
- /* store samples */
- memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
- switch(resolution[band])
- {
- case 2:
- /* Type B real filter, Q[p] = 2 */
- channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
- break;
- case 4:
- /* Type A complex filter, Q[p] = 4 */
- channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
- break;
- case 8:
- /* Type A complex filter, Q[p] = 8 */
- channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
- hyb->work, hyb->temp);
- break;
- case 12:
- /* Type A complex filter, Q[p] = 12 */
- channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
- break;
- }
- for (n = 0; n < hyb->frame_len; n++)
- {
- for (k = 0; k < resolution[band]; k++)
- {
- QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
- QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
- }
- }
- offset += resolution[band];
- }
- /* group hybrid channels */
- if (!use34)
- {
- for (n = 0; n < 32 /*30?*/; n++)
- {
- QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
- QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
- QMF_RE(X_hybrid[n][4]) = 0;
- QMF_IM(X_hybrid[n][4]) = 0;
- QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
- QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
- QMF_RE(X_hybrid[n][5]) = 0;
- QMF_IM(X_hybrid[n][5]) = 0;
- }
- }
- }
- static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
- uint8_t use34)
- {
- uint8_t k, n, band;
- uint8_t offset = 0;
- uint8_t qmf_bands = (use34) ? 5 : 3;
- uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
- for(band = 0; band < qmf_bands; band++)
- {
- for (n = 0; n < hyb->frame_len; n++)
- {
- QMF_RE(X[n][band]) = 0;
- QMF_IM(X[n][band]) = 0;
- for (k = 0; k < resolution[band]; k++)
- {
- QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
- QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
- }
- }
- offset += resolution[band];
- }
- }
- /* limits the value i to the range [min,max] */
- static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
- {
- if (i < min)
- return min;
- else if (i > max)
- return max;
- else
- return i;
- }
- //int iid = 0;
- /* delta decode array */
- static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
- uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
- int8_t min_index, int8_t max_index)
- {
- int8_t i;
- if (enable == 1)
- {
- if (dt_flag == 0)
- {
- /* delta coded in frequency direction */
- index[0] = 0 + index[0];
- index[0] = delta_clip(index[0], min_index, max_index);
- for (i = 1; i < nr_par; i++)
- {
- index[i] = index[i-1] + index[i];
- index[i] = delta_clip(index[i], min_index, max_index);
- }
- } else {
- /* delta coded in time direction */
- for (i = 0; i < nr_par; i++)
- {
- //int8_t tmp2;
- //int8_t tmp = index[i];
- //printf("%d %dn", index_prev[i*stride], index[i]);
- //printf("%dn", index[i]);
- index[i] = index_prev[i*stride] + index[i];
- //tmp2 = index[i];
- index[i] = delta_clip(index[i], min_index, max_index);
- //if (iid)
- //{
- // if (index[i] == 7)
- // {
- // printf("%d %d %dn", index_prev[i*stride], tmp, tmp2);
- // }
- //}
- }
- }
- } else {
- /* set indices to zero */
- for (i = 0; i < nr_par; i++)
- {
- index[i] = 0;
- }
- }
- /* coarse */
- if (stride == 2)
- {
- for (i = (nr_par<<1)-1; i > 0; i--)
- {
- index[i] = index[i>>1];
- }
- }
- }
- /* delta modulo decode array */
- /* in: log2 value of the modulo value to allow using AND instead of MOD */
- static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
- uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
- int8_t and_modulo)
- {
- int8_t i;
- if (enable == 1)
- {
- if (dt_flag == 0)
- {
- /* delta coded in frequency direction */
- index[0] = 0 + index[0];
- index[0] &= and_modulo;
- for (i = 1; i < nr_par; i++)
- {
- index[i] = index[i-1] + index[i];
- index[i] &= and_modulo;
- }
- } else {
- /* delta coded in time direction */
- for (i = 0; i < nr_par; i++)
- {
- index[i] = index_prev[i*stride] + index[i];
- index[i] &= and_modulo;
- }
- }
- } else {
- /* set indices to zero */
- for (i = 0; i < nr_par; i++)
- {
- index[i] = 0;
- }
- }
- /* coarse */
- if (stride == 2)
- {
- index[0] = 0;
- for (i = (nr_par<<1)-1; i > 0; i--)
- {
- index[i] = index[i>>1];
- }
- }
- }
- #ifdef PS_LOW_POWER
- static void map34indexto20(int8_t *index, uint8_t bins)
- {
- index[0] = (2*index[0]+index[1])/3;
- index[1] = (index[1]+2*index[2])/3;
- index[2] = (2*index[3]+index[4])/3;
- index[3] = (index[4]+2*index[5])/3;
- index[4] = (index[6]+index[7])/2;
- index[5] = (index[8]+index[9])/2;
- index[6] = index[10];
- index[7] = index[11];
- index[8] = (index[12]+index[13])/2;
- index[9] = (index[14]+index[15])/2;
- index[10] = index[16];
- if (bins == 34)
- {
- index[11] = index[17];
- index[12] = index[18];
- index[13] = index[19];
- index[14] = (index[20]+index[21])/2;
- index[15] = (index[22]+index[23])/2;
- index[16] = (index[24]+index[25])/2;
- index[17] = (index[26]+index[27])/2;
- index[18] = (index[28]+index[29]+index[30]+index[31])/4;
- index[19] = (index[32]+index[33])/2;
- }
- }
- #endif
- static void map20indexto34(int8_t *index, uint8_t bins)
- {
- index[0] = index[0];
- index[1] = (index[0] + index[1])/2;
- index[2] = index[1];
- index[3] = index[2];
- index[4] = (index[2] + index[3])/2;
- index[5] = index[3];
- index[6] = index[4];
- index[7] = index[4];
- index[8] = index[5];
- index[9] = index[5];
- index[10] = index[6];
- index[11] = index[7];
- index[12] = index[8];
- index[13] = index[8];
- index[14] = index[9];
- index[15] = index[9];
- index[16] = index[10];
- if (bins == 34)
- {
- index[17] = index[11];
- index[18] = index[12];
- index[19] = index[13];
- index[20] = index[14];
- index[21] = index[14];
- index[22] = index[15];
- index[23] = index[15];
- index[24] = index[16];
- index[25] = index[16];
- index[26] = index[17];
- index[27] = index[17];
- index[28] = index[18];
- index[29] = index[18];
- index[30] = index[18];
- index[31] = index[18];
- index[32] = index[19];
- index[33] = index[19];
- }
- }
- /* parse the bitstream data decoded in ps_data() */
- static void ps_data_decode(ps_info *ps)
- {
- uint8_t env, bin;
- /* ps data not available, use data from previous frame */
- if (ps->ps_data_available == 0)
- {
- ps->num_env = 0;
- }
- for (env = 0; env < ps->num_env; env++)
- {
- int8_t *iid_index_prev;
- int8_t *icc_index_prev;
- int8_t *ipd_index_prev;
- int8_t *opd_index_prev;
- int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
- if (env == 0)
- {
- /* take last envelope from previous frame */
- iid_index_prev = ps->iid_index_prev;
- icc_index_prev = ps->icc_index_prev;
- ipd_index_prev = ps->ipd_index_prev;
- opd_index_prev = ps->opd_index_prev;
- } else {
- /* take index values from previous envelope */
- iid_index_prev = ps->iid_index[env - 1];
- icc_index_prev = ps->icc_index[env - 1];
- ipd_index_prev = ps->ipd_index[env - 1];
- opd_index_prev = ps->opd_index[env - 1];
- }
- // iid = 1;
- /* delta decode iid parameters */
- delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
- ps->iid_dt[env], ps->nr_iid_par,
- (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
- -num_iid_steps, num_iid_steps);
- // iid = 0;
- /* delta decode icc parameters */
- delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
- ps->icc_dt[env], ps->nr_icc_par,
- (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
- 0, 7);
- /* delta modulo decode ipd parameters */
- delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
- ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
- /* delta modulo decode opd parameters */
- delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
- ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
- }
- /* handle error case */
- if (ps->num_env == 0)
- {
- /* force to 1 */
- ps->num_env = 1;
- if (ps->enable_iid)
- {
- for (bin = 0; bin < 34; bin++)
- ps->iid_index[0][bin] = ps->iid_index_prev[bin];
- } else {
- for (bin = 0; bin < 34; bin++)
- ps->iid_index[0][bin] = 0;
- }
- if (ps->enable_icc)
- {
- for (bin = 0; bin < 34; bin++)
- ps->icc_index[0][bin] = ps->icc_index_prev[bin];
- } else {
- for (bin = 0; bin < 34; bin++)
- ps->icc_index[0][bin] = 0;
- }
- if (ps->enable_ipdopd)
- {
- for (bin = 0; bin < 17; bin++)
- {
- ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
- ps->opd_index[0][bin] = ps->opd_index_prev[bin];
- }
- } else {
- for (bin = 0; bin < 17; bin++)
- {
- ps->ipd_index[0][bin] = 0;
- ps->opd_index[0][bin] = 0;
- }
- }
- }
- /* update previous indices */
- for (bin = 0; bin < 34; bin++)
- ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
- for (bin = 0; bin < 34; bin++)
- ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
- for (bin = 0; bin < 17; bin++)
- {
- ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
- ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
- }
- ps->ps_data_available = 0;
- if (ps->frame_class == 0)
- {
- ps->border_position[0] = 0;
- for (env = 1; env < ps->num_env; env++)
- {
- ps->border_position[env] = (env * 32 /* 30 for 960? */) / ps->num_env;
- }
- ps->border_position[ps->num_env] = 32 /* 30 for 960? */;
- } else {
- ps->border_position[0] = 0;
- if (ps->border_position[ps->num_env] < 32 /* 30 for 960? */)
- {
- ps->num_env++;
- ps->border_position[ps->num_env] = 32 /* 30 for 960? */;
- for (bin = 0; bin < 34; bin++)
- {
- ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
- ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
- }
- for (bin = 0; bin < 17; bin++)
- {
- ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
- ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
- }
- }
- for (env = 1; env < ps->num_env; env++)
- {
- int8_t thr = 32 /* 30 for 960? */ - (ps->num_env - env);
- if (ps->border_position[env] > thr)
- {
- ps->border_position[env] = thr;
- } else {
- thr = ps->border_position[env-1]+1;
- if (ps->border_position[env] < thr)
- {
- ps->border_position[env] = thr;
- }
- }
- }
- }
- /* make sure that the indices of all parameters can be mapped
- * to the same hybrid synthesis filterbank
- */
- #ifdef PS_LOW_POWER
- for (env = 0; env < ps->num_env; env++)
- {
- if (ps->iid_mode == 2 || ps->iid_mode == 5)
- map34indexto20(ps->iid_index[env], 34);
- if (ps->icc_mode == 2 || ps->icc_mode == 5)
- map34indexto20(ps->icc_index[env], 34);
- /* disable ipd/opd */
- for (bin = 0; bin < 17; bin++)
- {
- ps->aaIpdIndex[env][bin] = 0;
- ps->aaOpdIndex[env][bin] = 0;
- }
- }
- #else
- if (ps->use34hybrid_bands)
- {
- for (env = 0; env < ps->num_env; env++)
- {
- if (ps->iid_mode != 2 && ps->iid_mode != 5)
- map20indexto34(ps->iid_index[env], 34);
- if (ps->icc_mode != 2 && ps->icc_mode != 5)
- map20indexto34(ps->icc_index[env], 34);
- if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
- {
- map20indexto34(ps->ipd_index[env], 17);
- map20indexto34(ps->opd_index[env], 17);
- }
- }
- }
- #endif
- #if 0
- for (env = 0; env < ps->num_env; env++)
- {
- printf("iid[env:%d]:", env);
- for (bin = 0; bin < 34; bin++)
- {
- printf(" %d", ps->iid_index[env][bin]);
- }
- printf("n");
- }
- for (env = 0; env < ps->num_env; env++)
- {
- printf("icc[env:%d]:", env);
- for (bin = 0; bin < 34; bin++)
- {
- printf(" %d", ps->icc_index[env][bin]);
- }
- printf("n");
- }
- for (env = 0; env < ps->num_env; env++)
- {
- printf("ipd[env:%d]:", env);
- for (bin = 0; bin < 17; bin++)
- {
- printf(" %d", ps->ipd_index[env][bin]);
- }
- printf("n");
- }
- for (env = 0; env < ps->num_env; env++)
- {
- printf("opd[env:%d]:", env);
- for (bin = 0; bin < 17; bin++)
- {
- printf(" %d", ps->opd_index[env][bin]);
- }
- printf("n");
- }
- printf("n");
- #endif
- }
- /* decorrelate the mono signal using an allpass filter */
- static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
- qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
- {
- uint8_t gr, n, m, bk;
- uint8_t temp_delay;
- uint8_t sb, maxsb;
- const complex_t *Phi_Fract_SubQmf;
- uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
- real_t P_SmoothPeakDecayDiffNrg, nrg;
- real_t P[32][34];
- real_t G_TransientRatio[32][34] = {{0}};
- complex_t inputLeft;
- /* chose hybrid filterbank: 20 or 34 band case */
- if (ps->use34hybrid_bands)
- {
- Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
- } else{
- Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
- }
- /* clear the energy values */
- for (n = 0; n < 32; n++)
- {
- for (bk = 0; bk < 34; bk++)
- {
- P[n][bk] = 0;
- }
- }
- /* calculate the energy in each parameter band b(k) */
- for (gr = 0; gr < ps->num_groups; gr++)
- {
- /* select the parameter index b(k) to which this group belongs */
- bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
- /* select the upper subband border for this group */
- maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
- for (sb = ps->group_border[gr]; sb < maxsb; sb++)
- {
- for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
- {
- #ifdef FIXED_POINT
- uint32_t in_re, in_im;
- #endif
- /* input from hybrid subbands or QMF subbands */
- if (gr < ps->num_hybrid_groups)
- {
- RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
- IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
- } else {
- RE(inputLeft) = QMF_RE(X_left[n][sb]);
- IM(inputLeft) = QMF_IM(X_left[n][sb]);
- }
- /* accumulate energy */
- #ifdef FIXED_POINT
- /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
- * meaning that P will be scaled by 2^(-10) compared to floating point version
- */
- in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
- in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
- P[n][bk] += in_re*in_re + in_im*in_im;
- #else
- P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
- #endif
- }
- }
- }
- #if 0
- for (n = 0; n < 32; n++)
- {
- for (bk = 0; bk < 34; bk++)
- {
- #ifdef FIXED_POINT
- printf("%d %d: %dn", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
- #else
- printf("%d %d: %fn", n, bk, P[n][bk]/1024.0);
- #endif
- }
- }
- #endif
- /* calculate transient reduction ratio for each parameter band b(k) */
- for (bk = 0; bk < ps->nr_par_bands; bk++)
- {
- for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
- {
- const real_t gamma = COEF_CONST(1.5);
- ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
- if (ps->P_PeakDecayNrg[bk] < P[n][bk])
- ps->P_PeakDecayNrg[bk] = P[n][bk];
- /* apply smoothing filter to peak decay energy */
- P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
- P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
- ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
- /* apply smoothing filter to energy */
- nrg = ps->P_prev[bk];
- nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
- ps->P_prev[bk] = nrg;
- /* calculate transient ratio */
- if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
- {
- G_TransientRatio[n][bk] = REAL_CONST(1.0);
- } else {
- G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
- }
- }
- }
- #if 0
- for (n = 0; n < 32; n++)
- {
- for (bk = 0; bk < 34; bk++)
- {
- #ifdef FIXED_POINT
- printf("%d %d: %fn", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
- #else
- printf("%d %d: %fn", n, bk, G_TransientRatio[n][bk]);
- #endif
- }
- }
- #endif
- /* apply stereo decorrelation filter to the signal */
- for (gr = 0; gr < ps->num_groups; gr++)
- {
- if (gr < ps->num_hybrid_groups)
- maxsb = ps->group_border[gr] + 1;
- else
- maxsb = ps->group_border[gr + 1];
- /* QMF channel */
- for (sb = ps->group_border[gr]; sb < maxsb; sb++)
- {
- real_t g_DecaySlope;
- real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
- /* g_DecaySlope: [0..1] */
- if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
- {
- g_DecaySlope = FRAC_CONST(1.0);
- } else {
- int8_t decay = ps->decay_cutoff - sb;
- if (decay <= -20 /* -1/DECAY_SLOPE */)
- {
- g_DecaySlope = 0;
- } else {
- /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
- g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
- }
- }
- /* calculate g_DecaySlope_filt for every m multiplied by filter_a[m] */
- for (m = 0; m < NO_ALLPASS_LINKS; m++)
- {
- g_DecaySlope_filt[m] = MUL_F(g_DecaySlope, filter_a[m]);
- }
- /* set delay indices */
- temp_delay = ps->saved_delay;
- for (n = 0; n < NO_ALLPASS_LINKS; n++)
- temp_delay_ser[n] = ps->delay_buf_index_ser[n];
- for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
- {
- complex_t tmp, tmp0, R0;
- if (gr < ps->num_hybrid_groups)
- {
- /* hybrid filterbank input */
- RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
- IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
- } else {
- /* QMF filterbank input */
- RE(inputLeft) = QMF_RE(X_left[n][sb]);
- IM(inputLeft) = QMF_IM(X_left[n][sb]);
- }
- if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
- {
- /* delay */
- /* never hybrid subbands here, always QMF subbands */
- RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
- IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
- RE(R0) = RE(tmp);
- IM(R0) = IM(tmp);
- RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
- IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
- } else {
- /* allpass filter */
- uint8_t m;
- complex_t Phi_Fract;
- /* fetch parameters */
- if (gr < ps->num_hybrid_groups)
- {
- /* select data from the hybrid subbands */
- RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
- IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
- RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
- IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
- RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
- IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
- } else {
- /* select data from the QMF subbands */
- RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
- IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
- RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
- IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
- RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
- IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
- }
- /* z^(-2) * Phi_Fract[k] */
- ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
- RE(R0) = RE(tmp);
- IM(R0) = IM(tmp);
- for (m = 0; m < NO_ALLPASS_LINKS; m++)
- {
- complex_t Q_Fract_allpass, tmp2;
- /* fetch parameters */
- if (gr < ps->num_hybrid_groups)
- {
- /* select data from the hybrid subbands */
- RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
- IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
- if (ps->use34hybrid_bands)
- {
- RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
- IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
- } else {
- RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
- IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
- }
- } else {
- /* select data from the QMF subbands */
- RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
- IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
- RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
- IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
- }
- /* delay by a fraction */
- /* z^(-d(m)) * Q_Fract_allpass[k,m] */
- ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
- /* -a(m) * g_DecaySlope[k] */
- RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
- IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
- /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
- RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
- IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
- /* store sample */
- if (gr < ps->num_hybrid_groups)
- {
- RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
- IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
- } else {
- RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
- IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
- }
- /* store for next iteration (or as output value if last iteration) */
- RE(R0) = RE(tmp);
- IM(R0) = IM(tmp);
- }
- }
- /* select b(k) for reading the transient ratio */
- bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
- /* duck if a past transient is found */
- RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
- IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
- if (gr < ps->num_hybrid_groups)
- {
- /* hybrid */
- QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
- QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
- } else {
- /* QMF */
- QMF_RE(X_right[n][sb]) = RE(R0);
- QMF_IM(X_right[n][sb]) = IM(R0);
- }
- /* Update delay buffer index */
- if (++temp_delay >= 2)
- {
- temp_delay = 0;
- }
- /* update delay indices */
- if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
- {
- /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
- if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
- {
- ps->delay_buf_index_delay[sb] = 0;
- }
- }
- for (m = 0; m < NO_ALLPASS_LINKS; m++)
- {
- if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
- {
- temp_delay_ser[m] = 0;
- }
- }
- }
- }
- }
- /* update delay indices */
- ps->saved_delay = temp_delay;
- for (m = 0; m < NO_ALLPASS_LINKS; m++)
- ps->delay_buf_index_ser[m] = temp_delay_ser[m];
- }
- #ifdef FIXED_POINT
- #define step(shift)
- if ((0x40000000l >> shift) + root <= value)
- {
- value -= (0x40000000l >> shift) + root;
- root = (root >> 1) | (0x40000000l >> shift);
- } else {
- root = root >> 1;
- }
- /* fixed point square root approximation */
- static real_t ps_sqrt(real_t value)
- {
- real_t root = 0;
- step( 0); step( 2); step( 4); step( 6);
- step( 8); step(10); step(12); step(14);
- step(16); step(18); step(20); step(22);
- step(24); step(26); step(28); step(30);
- if (root < value)
- ++root;
- root <<= (REAL_BITS/2);
- return root;
- }
- #else
- #define ps_sqrt(A) sqrt(A)
- #endif
- static const real_t ipdopd_cos_tab[] = {
- FRAC_CONST(1.000000000000000),
- FRAC_CONST(0.707106781186548),
- FRAC_CONST(0.000000000000000),
- FRAC_CONST(-0.707106781186547),
- FRAC_CONST(-1.000000000000000),
- FRAC_CONST(-0.707106781186548),
- FRAC_CONST(-0.000000000000000),
- FRAC_CONST(0.707106781186547),
- FRAC_CONST(1.000000000000000)
- };
- static const real_t ipdopd_sin_tab[] = {
- FRAC_CONST(0.000000000000000),
- FRAC_CONST(0.707106781186547),
- FRAC_CONST(1.000000000000000),
- FRAC_CONST(0.707106781186548),
- FRAC_CONST(0.000000000000000),
- FRAC_CONST(-0.707106781186547),
- FRAC_CONST(-1.000000000000000),
- FRAC_CONST(-0.707106781186548),
- FRAC_CONST(-0.000000000000000)
- };
- static real_t magnitude_c(complex_t c)
- {
- #ifdef FIXED_POINT
- #define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
- #define ALPHA FRAC_CONST(0.948059448969)
- #define BETA FRAC_CONST(0.392699081699)
- real_t abs_inphase = ps_abs(RE(c));
- real_t abs_quadrature = ps_abs(IM(c));
- if (abs_inphase > abs_quadrature) {
- return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
- } else {
- return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
- }
- #else
- return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
- #endif
- }
- static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
- qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
- {
- uint8_t n;
- uint8_t gr;
- uint8_t bk = 0;
- uint8_t sb, maxsb;
- uint8_t env;
- uint8_t nr_ipdopd_par;
- complex_t h11, h12, h21, h22;
- complex_t H11, H12, H21, H22;
- complex_t deltaH11, deltaH12, deltaH21, deltaH22;
- complex_t tempLeft;
- complex_t tempRight;
- complex_t phaseLeft;
- complex_t phaseRight;
- real_t L;
- const real_t *sf_iid;
- uint8_t no_iid_steps;
- if (ps->iid_mode >= 3)
- {
- no_iid_steps = 15;
- sf_iid = sf_iid_fine;
- } else {
- no_iid_steps = 7;
- sf_iid = sf_iid_normal;
- }
- if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
- {
- nr_ipdopd_par = 11; /* resolution */
- } else {
- nr_ipdopd_par = ps->nr_ipdopd_par;
- }
- for (gr = 0; gr < ps->num_groups; gr++)
- {
- bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
- /* use one channel per group in the subqmf domain */
- maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
- for (env = 0; env < ps->num_env; env++)
- {
- if (ps->icc_mode < 3)
- {
- /* type 'A' mixing as described in 8.6.4.6.2.1 */
- real_t c_1, c_2;
- real_t cosa, sina;
- real_t cosb, sinb;
- real_t ab1, ab2;
- real_t ab3, ab4;
- /*
- c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
- c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
- alpha = 0.5 * acos(quant_rho[icc_index]);
- beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
- */
- //printf("%dn", ps->iid_index[env][bk]);
- /* calculate the scalefactors c_1 and c_2 from the intensity differences */
- c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
- c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
- /* calculate alpha and beta using the ICC parameters */
- cosa = cos_alphas[ps->icc_index[env][bk]];
- sina = sin_alphas[ps->icc_index[env][bk]];
- if (ps->iid_mode >= 3)
- {
- if (ps->iid_index[env][bk] < 0)
- {
- cosb = cos_betas_fine[-ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- sinb = -sin_betas_fine[-ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- } else {
- cosb = cos_betas_fine[ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- sinb = sin_betas_fine[ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- }
- } else {
- if (ps->iid_index[env][bk] < 0)
- {
- cosb = cos_betas_normal[-ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- sinb = -sin_betas_normal[-ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- } else {
- cosb = cos_betas_normal[ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- sinb = sin_betas_normal[ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- }
- }
- ab1 = MUL_C(cosb, cosa);
- ab2 = MUL_C(sinb, sina);
- ab3 = MUL_C(sinb, cosa);
- ab4 = MUL_C(cosb, sina);
- /* h_xy: COEF */
- RE(h11) = MUL_C(c_2, (ab1 - ab2));
- RE(h12) = MUL_C(c_1, (ab1 + ab2));
- RE(h21) = MUL_C(c_2, (ab3 + ab4));
- RE(h22) = MUL_C(c_1, (ab3 - ab4));
- } else {
- /* type 'B' mixing as described in 8.6.4.6.2.2 */
- real_t sina, cosa;
- real_t cosg, sing;
- /*
- real_t c, rho, mu, alpha, gamma;
- uint8_t i;
- i = ps->iid_index[env][bk];
- c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
- rho = quant_rho[ps->icc_index[env][bk]];
- if (rho == 0.0f && c == 1.)
- {
- alpha = (real_t)M_PI/4.0f;
- rho = 0.05f;
- } else {
- if (rho <= 0.05f)
- {
- rho = 0.05f;
- }
- alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
- if (alpha < 0.)
- {
- alpha += (real_t)M_PI/2.0f;
- }
- if (rho < 0.)
- {
- alpha += (real_t)M_PI;
- }
- }
- mu = c+1.0f/c;
- mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
- gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
- */
- if (ps->iid_mode >= 3)
- {
- uint8_t abs_iid = abs(ps->iid_index[env][bk]);
- cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
- cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
- sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
- } else {
- uint8_t abs_iid = abs(ps->iid_index[env][bk]);
- cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
- sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
- cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
- sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
- }
- RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
- RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
- RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
- RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
- }
- /* calculate phase rotation parameters H_xy */
- /* note that the imaginary part of these parameters are only calculated when
- IPD and OPD are enabled
- */
- if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
- {
- int8_t i;
- real_t xy, pq, xypq;
- /* ringbuffer index */
- i = ps->phase_hist;
- /* previous value */
- #ifdef FIXED_POINT
- /* divide by 4, shift right 2 bits */
- RE(tempLeft) = RE(ps->ipd_prev[bk][i]) >> 2;
- IM(tempLeft) = IM(ps->ipd_prev[bk][i]) >> 2;
- RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 2;
- IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 2;
- #else
- RE(tempLeft) = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
- IM(tempLeft) = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
- RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
- IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
- #endif
- /* save current value */
- RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
- IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
- RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
- IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
- /* add current value */
- RE(tempLeft) += RE(ps->ipd_prev[bk][i]);
- IM(tempLeft) += IM(ps->ipd_prev[bk][i]);
- RE(tempRight) += RE(ps->opd_prev[bk][i]);
- IM(tempRight) += IM(ps->opd_prev[bk][i]);
- /* ringbuffer index */
- if (i == 0)
- {
- i = 2;
- }
- i--;
- /* get value before previous */
- #ifdef FIXED_POINT
- /* dividing by 2, shift right 1 bit */
- RE(tempLeft) += (RE(ps->ipd_prev[bk][i]) >> 1);
- IM(tempLeft) += (IM(ps->ipd_prev[bk][i]) >> 1);
- RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 1);
- IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 1);
- #else
- RE(tempLeft) += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
- IM(tempLeft) += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
- RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
- IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
- #endif
- #if 0 /* original code */
- ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
- opd = (float)atan2(IM(tempRight), RE(tempRight));
- /* phase rotation */
- RE(phaseLeft) = (float)cos(opd);
- IM(phaseLeft) = (float)sin(opd);
- opd -= ipd;
- RE(phaseRight) = (float)cos(opd);
- IM(phaseRight) = (float)sin(opd);
- #else
- // x = IM(tempLeft)
- // y = RE(tempLeft)
- // p = IM(tempRight)
- // q = RE(tempRight)
- // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
- // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
- // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
- // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
- xy = magnitude_c(tempRight);
- pq = magnitude_c(tempLeft);
- if (xy != 0)
- {
- RE(phaseLeft) = DIV_R(RE(tempRight), xy);
- IM(phaseLeft) = DIV_R(IM(tempRight), xy);
- } else {
- RE(phaseLeft) = 0;
- IM(phaseLeft) = 0;
- }
- xypq = MUL_R(xy, pq);
- if (xypq != 0)
- {
- real_t tmp1 = MUL_R(RE(tempRight), RE(tempLeft)) + MUL_R(IM(tempRight), IM(tempLeft));
- real_t tmp2 = MUL_R(IM(tempRight), RE(tempLeft)) - MUL_R(RE(tempRight), IM(tempLeft));
- RE(phaseRight) = DIV_R(tmp1, xypq);
- IM(phaseRight) = DIV_R(tmp2, xypq);
- } else {
- RE(phaseRight) = 0;
- IM(phaseRight) = 0;
- }
- #endif
- /* MUL_F(COEF, REAL) = COEF */
- IM(h11) = MUL_R(RE(h11), IM(phaseLeft));
- IM(h12) = MUL_R(RE(h12), IM(phaseRight));
- IM(h21) = MUL_R(RE(h21), IM(phaseLeft));
- IM(h22) = MUL_R(RE(h22), IM(phaseRight));
- RE(h11) = MUL_R(RE(h11), RE(phaseLeft));
- RE(h12) = MUL_R(RE(h12), RE(phaseRight));
- RE(h21) = MUL_R(RE(h21), RE(phaseLeft));
- RE(h22) = MUL_R(RE(h22), RE(phaseRight));
- }
- /* length of the envelope n_e+1 - n_e (in time samples) */
- /* 0 < L <= 32: integer */
- L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
- /* obtain final H_xy by means of linear interpolation */
- RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
- RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
- RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
- RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
- RE(H11) = RE(ps->h11_prev[gr]);
- RE(H12) = RE(ps->h12_prev[gr]);
- RE(H21) = RE(ps->h21_prev[gr]);
- RE(H22) = RE(ps->h22_prev[gr]);
- RE(ps->h11_prev[gr]) = RE(h11);
- RE(ps->h12_prev[gr]) = RE(h12);
- RE(ps->h21_prev[gr]) = RE(h21);
- RE(ps->h22_prev[gr]) = RE(h22);
- /* only calculate imaginary part when needed */
- if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
- {
- /* obtain final H_xy by means of linear interpolation */
- IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
- IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
- IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
- IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
- IM(H11) = IM(ps->h11_prev[gr]);
- IM(H12) = IM(ps->h12_prev[gr]);
- IM(H21) = IM(ps->h21_prev[gr]);
- IM(H22) = IM(ps->h22_prev[gr]);
- if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
- {
- IM(deltaH11) = -IM(deltaH11);
- IM(deltaH12) = -IM(deltaH12);
- IM(deltaH21) = -IM(deltaH21);
- IM(deltaH22) = -IM(deltaH22);
- IM(H11) = -IM(H11);
- IM(H12) = -IM(H12);
- IM(H21) = -IM(H21);
- IM(H22) = -IM(H22);
- }
- IM(ps->h11_prev[gr]) = IM(h11);
- IM(ps->h12_prev[gr]) = IM(h12);
- IM(ps->h21_prev[gr]) = IM(h21);
- IM(ps->h22_prev[gr]) = IM(h22);
- }
- /* apply H_xy to the current envelope band of the decorrelated subband */
- for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
- {
- /* addition finalises the interpolation over every n */
- RE(H11) += RE(deltaH11);
- RE(H12) += RE(deltaH12);
- RE(H21) += RE(deltaH21);
- RE(H22) += RE(deltaH22);
- if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
- {
- IM(H11) += IM(deltaH11);
- IM(H12) += IM(deltaH12);
- IM(H21) += IM(deltaH21);
- IM(H22) += IM(deltaH22);
- }
- /* channel is an alias to the subband */
- for (sb = ps->group_border[gr]; sb < maxsb; sb++)
- {
- complex_t inLeft, inRight;
- /* load decorrelated samples */
- if (gr < ps->num_hybrid_groups)
- {
- RE(inLeft) = RE(X_hybrid_left[n][sb]);
- IM(inLeft) = IM(X_hybrid_left[n][sb]);
- RE(inRight) = RE(X_hybrid_right[n][sb]);
- IM(inRight) = IM(X_hybrid_right[n][sb]);
- } else {
- RE(inLeft) = RE(X_left[n][sb]);
- IM(inLeft) = IM(X_left[n][sb]);
- RE(inRight) = RE(X_right[n][sb]);
- IM(inRight) = IM(X_right[n][sb]);
- }
- /* apply mixing */
- RE(tempLeft) = MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
- IM(tempLeft) = MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
- RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
- IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
- /* only perform imaginary operations when needed */
- if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
- {
- /* apply rotation */
- RE(tempLeft) -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
- IM(tempLeft) += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
- RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
- IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
- }
- /* store final samples */
- if (gr < ps->num_hybrid_groups)
- {
- RE(X_hybrid_left[n][sb]) = RE(tempLeft);
- IM(X_hybrid_left[n][sb]) = IM(tempLeft);
- RE(X_hybrid_right[n][sb]) = RE(tempRight);
- IM(X_hybrid_right[n][sb]) = IM(tempRight);
- } else {
- RE(X_left[n][sb]) = RE(tempLeft);
- IM(X_left[n][sb]) = IM(tempLeft);
- RE(X_right[n][sb]) = RE(tempRight);
- IM(X_right[n][sb]) = IM(tempRight);
- }
- }
- }
- /* shift phase smoother's circular buffer index */
- ps->phase_hist++;
- if (ps->phase_hist == 2)
- {
- ps->phase_hist = 0;
- }
- }
- }
- }
- void ps_free(ps_info *ps)
- {
- /* free hybrid filterbank structures */
- hybrid_free(ps->hyb);
- faad_free(ps);
- }
- ps_info *ps_init(uint8_t sr_index)
- {
- uint8_t i;
- uint8_t short_delay_band;
- ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
- memset(ps, 0, sizeof(ps_info));
- ps->hyb = hybrid_init();
- ps->ps_data_available = 0;
- /* delay stuff*/
- ps->saved_delay = 0;
- for (i = 0; i < 64; i++)
- {
- ps->delay_buf_index_delay[i] = 0;
- }
- for (i = 0; i < NO_ALLPASS_LINKS; i++)
- {
- ps->delay_buf_index_ser[i] = 0;
- #ifdef PARAM_32KHZ
- if (sr_index <= 5) /* >= 32 kHz*/
- {
- ps->num_sample_delay_ser[i] = delay_length_d[1][i];
- } else {
- ps->num_sample_delay_ser[i] = delay_length_d[0][i];
- }
- #else
- /* THESE ARE CONSTANTS NOW */
- ps->num_sample_delay_ser[i] = delay_length_d[i];
- #endif
- }
- #ifdef PARAM_32KHZ
- if (sr_index <= 5) /* >= 32 kHz*/
- {
- short_delay_band = 35;
- ps->nr_allpass_bands = 22;
- ps->alpha_decay = FRAC_CONST(0.76592833836465);
- ps->alpha_smooth = FRAC_CONST(0.25);
- } else {
- short_delay_band = 64;
- ps->nr_allpass_bands = 45;
- ps->alpha_decay = FRAC_CONST(0.58664621951003);
- ps->alpha_smooth = FRAC_CONST(0.6);
- }
- #else
- /* THESE ARE CONSTANTS NOW */
- short_delay_band = 35;
- ps->nr_allpass_bands = 22;
- ps->alpha_decay = FRAC_CONST(0.76592833836465);
- ps->alpha_smooth = FRAC_CONST(0.25);
- #endif
- /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
- for (i = 0; i < short_delay_band; i++)
- {
- ps->delay_D[i] = 14;
- }
- for (i = short_delay_band; i < 64; i++)
- {
- ps->delay_D[i] = 1;
- }
- /* mixing and phase */
- for (i = 0; i < 50; i++)
- {
- RE(ps->h11_prev[i]) = 1;
- IM(ps->h12_prev[i]) = 1;
- RE(ps->h11_prev[i]) = 1;
- IM(ps->h12_prev[i]) = 1;
- }
- ps->phase_hist = 0;
- for (i = 0; i < 20; i++)
- {
- RE(ps->ipd_prev[i][0]) = 0;
- IM(ps->ipd_prev[i][0]) = 0;
- RE(ps->ipd_prev[i][1]) = 0;
- IM(ps->ipd_prev[i][1]) = 0;
- RE(ps->opd_prev[i][0]) = 0;
- IM(ps->opd_prev[i][0]) = 0;
- RE(ps->opd_prev[i][1]) = 0;
- IM(ps->opd_prev[i][1]) = 0;
- }
- return ps;
- }
- /* main Parametric Stereo decoding function */
- uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
- {
- qmf_t X_hybrid_left[32][32] = {{0}};
- qmf_t X_hybrid_right[32][32] = {{0}};
- /* delta decoding of the bitstream data */
- ps_data_decode(ps);
- /* set up some parameters depending on filterbank type */
- if (ps->use34hybrid_bands)
- {
- ps->group_border = (uint8_t*)group_border34;
- ps->map_group2bk = (uint16_t*)map_group2bk34;
- ps->num_groups = 32+18;
- ps->num_hybrid_groups = 32;
- ps->nr_par_bands = 34;
- ps->decay_cutoff = 5;
- } else {
- ps->group_border = (uint8_t*)group_border20;
- ps->map_group2bk = (uint16_t*)map_group2bk20;
- ps->num_groups = 10+12;
- ps->num_hybrid_groups = 10;
- ps->nr_par_bands = 20;
- ps->decay_cutoff = 3;
- }
- /* Perform further analysis on the lowest subbands to get a higher
- * frequency resolution
- */
- hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
- ps->use34hybrid_bands);
- /* decorrelate mono signal */
- ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
- /* apply mixing and phase parameters */
- ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
- /* hybrid synthesis, to rebuild the SBR QMF matrices */
- hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
- ps->use34hybrid_bands);
- hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
- ps->use34hybrid_bands);
- return 0;
- }
- #endif