sbr_hfgen.c
上传用户:xjjlds
上传日期:2015-12-05
资源大小:22823k
文件大小:22k
- /*
- ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
- ** Copyright (C) 2003-2005 M. Bakker, Ahead Software AG, http://www.nero.com
- **
- ** This program is free software; you can redistribute it and/or modify
- ** it under the terms of the GNU General Public License as published by
- ** the Free Software Foundation; either version 2 of the License, or
- ** (at your option) any later version.
- **
- ** This program is distributed in the hope that it will be useful,
- ** but WITHOUT ANY WARRANTY; without even the implied warranty of
- ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ** GNU General Public License for more details.
- **
- ** You should have received a copy of the GNU General Public License
- ** along with this program; if not, write to the Free Software
- ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- **
- ** Any non-GPL usage of this software or parts of this software is strictly
- ** forbidden.
- **
- ** Software using this code must display the following message visibly in the
- ** software:
- ** "FAAD2 AAC/HE-AAC/HE-AACv2/DRM decoder (c) Ahead Software, www.nero.com"
- ** in, for example, the about-box or help/startup screen.
- **
- ** Commercial non-GPL licensing of this software is possible.
- ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
- **
- ** $Id: sbr_hfgen.c,v 1.2 2005/11/01 21:41:43 gabest Exp $
- **/
- /* High Frequency generation */
- #include "common.h"
- #include "structs.h"
- #ifdef SBR_DEC
- #include "sbr_syntax.h"
- #include "sbr_hfgen.h"
- #include "sbr_fbt.h"
- /* static function declarations */
- #ifdef SBR_LOW_POWER
- static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- complex_t *alpha_0, complex_t *alpha_1, real_t *rxx);
- static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg);
- #else
- static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- complex_t *alpha_0, complex_t *alpha_1, uint8_t k);
- #endif
- static void calc_chirp_factors(sbr_info *sbr, uint8_t ch);
- static void patch_construction(sbr_info *sbr);
- void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- qmf_t Xhigh[MAX_NTSRHFG][64]
- #ifdef SBR_LOW_POWER
- ,real_t *deg
- #endif
- ,uint8_t ch)
- {
- uint8_t l, i, x;
- ALIGN complex_t alpha_0[64], alpha_1[64];
- #ifdef SBR_LOW_POWER
- ALIGN real_t rxx[64];
- #endif
- uint8_t offset = sbr->tHFAdj;
- uint8_t first = sbr->t_E[ch][0];
- uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];
- calc_chirp_factors(sbr, ch);
- #ifdef SBR_LOW_POWER
- memset(deg, 0, 64*sizeof(real_t));
- #endif
- if ((ch == 0) && (sbr->Reset))
- patch_construction(sbr);
- /* calculate the prediction coefficients */
- #ifdef SBR_LOW_POWER
- calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx);
- calc_aliasing_degree(sbr, rxx, deg);
- #endif
- /* actual HF generation */
- for (i = 0; i < sbr->noPatches; i++)
- {
- for (x = 0; x < sbr->patchNoSubbands[i]; x++)
- {
- real_t a0_r, a0_i, a1_r, a1_i;
- real_t bw, bw2;
- uint8_t q, p, k, g;
- /* find the low and high band for patching */
- k = sbr->kx + x;
- for (q = 0; q < i; q++)
- {
- k += sbr->patchNoSubbands[q];
- }
- p = sbr->patchStartSubband[i] + x;
- #ifdef SBR_LOW_POWER
- if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
- deg[k] = deg[p];
- else
- deg[k] = 0;
- #endif
- g = sbr->table_map_k_to_g[k];
- bw = sbr->bwArray[ch][g];
- bw2 = MUL_C(bw, bw);
- /* do the patching */
- /* with or without filtering */
- if (bw2 > 0)
- {
- real_t temp1_r, temp2_r, temp3_r;
- #ifndef SBR_LOW_POWER
- real_t temp1_i, temp2_i, temp3_i;
- calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p);
- #endif
- a0_r = MUL_C(RE(alpha_0[p]), bw);
- a1_r = MUL_C(RE(alpha_1[p]), bw2);
- #ifndef SBR_LOW_POWER
- a0_i = MUL_C(IM(alpha_0[p]), bw);
- a1_i = MUL_C(IM(alpha_1[p]), bw2);
- #endif
- temp2_r = QMF_RE(Xlow[first - 2 + offset][p]);
- temp3_r = QMF_RE(Xlow[first - 1 + offset][p]);
- #ifndef SBR_LOW_POWER
- temp2_i = QMF_IM(Xlow[first - 2 + offset][p]);
- temp3_i = QMF_IM(Xlow[first - 1 + offset][p]);
- #endif
- for (l = first; l < last; l++)
- {
- temp1_r = temp2_r;
- temp2_r = temp3_r;
- temp3_r = QMF_RE(Xlow[l + offset][p]);
- #ifndef SBR_LOW_POWER
- temp1_i = temp2_i;
- temp2_i = temp3_i;
- temp3_i = QMF_IM(Xlow[l + offset][p]);
- #endif
- #ifdef SBR_LOW_POWER
- QMF_RE(Xhigh[l + offset][k]) =
- temp3_r
- +(MUL_R(a0_r, temp2_r) +
- MUL_R(a1_r, temp1_r));
- #else
- QMF_RE(Xhigh[l + offset][k]) =
- temp3_r
- +(MUL_R(a0_r, temp2_r) -
- MUL_R(a0_i, temp2_i) +
- MUL_R(a1_r, temp1_r) -
- MUL_R(a1_i, temp1_i));
- QMF_IM(Xhigh[l + offset][k]) =
- temp3_i
- +(MUL_R(a0_i, temp2_r) +
- MUL_R(a0_r, temp2_i) +
- MUL_R(a1_i, temp1_r) +
- MUL_R(a1_r, temp1_i));
- #endif
- }
- } else {
- for (l = first; l < last; l++)
- {
- QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
- #ifndef SBR_LOW_POWER
- QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
- #endif
- }
- }
- }
- }
- if (sbr->Reset)
- {
- limiter_frequency_table(sbr);
- }
- }
- typedef struct
- {
- complex_t r01;
- complex_t r02;
- complex_t r11;
- complex_t r12;
- complex_t r22;
- real_t det;
- } acorr_coef;
- #ifdef SBR_LOW_POWER
- static void auto_correlation(sbr_info *sbr, acorr_coef *ac,
- qmf_t buffer[MAX_NTSRHFG][64],
- uint8_t bd, uint8_t len)
- {
- real_t r01 = 0, r02 = 0, r11 = 0;
- int8_t j;
- uint8_t offset = sbr->tHFAdj;
- #ifdef FIXED_POINT
- const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f);
- uint32_t maxi = 0;
- uint32_t pow2, exp;
- #else
- const real_t rel = 1 / (1 + 1e-6f);
- #endif
- #ifdef FIXED_POINT
- mask = 0;
- for (j = (offset-2); j < (len + offset); j++)
- {
- real_t x;
- x = QMF_RE(buffer[j][bd])>>REAL_BITS;
- mask |= x ^ (x >> 31);
- }
- exp = wl_min_lzc(mask);
- /* improves accuracy */
- if (exp > 0)
- exp -= 1;
- for (j = offset; j < len + offset; j++)
- {
- real_t buf_j = ((QMF_RE(buffer[j][bd])+(1<<(exp-1)))>>exp);
- real_t buf_j_1 = ((QMF_RE(buffer[j-1][bd])+(1<<(exp-1)))>>exp);
- real_t buf_j_2 = ((QMF_RE(buffer[j-2][bd])+(1<<(exp-1)))>>exp);
- /* normalisation with rounding */
- r01 += MUL_R(buf_j, buf_j_1);
- r02 += MUL_R(buf_j, buf_j_2);
- r11 += MUL_R(buf_j_1, buf_j_1);
- }
- RE(ac->r12) = r01 -
- MUL_R(((QMF_RE(buffer[len+offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) +
- MUL_R(((QMF_RE(buffer[offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp));
- RE(ac->r22) = r11 -
- MUL_R(((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) +
- MUL_R(((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp));
- #else
- for (j = offset; j < len + offset; j++)
- {
- r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]);
- r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]);
- r11 += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]);
- }
- RE(ac->r12) = r01 -
- QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
- QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]);
- RE(ac->r22) = r11 -
- QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
- QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]);
- #endif
- RE(ac->r01) = r01;
- RE(ac->r02) = r02;
- RE(ac->r11) = r11;
- ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_R(RE(ac->r12), RE(ac->r12)), rel);
- }
- #else
- static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64],
- uint8_t bd, uint8_t len)
- {
- real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0;
- real_t temp1_r, temp1_i, temp2_r, temp2_i, temp3_r, temp3_i, temp4_r, temp4_i, temp5_r, temp5_i;
- #ifdef FIXED_POINT
- const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f);
- uint32_t mask, exp;
- real_t pow2_to_exp;
- #else
- const real_t rel = 1 / (1 + 1e-6f);
- #endif
- int8_t j;
- uint8_t offset = sbr->tHFAdj;
- #ifdef FIXED_POINT
- mask = 0;
- for (j = (offset-2); j < (len + offset); j++)
- {
- real_t x;
- x = QMF_RE(buffer[j][bd])>>REAL_BITS;
- mask |= x ^ (x >> 31);
- x = QMF_IM(buffer[j][bd])>>REAL_BITS;
- mask |= x ^ (x >> 31);
- }
- exp = wl_min_lzc(mask);
- /* improves accuracy */
- if (exp > 0)
- exp -= 1;
-
- pow2_to_exp = 1<<(exp-1);
- temp2_r = (QMF_RE(buffer[offset-2][bd]) + pow2_to_exp) >> exp;
- temp2_i = (QMF_IM(buffer[offset-2][bd]) + pow2_to_exp) >> exp;
- temp3_r = (QMF_RE(buffer[offset-1][bd]) + pow2_to_exp) >> exp;
- temp3_i = (QMF_IM(buffer[offset-1][bd]) + pow2_to_exp) >> exp;
- // Save these because they are needed after loop
- temp4_r = temp2_r;
- temp4_i = temp2_i;
- temp5_r = temp3_r;
- temp5_i = temp3_i;
- for (j = offset; j < len + offset; j++)
- {
- temp1_r = temp2_r; // temp1_r = (QMF_RE(buffer[offset-2][bd] + (1<<(exp-1))) >> exp;
- temp1_i = temp2_i; // temp1_i = (QMF_IM(buffer[offset-2][bd] + (1<<(exp-1))) >> exp;
- temp2_r = temp3_r; // temp2_r = (QMF_RE(buffer[offset-1][bd] + (1<<(exp-1))) >> exp;
- temp2_i = temp3_i; // temp2_i = (QMF_IM(buffer[offset-1][bd] + (1<<(exp-1))) >> exp;
- temp3_r = (QMF_RE(buffer[j][bd]) + pow2_to_exp) >> exp;
- temp3_i = (QMF_IM(buffer[j][bd]) + pow2_to_exp) >> exp;
- r01r += MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i);
- r01i += MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i);
- r02r += MUL_R(temp3_r, temp1_r) + MUL_R(temp3_i, temp1_i);
- r02i += MUL_R(temp3_i, temp1_r) - MUL_R(temp3_r, temp1_i);
- r11r += MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i);
- }
- // These are actual values in temporary variable at this point
- // temp1_r = (QMF_RE(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp;
- // temp1_i = (QMF_IM(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp;
- // temp2_r = (QMF_RE(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp;
- // temp2_i = (QMF_IM(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp;
- // temp3_r = (QMF_RE(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp;
- // temp3_i = (QMF_IM(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp;
- // temp4_r = (QMF_RE(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp;
- // temp4_i = (QMF_IM(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp;
- // temp5_r = (QMF_RE(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp;
- // temp5_i = (QMF_IM(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp;
- RE(ac->r12) = r01r -
- (MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i)) +
- (MUL_R(temp5_r, temp4_r) + MUL_R(temp5_i, temp4_i));
- IM(ac->r12) = r01i -
- (MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i)) +
- (MUL_R(temp5_i, temp4_r) - MUL_R(temp5_r, temp4_i));
- RE(ac->r22) = r11r -
- (MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i)) +
- (MUL_R(temp4_r, temp4_r) + MUL_R(temp4_i, temp4_i));
- #else
- temp2_r = QMF_RE(buffer[offset-2][bd]);
- temp2_i = QMF_IM(buffer[offset-2][bd]);
- temp3_r = QMF_RE(buffer[offset-1][bd]);
- temp3_i = QMF_IM(buffer[offset-1][bd]);
- // Save these because they are needed after loop
- temp4_r = temp2_r;
- temp4_i = temp2_i;
- temp5_r = temp3_r;
- temp5_i = temp3_i;
- for (j = offset; j < len + offset; j++)
- {
- temp1_r = temp2_r; // temp1_r = QMF_RE(buffer[j-2][bd];
- temp1_i = temp2_i; // temp1_i = QMF_IM(buffer[j-2][bd];
- temp2_r = temp3_r; // temp2_r = QMF_RE(buffer[j-1][bd];
- temp2_i = temp3_i; // temp2_i = QMF_IM(buffer[j-1][bd];
- temp3_r = QMF_RE(buffer[j][bd]);
- temp3_i = QMF_IM(buffer[j][bd]);
- r01r += temp3_r * temp2_r + temp3_i * temp2_i;
- r01i += temp3_i * temp2_r - temp3_r * temp2_i;
- r02r += temp3_r * temp1_r + temp3_i * temp1_i;
- r02i += temp3_i * temp1_r - temp3_r * temp1_i;
- r11r += temp2_r * temp2_r + temp2_i * temp2_i;
- }
- // These are actual values in temporary variable at this point
- // temp1_r = QMF_RE(buffer[len+offset-1-2][bd];
- // temp1_i = QMF_IM(buffer[len+offset-1-2][bd];
- // temp2_r = QMF_RE(buffer[len+offset-1-1][bd];
- // temp2_i = QMF_IM(buffer[len+offset-1-1][bd];
- // temp3_r = QMF_RE(buffer[len+offset-1][bd]);
- // temp3_i = QMF_IM(buffer[len+offset-1][bd]);
- // temp4_r = QMF_RE(buffer[offset-2][bd]);
- // temp4_i = QMF_IM(buffer[offset-2][bd]);
- // temp5_r = QMF_RE(buffer[offset-1][bd]);
- // temp5_i = QMF_IM(buffer[offset-1][bd]);
- RE(ac->r12) = r01r -
- (temp3_r * temp2_r + temp3_i * temp2_i) +
- (temp5_r * temp4_r + temp5_i * temp4_i);
- IM(ac->r12) = r01i -
- (temp3_i * temp2_r - temp3_r * temp2_i) +
- (temp5_i * temp4_r - temp5_r * temp4_i);
- RE(ac->r22) = r11r -
- (temp2_r * temp2_r + temp2_i * temp2_i) +
- (temp4_r * temp4_r + temp4_i * temp4_i);
- #endif
- RE(ac->r01) = r01r;
- IM(ac->r01) = r01i;
- RE(ac->r02) = r02r;
- IM(ac->r02) = r02i;
- RE(ac->r11) = r11r;
- ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(rel, (MUL_R(RE(ac->r12), RE(ac->r12)) + MUL_R(IM(ac->r12), IM(ac->r12))));
- }
- #endif
- /* calculate linear prediction coefficients using the covariance method */
- #ifndef SBR_LOW_POWER
- static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- complex_t *alpha_0, complex_t *alpha_1, uint8_t k)
- {
- real_t tmp;
- acorr_coef ac;
- auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6);
- if (ac.det == 0)
- {
- RE(alpha_1[k]) = 0;
- IM(alpha_1[k]) = 0;
- } else {
- #ifdef FIXED_POINT
- tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)));
- RE(alpha_1[k]) = DIV_R(tmp, ac.det);
- tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11)));
- IM(alpha_1[k]) = DIV_R(tmp, ac.det);
- #else
- tmp = REAL_CONST(1.0) / ac.det;
- RE(alpha_1[k]) = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))) * tmp;
- IM(alpha_1[k]) = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))) * tmp;
- #endif
- }
- if (RE(ac.r11) == 0)
- {
- RE(alpha_0[k]) = 0;
- IM(alpha_0[k]) = 0;
- } else {
- #ifdef FIXED_POINT
- tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12)));
- RE(alpha_0[k]) = DIV_R(tmp, RE(ac.r11));
- tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12)));
- IM(alpha_0[k]) = DIV_R(tmp, RE(ac.r11));
- #else
- tmp = 1.0f / RE(ac.r11);
- RE(alpha_0[k]) = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))) * tmp;
- IM(alpha_0[k]) = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))) * tmp;
- #endif
- }
- if ((MUL_R(RE(alpha_0[k]),RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]),IM(alpha_0[k])) >= REAL_CONST(16)) ||
- (MUL_R(RE(alpha_1[k]),RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]),IM(alpha_1[k])) >= REAL_CONST(16)))
- {
- RE(alpha_0[k]) = 0;
- IM(alpha_0[k]) = 0;
- RE(alpha_1[k]) = 0;
- IM(alpha_1[k]) = 0;
- }
- }
- #else
- static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
- complex_t *alpha_0, complex_t *alpha_1, real_t *rxx)
- {
- uint8_t k;
- real_t tmp;
- acorr_coef ac;
- for (k = 1; k < sbr->f_master[0]; k++)
- {
- auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6);
- if (ac.det == 0)
- {
- RE(alpha_0[k]) = 0;
- RE(alpha_1[k]) = 0;
- } else {
- tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02));
- RE(alpha_0[k]) = DIV_R(tmp, (-ac.det));
- tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11));
- RE(alpha_1[k]) = DIV_R(tmp, ac.det);
- }
- if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4)))
- {
- RE(alpha_0[k]) = REAL_CONST(0);
- RE(alpha_1[k]) = REAL_CONST(0);
- }
- /* reflection coefficient */
- if (RE(ac.r11) == 0)
- {
- rxx[k] = COEF_CONST(0.0);
- } else {
- rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11));
- rxx[k] = -rxx[k];
- if (rxx[k] > COEF_CONST(1.0)) rxx[k] = COEF_CONST(1.0);
- if (rxx[k] < COEF_CONST(-1.0)) rxx[k] = COEF_CONST(-1.0);
- }
- }
- }
- static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg)
- {
- uint8_t k;
- rxx[0] = COEF_CONST(0.0);
- deg[1] = COEF_CONST(0.0);
- for (k = 2; k < sbr->k0; k++)
- {
- deg[k] = 0.0;
- if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0)))
- {
- if (rxx[k-1] < 0.0)
- {
- deg[k] = COEF_CONST(1.0);
- if (rxx[k-2] > COEF_CONST(0.0))
- {
- deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
- }
- } else if (rxx[k-2] > COEF_CONST(0.0)) {
- deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
- }
- }
- if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0)))
- {
- if (rxx[k-1] > COEF_CONST(0.0))
- {
- deg[k] = COEF_CONST(1.0);
- if (rxx[k-2] < COEF_CONST(0.0))
- {
- deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
- }
- } else if (rxx[k-2] < COEF_CONST(0.0)) {
- deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
- }
- }
- }
- }
- #endif
- /* FIXED POINT: bwArray = COEF */
- static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev)
- {
- switch (invf_mode)
- {
- case 1: /* LOW */
- if (invf_mode_prev == 0) /* NONE */
- return COEF_CONST(0.6);
- else
- return COEF_CONST(0.75);
- case 2: /* MID */
- return COEF_CONST(0.9);
- case 3: /* HIGH */
- return COEF_CONST(0.98);
- default: /* NONE */
- if (invf_mode_prev == 1) /* LOW */
- return COEF_CONST(0.6);
- else
- return COEF_CONST(0.0);
- }
- }
- /* FIXED POINT: bwArray = COEF */
- static void calc_chirp_factors(sbr_info *sbr, uint8_t ch)
- {
- uint8_t i;
- for (i = 0; i < sbr->N_Q; i++)
- {
- sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]);
- if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i])
- sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25));
- else
- sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375));
- if (sbr->bwArray[ch][i] < COEF_CONST(0.015625))
- sbr->bwArray[ch][i] = COEF_CONST(0.0);
- if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375))
- sbr->bwArray[ch][i] = COEF_CONST(0.99609375);
- sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i];
- sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i];
- }
- }
- static void patch_construction(sbr_info *sbr)
- {
- uint8_t i, k;
- uint8_t odd, sb;
- uint8_t msb = sbr->k0;
- uint8_t usb = sbr->kx;
- uint8_t goalSbTab[] = { 21, 23, 32, 43, 46, 64, 85, 93, 128, 0, 0, 0 };
- /* (uint8_t)(2.048e6/sbr->sample_rate + 0.5); */
- uint8_t goalSb = goalSbTab[get_sr_index(sbr->sample_rate)];
- sbr->noPatches = 0;
- if (goalSb < (sbr->kx + sbr->M))
- {
- for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++)
- k = i+1;
- } else {
- k = sbr->N_master;
- }
- if (sbr->N_master == 0)
- {
- sbr->noPatches = 0;
- sbr->patchNoSubbands[0] = 0;
- sbr->patchStartSubband[0] = 0;
- return;
- }
- do
- {
- uint8_t j = k + 1;
- do
- {
- j--;
- sb = sbr->f_master[j];
- odd = (sb - 2 + sbr->k0) % 2;
- } while (sb > (sbr->k0 - 1 + msb - odd));
- sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0);
- sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd -
- sbr->patchNoSubbands[sbr->noPatches];
- if (sbr->patchNoSubbands[sbr->noPatches] > 0)
- {
- usb = sb;
- msb = sb;
- sbr->noPatches++;
- } else {
- msb = sbr->kx;
- }
- if (sbr->f_master[k] - sb < 3)
- k = sbr->N_master;
- } while (sb != (sbr->kx + sbr->M));
- if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) && (sbr->noPatches > 1))
- {
- sbr->noPatches--;
- }
- sbr->noPatches = min(sbr->noPatches, 5);
- }
- #endif