tcp_cubic.c
上传用户:rrhhcc
上传日期:2015-12-11
资源大小:54129k
文件大小:11k
- /* Modified Linux module source code from /home/weixl/linux-2.6.22.6 */
- #define NS_PROTOCOL "tcp_cubic.c"
- #include "../ns-linux-c.h"
- #include "../ns-linux-util.h"
- /*
- * TCP CUBIC: Binary Increase Congestion control for TCP v2.1
- *
- * This is from the implementation of CUBIC TCP in
- * Injong Rhee, Lisong Xu.
- * "CUBIC: A New TCP-Friendly High-Speed TCP Variant
- * in PFLDnet 2005
- * Available from:
- * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
- *
- * Unless CUBIC is enabled and congestion window is large
- * this behaves the same as the original Reno.
- */
- #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
- * max_cwnd = snd_cwnd * beta
- */
- #define BICTCP_B 4 /*
- * In binary search,
- * go to point (max+min)/N
- */
- #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
- static int fast_convergence __read_mostly = 1;
- static int max_increment __read_mostly = 16;
- static int beta __read_mostly = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
- static int initial_ssthresh __read_mostly;
- static int bic_scale __read_mostly = 41;
- static int tcp_friendliness __read_mostly = 1;
- static u32 cube_rtt_scale __read_mostly;
- static u32 beta_scale __read_mostly;
- static u64 cube_factor __read_mostly;
- /* Note parameters that are used for precomputing scale factors are read-only */
- module_param(fast_convergence, int, 0644);
- MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
- module_param(max_increment, int, 0644);
- MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
- module_param(beta, int, 0444);
- MODULE_PARM_DESC(beta, "beta for multiplicative increase");
- module_param(initial_ssthresh, int, 0644);
- MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
- module_param(bic_scale, int, 0444);
- MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
- module_param(tcp_friendliness, int, 0644);
- MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
- /* BIC TCP Parameters */
- struct bictcp {
- u32 cnt; /* increase cwnd by 1 after ACKs */
- u32 last_max_cwnd; /* last maximum snd_cwnd */
- u32 loss_cwnd; /* congestion window at last loss */
- u32 last_cwnd; /* the last snd_cwnd */
- u32 last_time; /* time when updated last_cwnd */
- u32 bic_origin_point;/* origin point of bic function */
- u32 bic_K; /* time to origin point from the beginning of the current epoch */
- u32 delay_min; /* min delay */
- u32 epoch_start; /* beginning of an epoch */
- u32 ack_cnt; /* number of acks */
- u32 tcp_cwnd; /* estimated tcp cwnd */
- #define ACK_RATIO_SHIFT 4
- u32 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
- };
- static inline void bictcp_reset(struct bictcp *ca)
- {
- ca->cnt = 0;
- ca->last_max_cwnd = 0;
- ca->loss_cwnd = 0;
- ca->last_cwnd = 0;
- ca->last_time = 0;
- ca->bic_origin_point = 0;
- ca->bic_K = 0;
- ca->delay_min = 0;
- ca->epoch_start = 0;
- ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
- ca->ack_cnt = 0;
- ca->tcp_cwnd = 0;
- }
- static void bictcp_init(struct sock *sk)
- {
- bictcp_reset(inet_csk_ca(sk));
- if (initial_ssthresh)
- tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
- }
- /* calculate the cubic root of x using a table lookup followed by one
- * Newton-Raphson iteration.
- * Avg err ~= 0.195%
- */
- static u32 cubic_root(u64 a)
- {
- u32 x, b, shift;
- /*
- * cbrt(x) MSB values for x MSB values in [0..63].
- * Precomputed then refined by hand - Willy Tarreau
- *
- * For x in [0..63],
- * v = cbrt(x << 18) - 1
- * cbrt(x) = (v[x] + 10) >> 6
- */
- static const u8 v[] = {
- /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
- /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
- /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
- /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
- /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
- /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
- /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
- /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
- };
- b = fls64(a);
- if (b < 7) {
- /* a in [0..63] */
- return ((u32)v[(u32)a] + 35) >> 6;
- }
- b = ((b * 84) >> 8) - 1;
- shift = (a >> (b * 3));
- x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
- /*
- * Newton-Raphson iteration
- * 2
- * x = ( 2 * x + a / x ) / 3
- * k+1 k k
- */
- x = (2 * x + (u32)div64_64(a, (u64)x * (u64)(x - 1)));
- x = ((x * 341) >> 10);
- return x;
- }
- /*
- * Compute congestion window to use.
- */
- static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
- {
- u64 offs;
- u32 delta, t, bic_target, min_cnt, max_cnt;
- ca->ack_cnt++; /* count the number of ACKs */
- if (ca->last_cwnd == cwnd &&
- (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
- return;
- ca->last_cwnd = cwnd;
- ca->last_time = tcp_time_stamp;
- if (ca->epoch_start == 0) {
- ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
- ca->ack_cnt = 1; /* start counting */
- ca->tcp_cwnd = cwnd; /* syn with cubic */
- if (ca->last_max_cwnd <= cwnd) {
- ca->bic_K = 0;
- ca->bic_origin_point = cwnd;
- } else {
- /* Compute new K based on
- * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
- */
- ca->bic_K = cubic_root(cube_factor
- * (ca->last_max_cwnd - cwnd));
- ca->bic_origin_point = ca->last_max_cwnd;
- }
- }
- /* cubic function - calc*/
- /* calculate c * time^3 / rtt,
- * while considering overflow in calculation of time^3
- * (so time^3 is done by using 64 bit)
- * and without the support of division of 64bit numbers
- * (so all divisions are done by using 32 bit)
- * also NOTE the unit of those veriables
- * time = (t - K) / 2^bictcp_HZ
- * c = bic_scale >> 10
- * rtt = (srtt >> 3) / HZ
- * !!! The following code does not have overflow problems,
- * if the cwnd < 1 million packets !!!
- */
- /* change the unit from HZ to bictcp_HZ */
- t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start)
- << BICTCP_HZ) / HZ;
- if (t < ca->bic_K) /* t - K */
- offs = ca->bic_K - t;
- else
- offs = t - ca->bic_K;
- /* c/rtt * (t-K)^3 */
- delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
- if (t < ca->bic_K) /* below origin*/
- bic_target = ca->bic_origin_point - delta;
- else /* above origin*/
- bic_target = ca->bic_origin_point + delta;
- /* cubic function - calc bictcp_cnt*/
- if (bic_target > cwnd) {
- ca->cnt = cwnd / (bic_target - cwnd);
- } else {
- ca->cnt = 100 * cwnd; /* very small increment*/
- }
- if (ca->delay_min > 0) {
- /* max increment = Smax * rtt / 0.1 */
- min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
- /* use concave growth when the target is above the origin */
- if (ca->cnt < min_cnt && t >= ca->bic_K)
- ca->cnt = min_cnt;
- }
- /* slow start and low utilization */
- if (ca->loss_cwnd == 0) /* could be aggressive in slow start */
- ca->cnt = 50;
- /* TCP Friendly */
- if (tcp_friendliness) {
- u32 scale = beta_scale;
- delta = (cwnd * scale) >> 3;
- while (ca->ack_cnt > delta) { /* update tcp cwnd */
- ca->ack_cnt -= delta;
- ca->tcp_cwnd++;
- }
- if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
- delta = ca->tcp_cwnd - cwnd;
- max_cnt = cwnd / delta;
- if (ca->cnt > max_cnt)
- ca->cnt = max_cnt;
- }
- }
- ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
- if (ca->cnt == 0) /* cannot be zero */
- ca->cnt = 1;
- }
- /* Keep track of minimum rtt */
- static inline void measure_delay(struct sock *sk)
- {
- const struct tcp_sock *tp = tcp_sk(sk);
- struct bictcp *ca = inet_csk_ca(sk);
- u32 delay;
- /* No time stamp */
- if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
- /* Discard delay samples right after fast recovery */
- (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
- return;
- delay = (tcp_time_stamp - tp->rx_opt.rcv_tsecr)<<3;
- if (delay == 0)
- delay = 1;
- /* first time call or link delay decreases */
- if (ca->delay_min == 0 || ca->delay_min > delay)
- ca->delay_min = delay;
- }
- static void bictcp_cong_avoid(struct sock *sk, u32 ack,
- u32 seq_rtt, u32 in_flight, int data_acked)
- {
- struct tcp_sock *tp = tcp_sk(sk);
- struct bictcp *ca = inet_csk_ca(sk);
- if (data_acked)
- measure_delay(sk);
- if (!tcp_is_cwnd_limited(sk, in_flight))
- return;
- if (tp->snd_cwnd <= tp->snd_ssthresh)
- tcp_slow_start(tp);
- else {
- bictcp_update(ca, tp->snd_cwnd);
- /* In dangerous area, increase slowly.
- * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
- */
- if (tp->snd_cwnd_cnt >= ca->cnt) {
- if (tp->snd_cwnd < tp->snd_cwnd_clamp)
- tp->snd_cwnd++;
- tp->snd_cwnd_cnt = 0;
- } else
- tp->snd_cwnd_cnt++;
- }
- }
- static u32 bictcp_recalc_ssthresh(struct sock *sk)
- {
- const struct tcp_sock *tp = tcp_sk(sk);
- struct bictcp *ca = inet_csk_ca(sk);
- ca->epoch_start = 0; /* end of epoch */
- /* Wmax and fast convergence */
- if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
- ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
- / (2 * BICTCP_BETA_SCALE);
- else
- ca->last_max_cwnd = tp->snd_cwnd;
- ca->loss_cwnd = tp->snd_cwnd;
- return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
- }
- static u32 bictcp_undo_cwnd(struct sock *sk)
- {
- struct bictcp *ca = inet_csk_ca(sk);
- return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
- }
- static void bictcp_state(struct sock *sk, u8 new_state)
- {
- if (new_state == TCP_CA_Loss)
- bictcp_reset(inet_csk_ca(sk));
- }
- /* Track delayed acknowledgment ratio using sliding window
- * ratio = (15*ratio + sample) / 16
- */
- static void bictcp_acked(struct sock *sk, u32 cnt, ktime_t last)
- {
- const struct inet_connection_sock *icsk = inet_csk(sk);
- if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {
- struct bictcp *ca = inet_csk_ca(sk);
- cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
- ca->delayed_ack += cnt;
- }
- }
- static struct tcp_congestion_ops cubictcp = {
- .init = bictcp_init,
- .ssthresh = bictcp_recalc_ssthresh,
- .cong_avoid = bictcp_cong_avoid,
- .set_state = bictcp_state,
- .undo_cwnd = bictcp_undo_cwnd,
- .pkts_acked = bictcp_acked,
- .owner = THIS_MODULE,
- .name = "cubic",
- };
- static int __init cubictcp_register(void)
- {
- BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
- /* Precompute a bunch of the scaling factors that are used per-packet
- * based on SRTT of 100ms
- */
- beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
- cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
- /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
- * so K = cubic_root( (wmax-cwnd)*rtt/c )
- * the unit of K is bictcp_HZ=2^10, not HZ
- *
- * c = bic_scale >> 10
- * rtt = 100ms
- *
- * the following code has been designed and tested for
- * cwnd < 1 million packets
- * RTT < 100 seconds
- * HZ < 1,000,00 (corresponding to 10 nano-second)
- */
- /* 1/c * 2^2*bictcp_HZ * srtt */
- cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
- /* divide by bic_scale and by constant Srtt (100ms) */
- do_div(cube_factor, bic_scale * 10);
- return tcp_register_congestion_control(&cubictcp);
- }
- static void __exit cubictcp_unregister(void)
- {
- tcp_unregister_congestion_control(&cubictcp);
- }
- module_init(cubictcp_register);
- module_exit(cubictcp_unregister);
- MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
- MODULE_LICENSE("GPL");
- MODULE_DESCRIPTION("CUBIC TCP");
- MODULE_VERSION("2.1");
- #undef NS_PROTOCOL