tkTrig.c
上传用户:rrhhcc
上传日期:2015-12-11
资源大小:54129k
文件大小:40k
- /*
- * tkTrig.c --
- *
- * This file contains a collection of trigonometry utility
- * routines that are used by Tk and in particular by the
- * canvas code. It also has miscellaneous geometry functions
- * used by canvases.
- *
- * Copyright (c) 1992-1994 The Regents of the University of California.
- * Copyright (c) 1994-1997 Sun Microsystems, Inc.
- *
- * See the file "license.terms" for information on usage and redistribution
- * of this file, and for a DISCLAIMER OF ALL WARRANTIES.
- *
- * RCS: @(#) $Id: tkTrig.c,v 1.4 1999/12/14 06:52:33 hobbs Exp $
- */
- #include <stdio.h>
- #include "tkInt.h"
- #include "tkPort.h"
- #include "tkCanvas.h"
- #undef MIN
- #define MIN(a,b) (((a) < (b)) ? (a) : (b))
- #undef MAX
- #define MAX(a,b) (((a) > (b)) ? (a) : (b))
- #ifndef PI
- # define PI 3.14159265358979323846
- #endif /* PI */
- /*
- *--------------------------------------------------------------
- *
- * TkLineToPoint --
- *
- * Compute the distance from a point to a finite line segment.
- *
- * Results:
- * The return value is the distance from the line segment
- * whose end-points are *end1Ptr and *end2Ptr to the point
- * given by *pointPtr.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- double
- TkLineToPoint(end1Ptr, end2Ptr, pointPtr)
- double end1Ptr[2]; /* Coordinates of first end-point of line. */
- double end2Ptr[2]; /* Coordinates of second end-point of line. */
- double pointPtr[2]; /* Points to coords for point. */
- {
- double x, y;
- /*
- * Compute the point on the line that is closest to the
- * point. This must be done separately for vertical edges,
- * horizontal edges, and other edges.
- */
- if (end1Ptr[0] == end2Ptr[0]) {
- /*
- * Vertical edge.
- */
- x = end1Ptr[0];
- if (end1Ptr[1] >= end2Ptr[1]) {
- y = MIN(end1Ptr[1], pointPtr[1]);
- y = MAX(y, end2Ptr[1]);
- } else {
- y = MIN(end2Ptr[1], pointPtr[1]);
- y = MAX(y, end1Ptr[1]);
- }
- } else if (end1Ptr[1] == end2Ptr[1]) {
- /*
- * Horizontal edge.
- */
- y = end1Ptr[1];
- if (end1Ptr[0] >= end2Ptr[0]) {
- x = MIN(end1Ptr[0], pointPtr[0]);
- x = MAX(x, end2Ptr[0]);
- } else {
- x = MIN(end2Ptr[0], pointPtr[0]);
- x = MAX(x, end1Ptr[0]);
- }
- } else {
- double m1, b1, m2, b2;
- /*
- * The edge is neither horizontal nor vertical. Convert the
- * edge to a line equation of the form y = m1*x + b1. Then
- * compute a line perpendicular to this edge but passing
- * through the point, also in the form y = m2*x + b2.
- */
- m1 = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
- b1 = end1Ptr[1] - m1*end1Ptr[0];
- m2 = -1.0/m1;
- b2 = pointPtr[1] - m2*pointPtr[0];
- x = (b2 - b1)/(m1 - m2);
- y = m1*x + b1;
- if (end1Ptr[0] > end2Ptr[0]) {
- if (x > end1Ptr[0]) {
- x = end1Ptr[0];
- y = end1Ptr[1];
- } else if (x < end2Ptr[0]) {
- x = end2Ptr[0];
- y = end2Ptr[1];
- }
- } else {
- if (x > end2Ptr[0]) {
- x = end2Ptr[0];
- y = end2Ptr[1];
- } else if (x < end1Ptr[0]) {
- x = end1Ptr[0];
- y = end1Ptr[1];
- }
- }
- }
- /*
- * Compute the distance to the closest point.
- */
- return hypot(pointPtr[0] - x, pointPtr[1] - y);
- }
- /*
- *--------------------------------------------------------------
- *
- * TkLineToArea --
- *
- * Determine whether a line lies entirely inside, entirely
- * outside, or overlapping a given rectangular area.
- *
- * Results:
- * -1 is returned if the line given by end1Ptr and end2Ptr
- * is entirely outside the rectangle given by rectPtr. 0 is
- * returned if the polygon overlaps the rectangle, and 1 is
- * returned if the polygon is entirely inside the rectangle.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- int
- TkLineToArea(end1Ptr, end2Ptr, rectPtr)
- double end1Ptr[2]; /* X and y coordinates for one endpoint
- * of line. */
- double end2Ptr[2]; /* X and y coordinates for other endpoint
- * of line. */
- double rectPtr[4]; /* Points to coords for rectangle, in the
- * order x1, y1, x2, y2. X1 must be no
- * larger than x2, and y1 no larger than y2. */
- {
- int inside1, inside2;
- /*
- * First check the two points individually to see whether they
- * are inside the rectangle or not.
- */
- inside1 = (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2])
- && (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3]);
- inside2 = (end2Ptr[0] >= rectPtr[0]) && (end2Ptr[0] <= rectPtr[2])
- && (end2Ptr[1] >= rectPtr[1]) && (end2Ptr[1] <= rectPtr[3]);
- if (inside1 != inside2) {
- return 0;
- }
- if (inside1 & inside2) {
- return 1;
- }
- /*
- * Both points are outside the rectangle, but still need to check
- * for intersections between the line and the rectangle. Horizontal
- * and vertical lines are particularly easy, so handle them
- * separately.
- */
- if (end1Ptr[0] == end2Ptr[0]) {
- /*
- * Vertical line.
- */
-
- if (((end1Ptr[1] >= rectPtr[1]) ^ (end2Ptr[1] >= rectPtr[1]))
- && (end1Ptr[0] >= rectPtr[0])
- && (end1Ptr[0] <= rectPtr[2])) {
- return 0;
- }
- } else if (end1Ptr[1] == end2Ptr[1]) {
- /*
- * Horizontal line.
- */
-
- if (((end1Ptr[0] >= rectPtr[0]) ^ (end2Ptr[0] >= rectPtr[0]))
- && (end1Ptr[1] >= rectPtr[1])
- && (end1Ptr[1] <= rectPtr[3])) {
- return 0;
- }
- } else {
- double m, x, y, low, high;
-
- /*
- * Diagonal line. Compute slope of line and use
- * for intersection checks against each of the
- * sides of the rectangle: left, right, bottom, top.
- */
-
- m = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
- if (end1Ptr[0] < end2Ptr[0]) {
- low = end1Ptr[0]; high = end2Ptr[0];
- } else {
- low = end2Ptr[0]; high = end1Ptr[0];
- }
-
- /*
- * Left edge.
- */
-
- y = end1Ptr[1] + (rectPtr[0] - end1Ptr[0])*m;
- if ((rectPtr[0] >= low) && (rectPtr[0] <= high)
- && (y >= rectPtr[1]) && (y <= rectPtr[3])) {
- return 0;
- }
-
- /*
- * Right edge.
- */
-
- y += (rectPtr[2] - rectPtr[0])*m;
- if ((y >= rectPtr[1]) && (y <= rectPtr[3])
- && (rectPtr[2] >= low) && (rectPtr[2] <= high)) {
- return 0;
- }
-
- /*
- * Bottom edge.
- */
-
- if (end1Ptr[1] < end2Ptr[1]) {
- low = end1Ptr[1]; high = end2Ptr[1];
- } else {
- low = end2Ptr[1]; high = end1Ptr[1];
- }
- x = end1Ptr[0] + (rectPtr[1] - end1Ptr[1])/m;
- if ((x >= rectPtr[0]) && (x <= rectPtr[2])
- && (rectPtr[1] >= low) && (rectPtr[1] <= high)) {
- return 0;
- }
-
- /*
- * Top edge.
- */
-
- x += (rectPtr[3] - rectPtr[1])/m;
- if ((x >= rectPtr[0]) && (x <= rectPtr[2])
- && (rectPtr[3] >= low) && (rectPtr[3] <= high)) {
- return 0;
- }
- }
- return -1;
- }
- /*
- *--------------------------------------------------------------
- *
- * TkThickPolyLineToArea --
- *
- * This procedure is called to determine whether a connected
- * series of line segments lies entirely inside, entirely
- * outside, or overlapping a given rectangular area.
- *
- * Results:
- * -1 is returned if the lines are entirely outside the area,
- * 0 if they overlap, and 1 if they are entirely inside the
- * given area.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- /* ARGSUSED */
- int
- TkThickPolyLineToArea(coordPtr, numPoints, width, capStyle, joinStyle, rectPtr)
- double *coordPtr; /* Points to an array of coordinates for
- * the polyline: x0, y0, x1, y1, ... */
- int numPoints; /* Total number of points at *coordPtr. */
- double width; /* Width of each line segment. */
- int capStyle; /* How are end-points of polyline drawn?
- * CapRound, CapButt, or CapProjecting. */
- int joinStyle; /* How are joints in polyline drawn?
- * JoinMiter, JoinRound, or JoinBevel. */
- double *rectPtr; /* Rectangular area to check against. */
- {
- double radius, poly[10];
- int count;
- int changedMiterToBevel; /* Non-zero means that a mitered corner
- * had to be treated as beveled after all
- * because the angle was < 11 degrees. */
- int inside; /* Tentative guess about what to return,
- * based on all points seen so far: one
- * means everything seen so far was
- * inside the area; -1 means everything
- * was outside the area. 0 means overlap
- * has been found. */
- radius = width/2.0;
- inside = -1;
- if ((coordPtr[0] >= rectPtr[0]) && (coordPtr[0] <= rectPtr[2])
- && (coordPtr[1] >= rectPtr[1]) && (coordPtr[1] <= rectPtr[3])) {
- inside = 1;
- }
- /*
- * Iterate through all of the edges of the line, computing a polygon
- * for each edge and testing the area against that polygon. In
- * addition, there are additional tests to deal with rounded joints
- * and caps.
- */
- changedMiterToBevel = 0;
- for (count = numPoints; count >= 2; count--, coordPtr += 2) {
- /*
- * If rounding is done around the first point of the edge
- * then test a circular region around the point with the
- * area.
- */
- if (((capStyle == CapRound) && (count == numPoints))
- || ((joinStyle == JoinRound) && (count != numPoints))) {
- poly[0] = coordPtr[0] - radius;
- poly[1] = coordPtr[1] - radius;
- poly[2] = coordPtr[0] + radius;
- poly[3] = coordPtr[1] + radius;
- if (TkOvalToArea(poly, rectPtr) != inside) {
- return 0;
- }
- }
- /*
- * Compute the polygonal shape corresponding to this edge,
- * consisting of two points for the first point of the edge
- * and two points for the last point of the edge.
- */
- if (count == numPoints) {
- TkGetButtPoints(coordPtr+2, coordPtr, width,
- capStyle == CapProjecting, poly, poly+2);
- } else if ((joinStyle == JoinMiter) && !changedMiterToBevel) {
- poly[0] = poly[6];
- poly[1] = poly[7];
- poly[2] = poly[4];
- poly[3] = poly[5];
- } else {
- TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2);
- /*
- * If the last joint was beveled, then also check a
- * polygon comprising the last two points of the previous
- * polygon and the first two from this polygon; this checks
- * the wedges that fill the beveled joint.
- */
- if ((joinStyle == JoinBevel) || changedMiterToBevel) {
- poly[8] = poly[0];
- poly[9] = poly[1];
- if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
- return 0;
- }
- changedMiterToBevel = 0;
- }
- }
- if (count == 2) {
- TkGetButtPoints(coordPtr, coordPtr+2, width,
- capStyle == CapProjecting, poly+4, poly+6);
- } else if (joinStyle == JoinMiter) {
- if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4,
- (double) width, poly+4, poly+6) == 0) {
- changedMiterToBevel = 1;
- TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4,
- poly+6);
- }
- } else {
- TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6);
- }
- poly[8] = poly[0];
- poly[9] = poly[1];
- if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
- return 0;
- }
- }
- /*
- * If caps are rounded, check the cap around the final point
- * of the line.
- */
- if (capStyle == CapRound) {
- poly[0] = coordPtr[0] - radius;
- poly[1] = coordPtr[1] - radius;
- poly[2] = coordPtr[0] + radius;
- poly[3] = coordPtr[1] + radius;
- if (TkOvalToArea(poly, rectPtr) != inside) {
- return 0;
- }
- }
- return inside;
- }
- /*
- *--------------------------------------------------------------
- *
- * TkPolygonToPoint --
- *
- * Compute the distance from a point to a polygon.
- *
- * Results:
- * The return value is 0.0 if the point referred to by
- * pointPtr is within the polygon referred to by polyPtr
- * and numPoints. Otherwise the return value is the
- * distance of the point from the polygon.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- double
- TkPolygonToPoint(polyPtr, numPoints, pointPtr)
- double *polyPtr; /* Points to an array coordinates for
- * closed polygon: x0, y0, x1, y1, ...
- * The polygon may be self-intersecting. */
- int numPoints; /* Total number of points at *polyPtr. */
- double *pointPtr; /* Points to coords for point. */
- {
- double bestDist; /* Closest distance between point and
- * any edge in polygon. */
- int intersections; /* Number of edges in the polygon that
- * intersect a ray extending vertically
- * upwards from the point to infinity. */
- int count;
- register double *pPtr;
- /*
- * Iterate through all of the edges in the polygon, updating
- * bestDist and intersections.
- *
- * TRICKY POINT: when computing intersections, include left
- * x-coordinate of line within its range, but not y-coordinate.
- * Otherwise if the point lies exactly below a vertex we'll
- * count it as two intersections.
- */
- bestDist = 1.0e36;
- intersections = 0;
- for (count = numPoints, pPtr = polyPtr; count > 1; count--, pPtr += 2) {
- double x, y, dist;
- /*
- * Compute the point on the current edge closest to the point
- * and update the intersection count. This must be done
- * separately for vertical edges, horizontal edges, and
- * other edges.
- */
- if (pPtr[2] == pPtr[0]) {
- /*
- * Vertical edge.
- */
- x = pPtr[0];
- if (pPtr[1] >= pPtr[3]) {
- y = MIN(pPtr[1], pointPtr[1]);
- y = MAX(y, pPtr[3]);
- } else {
- y = MIN(pPtr[3], pointPtr[1]);
- y = MAX(y, pPtr[1]);
- }
- } else if (pPtr[3] == pPtr[1]) {
- /*
- * Horizontal edge.
- */
- y = pPtr[1];
- if (pPtr[0] >= pPtr[2]) {
- x = MIN(pPtr[0], pointPtr[0]);
- x = MAX(x, pPtr[2]);
- if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0])
- && (pointPtr[0] >= pPtr[2])) {
- intersections++;
- }
- } else {
- x = MIN(pPtr[2], pointPtr[0]);
- x = MAX(x, pPtr[0]);
- if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2])
- && (pointPtr[0] >= pPtr[0])) {
- intersections++;
- }
- }
- } else {
- double m1, b1, m2, b2;
- int lower; /* Non-zero means point below line. */
- /*
- * The edge is neither horizontal nor vertical. Convert the
- * edge to a line equation of the form y = m1*x + b1. Then
- * compute a line perpendicular to this edge but passing
- * through the point, also in the form y = m2*x + b2.
- */
- m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]);
- b1 = pPtr[1] - m1*pPtr[0];
- m2 = -1.0/m1;
- b2 = pointPtr[1] - m2*pointPtr[0];
- x = (b2 - b1)/(m1 - m2);
- y = m1*x + b1;
- if (pPtr[0] > pPtr[2]) {
- if (x > pPtr[0]) {
- x = pPtr[0];
- y = pPtr[1];
- } else if (x < pPtr[2]) {
- x = pPtr[2];
- y = pPtr[3];
- }
- } else {
- if (x > pPtr[2]) {
- x = pPtr[2];
- y = pPtr[3];
- } else if (x < pPtr[0]) {
- x = pPtr[0];
- y = pPtr[1];
- }
- }
- lower = (m1*pointPtr[0] + b1) > pointPtr[1];
- if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2]))
- && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) {
- intersections++;
- }
- }
- /*
- * Compute the distance to the closest point, and see if that
- * is the best distance seen so far.
- */
- dist = hypot(pointPtr[0] - x, pointPtr[1] - y);
- if (dist < bestDist) {
- bestDist = dist;
- }
- }
- /*
- * We've processed all of the points. If the number of intersections
- * is odd, the point is inside the polygon.
- */
- if (intersections & 0x1) {
- return 0.0;
- }
- return bestDist;
- }
- /*
- *--------------------------------------------------------------
- *
- * TkPolygonToArea --
- *
- * Determine whether a polygon lies entirely inside, entirely
- * outside, or overlapping a given rectangular area.
- *
- * Results:
- * -1 is returned if the polygon given by polyPtr and numPoints
- * is entirely outside the rectangle given by rectPtr. 0 is
- * returned if the polygon overlaps the rectangle, and 1 is
- * returned if the polygon is entirely inside the rectangle.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- int
- TkPolygonToArea(polyPtr, numPoints, rectPtr)
- double *polyPtr; /* Points to an array coordinates for
- * closed polygon: x0, y0, x1, y1, ...
- * The polygon may be self-intersecting. */
- int numPoints; /* Total number of points at *polyPtr. */
- register double *rectPtr; /* Points to coords for rectangle, in the
- * order x1, y1, x2, y2. X1 and y1 must
- * be lower-left corner. */
- {
- int state; /* State of all edges seen so far (-1 means
- * outside, 1 means inside, won't ever be
- * 0). */
- int count;
- register double *pPtr;
- /*
- * Iterate over all of the edges of the polygon and test them
- * against the rectangle. Can quit as soon as the state becomes
- * "intersecting".
- */
- state = TkLineToArea(polyPtr, polyPtr+2, rectPtr);
- if (state == 0) {
- return 0;
- }
- for (pPtr = polyPtr+2, count = numPoints-1; count >= 2;
- pPtr += 2, count--) {
- if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) {
- return 0;
- }
- }
- /*
- * If all of the edges were inside the rectangle we're done.
- * If all of the edges were outside, then the rectangle could
- * still intersect the polygon (if it's entirely enclosed).
- * Call TkPolygonToPoint to figure this out.
- */
- if (state == 1) {
- return 1;
- }
- if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) {
- return 0;
- }
- return -1;
- }
- /*
- *--------------------------------------------------------------
- *
- * TkOvalToPoint --
- *
- * Computes the distance from a given point to a given
- * oval, in canvas units.
- *
- * Results:
- * The return value is 0 if the point given by *pointPtr is
- * inside the oval. If the point isn't inside the
- * oval then the return value is approximately the distance
- * from the point to the oval. If the oval is filled, then
- * anywhere in the interior is considered "inside"; if
- * the oval isn't filled, then "inside" means only the area
- * occupied by the outline.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- /* ARGSUSED */
- double
- TkOvalToPoint(ovalPtr, width, filled, pointPtr)
- double ovalPtr[4]; /* Pointer to array of four coordinates
- * (x1, y1, x2, y2) defining oval's bounding
- * box. */
- double width; /* Width of outline for oval. */
- int filled; /* Non-zero means oval should be treated as
- * filled; zero means only consider outline. */
- double pointPtr[2]; /* Coordinates of point. */
- {
- double xDelta, yDelta, scaledDistance, distToOutline, distToCenter;
- double xDiam, yDiam;
- /*
- * Compute the distance between the center of the oval and the
- * point in question, using a coordinate system where the oval
- * has been transformed to a circle with unit radius.
- */
- xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0);
- yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0);
- distToCenter = hypot(xDelta, yDelta);
- scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0),
- yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0));
- /*
- * If the scaled distance is greater than 1 then it means no
- * hit. Compute the distance from the point to the edge of
- * the circle, then scale this distance back to the original
- * coordinate system.
- *
- * Note: this distance isn't completely accurate. It's only
- * an approximation, and it can overestimate the correct
- * distance when the oval is eccentric.
- */
- if (scaledDistance > 1.0) {
- return (distToCenter/scaledDistance) * (scaledDistance - 1.0);
- }
- /*
- * Scaled distance less than 1 means the point is inside the
- * outer edge of the oval. If this is a filled oval, then we
- * have a hit. Otherwise, do the same computation as above
- * (scale back to original coordinate system), but also check
- * to see if the point is within the width of the outline.
- */
- if (filled) {
- return 0.0;
- }
- if (scaledDistance > 1E-10) {
- distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance)
- - width;
- } else {
- /*
- * Avoid dividing by a very small number (it could cause an
- * arithmetic overflow). This problem occurs if the point is
- * very close to the center of the oval.
- */
- xDiam = ovalPtr[2] - ovalPtr[0];
- yDiam = ovalPtr[3] - ovalPtr[1];
- if (xDiam < yDiam) {
- distToOutline = (xDiam - width)/2;
- } else {
- distToOutline = (yDiam - width)/2;
- }
- }
- if (distToOutline < 0.0) {
- return 0.0;
- }
- return distToOutline;
- }
- /*
- *--------------------------------------------------------------
- *
- * TkOvalToArea --
- *
- * Determine whether an oval lies entirely inside, entirely
- * outside, or overlapping a given rectangular area.
- *
- * Results:
- * -1 is returned if the oval described by ovalPtr is entirely
- * outside the rectangle given by rectPtr. 0 is returned if the
- * oval overlaps the rectangle, and 1 is returned if the oval
- * is entirely inside the rectangle.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- int
- TkOvalToArea(ovalPtr, rectPtr)
- register double *ovalPtr; /* Points to coordinates definining the
- * bounding rectangle for the oval: x1, y1,
- * x2, y2. X1 must be less than x2 and y1
- * less than y2. */
- register double *rectPtr; /* Points to coords for rectangle, in the
- * order x1, y1, x2, y2. X1 and y1 must
- * be lower-left corner. */
- {
- double centerX, centerY, radX, radY, deltaX, deltaY;
- /*
- * First, see if oval is entirely inside rectangle or entirely
- * outside rectangle.
- */
- if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2])
- && (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) {
- return 1;
- }
- if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2])
- || (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) {
- return -1;
- }
- /*
- * Next, go through the rectangle side by side. For each side
- * of the rectangle, find the point on the side that is closest
- * to the oval's center, and see if that point is inside the
- * oval. If at least one such point is inside the oval, then
- * the rectangle intersects the oval.
- */
- centerX = (ovalPtr[0] + ovalPtr[2])/2;
- centerY = (ovalPtr[1] + ovalPtr[3])/2;
- radX = (ovalPtr[2] - ovalPtr[0])/2;
- radY = (ovalPtr[3] - ovalPtr[1])/2;
- deltaY = rectPtr[1] - centerY;
- if (deltaY < 0.0) {
- deltaY = centerY - rectPtr[3];
- if (deltaY < 0.0) {
- deltaY = 0;
- }
- }
- deltaY /= radY;
- deltaY *= deltaY;
- /*
- * Left side:
- */
- deltaX = (rectPtr[0] - centerX)/radX;
- deltaX *= deltaX;
- if ((deltaX + deltaY) <= 1.0) {
- return 0;
- }
- /*
- * Right side:
- */
- deltaX = (rectPtr[2] - centerX)/radX;
- deltaX *= deltaX;
- if ((deltaX + deltaY) <= 1.0) {
- return 0;
- }
- deltaX = rectPtr[0] - centerX;
- if (deltaX < 0.0) {
- deltaX = centerX - rectPtr[2];
- if (deltaX < 0.0) {
- deltaX = 0;
- }
- }
- deltaX /= radX;
- deltaX *= deltaX;
- /*
- * Bottom side:
- */
- deltaY = (rectPtr[1] - centerY)/radY;
- deltaY *= deltaY;
- if ((deltaX + deltaY) < 1.0) {
- return 0;
- }
- /*
- * Top side:
- */
- deltaY = (rectPtr[3] - centerY)/radY;
- deltaY *= deltaY;
- if ((deltaX + deltaY) < 1.0) {
- return 0;
- }
- return -1;
- }
- /*
- *--------------------------------------------------------------
- *
- * TkIncludePoint --
- *
- * Given a point and a generic canvas item header, expand
- * the item's bounding box if needed to include the point.
- *
- * Results:
- * None.
- *
- * Side effects:
- * The boudn.
- *
- *--------------------------------------------------------------
- */
- /* ARGSUSED */
- void
- TkIncludePoint(itemPtr, pointPtr)
- register Tk_Item *itemPtr; /* Item whose bounding box is
- * being calculated. */
- double *pointPtr; /* Address of two doubles giving
- * x and y coordinates of point. */
- {
- int tmp;
- tmp = (int) (pointPtr[0] + 0.5);
- if (tmp < itemPtr->x1) {
- itemPtr->x1 = tmp;
- }
- if (tmp > itemPtr->x2) {
- itemPtr->x2 = tmp;
- }
- tmp = (int) (pointPtr[1] + 0.5);
- if (tmp < itemPtr->y1) {
- itemPtr->y1 = tmp;
- }
- if (tmp > itemPtr->y2) {
- itemPtr->y2 = tmp;
- }
- }
- /*
- *--------------------------------------------------------------
- *
- * TkBezierScreenPoints --
- *
- * Given four control points, create a larger set of XPoints
- * for a Bezier spline based on the points.
- *
- * Results:
- * The array at *xPointPtr gets filled in with numSteps XPoints
- * corresponding to the Bezier spline defined by the four
- * control points. Note: no output point is generated for the
- * first input point, but an output point *is* generated for
- * the last input point.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- void
- TkBezierScreenPoints(canvas, control, numSteps, xPointPtr)
- Tk_Canvas canvas; /* Canvas in which curve is to be
- * drawn. */
- double control[]; /* Array of coordinates for four
- * control points: x0, y0, x1, y1,
- * ... x3 y3. */
- int numSteps; /* Number of curve points to
- * generate. */
- register XPoint *xPointPtr; /* Where to put new points. */
- {
- int i;
- double u, u2, u3, t, t2, t3;
- for (i = 1; i <= numSteps; i++, xPointPtr++) {
- t = ((double) i)/((double) numSteps);
- t2 = t*t;
- t3 = t2*t;
- u = 1.0 - t;
- u2 = u*u;
- u3 = u2*u;
- Tk_CanvasDrawableCoords(canvas,
- (control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u)
- + control[6]*t3),
- (control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u)
- + control[7]*t3),
- &xPointPtr->x, &xPointPtr->y);
- }
- }
- /*
- *--------------------------------------------------------------
- *
- * TkBezierPoints --
- *
- * Given four control points, create a larger set of points
- * for a Bezier spline based on the points.
- *
- * Results:
- * The array at *coordPtr gets filled in with 2*numSteps
- * coordinates, which correspond to the Bezier spline defined
- * by the four control points. Note: no output point is
- * generated for the first input point, but an output point
- * *is* generated for the last input point.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- void
- TkBezierPoints(control, numSteps, coordPtr)
- double control[]; /* Array of coordinates for four
- * control points: x0, y0, x1, y1,
- * ... x3 y3. */
- int numSteps; /* Number of curve points to
- * generate. */
- register double *coordPtr; /* Where to put new points. */
- {
- int i;
- double u, u2, u3, t, t2, t3;
- for (i = 1; i <= numSteps; i++, coordPtr += 2) {
- t = ((double) i)/((double) numSteps);
- t2 = t*t;
- t3 = t2*t;
- u = 1.0 - t;
- u2 = u*u;
- u3 = u2*u;
- coordPtr[0] = control[0]*u3
- + 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3;
- coordPtr[1] = control[1]*u3
- + 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3;
- }
- }
- /*
- *--------------------------------------------------------------
- *
- * TkMakeBezierCurve --
- *
- * Given a set of points, create a new set of points that fit
- * parabolic splines to the line segments connecting the original
- * points. Produces output points in either of two forms.
- *
- * Note: in spite of this procedure's name, it does *not* generate
- * Bezier curves. Since only three control points are used for
- * each curve segment, not four, the curves are actually just
- * parabolic.
- *
- * Results:
- * Either or both of the xPoints or dblPoints arrays are filled
- * in. The return value is the number of points placed in the
- * arrays. Note: if the first and last points are the same, then
- * a closed curve is generated.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- int
- TkMakeBezierCurve(canvas, pointPtr, numPoints, numSteps, xPoints, dblPoints)
- Tk_Canvas canvas; /* Canvas in which curve is to be
- * drawn. */
- double *pointPtr; /* Array of input coordinates: x0,
- * y0, x1, y1, etc.. */
- int numPoints; /* Number of points at pointPtr. */
- int numSteps; /* Number of steps to use for each
- * spline segments (determines
- * smoothness of curve). */
- XPoint xPoints[]; /* Array of XPoints to fill in (e.g.
- * for display. NULL means don't
- * fill in any XPoints. */
- double dblPoints[]; /* Array of points to fill in as
- * doubles, in the form x0, y0,
- * x1, y1, .... NULL means don't
- * fill in anything in this form.
- * Caller must make sure that this
- * array has enough space. */
- {
- int closed, outputPoints, i;
- int numCoords = numPoints*2;
- double control[8];
- /*
- * If the curve is a closed one then generate a special spline
- * that spans the last points and the first ones. Otherwise
- * just put the first point into the output.
- */
- if (!pointPtr) {
- /* Of pointPtr == NULL, this function returns an upper limit.
- * of the array size to store the coordinates. This can be
- * used to allocate storage, before the actual coordinates
- * are calculated. */
- return 1 + numPoints * numSteps;
- }
- outputPoints = 0;
- if ((pointPtr[0] == pointPtr[numCoords-2])
- && (pointPtr[1] == pointPtr[numCoords-1])) {
- closed = 1;
- control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
- control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
- control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
- control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
- control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
- control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
- control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
- control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, control[0], control[1],
- &xPoints->x, &xPoints->y);
- TkBezierScreenPoints(canvas, control, numSteps, xPoints+1);
- xPoints += numSteps+1;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = control[0];
- dblPoints[1] = control[1];
- TkBezierPoints(control, numSteps, dblPoints+2);
- dblPoints += 2*(numSteps+1);
- }
- outputPoints += numSteps+1;
- } else {
- closed = 0;
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1],
- &xPoints->x, &xPoints->y);
- xPoints += 1;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = pointPtr[0];
- dblPoints[1] = pointPtr[1];
- dblPoints += 2;
- }
- outputPoints += 1;
- }
- for (i = 2; i < numPoints; i++, pointPtr += 2) {
- /*
- * Set up the first two control points. This is done
- * differently for the first spline of an open curve
- * than for other cases.
- */
- if ((i == 2) && !closed) {
- control[0] = pointPtr[0];
- control[1] = pointPtr[1];
- control[2] = 0.333*pointPtr[0] + 0.667*pointPtr[2];
- control[3] = 0.333*pointPtr[1] + 0.667*pointPtr[3];
- } else {
- control[0] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
- control[1] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
- control[2] = 0.167*pointPtr[0] + 0.833*pointPtr[2];
- control[3] = 0.167*pointPtr[1] + 0.833*pointPtr[3];
- }
- /*
- * Set up the last two control points. This is done
- * differently for the last spline of an open curve
- * than for other cases.
- */
- if ((i == (numPoints-1)) && !closed) {
- control[4] = .667*pointPtr[2] + .333*pointPtr[4];
- control[5] = .667*pointPtr[3] + .333*pointPtr[5];
- control[6] = pointPtr[4];
- control[7] = pointPtr[5];
- } else {
- control[4] = .833*pointPtr[2] + .167*pointPtr[4];
- control[5] = .833*pointPtr[3] + .167*pointPtr[5];
- control[6] = 0.5*pointPtr[2] + 0.5*pointPtr[4];
- control[7] = 0.5*pointPtr[3] + 0.5*pointPtr[5];
- }
- /*
- * If the first two points coincide, or if the last
- * two points coincide, then generate a single
- * straight-line segment by outputting the last control
- * point.
- */
- if (((pointPtr[0] == pointPtr[2]) && (pointPtr[1] == pointPtr[3]))
- || ((pointPtr[2] == pointPtr[4])
- && (pointPtr[3] == pointPtr[5]))) {
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, control[6], control[7],
- &xPoints[0].x, &xPoints[0].y);
- xPoints++;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = control[6];
- dblPoints[1] = control[7];
- dblPoints += 2;
- }
- outputPoints += 1;
- continue;
- }
- /*
- * Generate a Bezier spline using the control points.
- */
- if (xPoints != NULL) {
- TkBezierScreenPoints(canvas, control, numSteps, xPoints);
- xPoints += numSteps;
- }
- if (dblPoints != NULL) {
- TkBezierPoints(control, numSteps, dblPoints);
- dblPoints += 2*numSteps;
- }
- outputPoints += numSteps;
- }
- return outputPoints;
- }
- /*
- *--------------------------------------------------------------
- *
- * TkMakeBezierPostscript --
- *
- * This procedure generates Postscript commands that create
- * a path corresponding to a given Bezier curve.
- *
- * Results:
- * None. Postscript commands to generate the path are appended
- * to the interp's result.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- void
- TkMakeBezierPostscript(interp, canvas, pointPtr, numPoints)
- Tcl_Interp *interp; /* Interpreter in whose result the
- * Postscript is to be stored. */
- Tk_Canvas canvas; /* Canvas widget for which the
- * Postscript is being generated. */
- double *pointPtr; /* Array of input coordinates: x0,
- * y0, x1, y1, etc.. */
- int numPoints; /* Number of points at pointPtr. */
- {
- int closed, i;
- int numCoords = numPoints*2;
- double control[8];
- char buffer[200];
- /*
- * If the curve is a closed one then generate a special spline
- * that spans the last points and the first ones. Otherwise
- * just put the first point into the path.
- */
- if ((pointPtr[0] == pointPtr[numCoords-2])
- && (pointPtr[1] == pointPtr[numCoords-1])) {
- closed = 1;
- control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
- control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
- control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
- control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
- control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
- control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
- control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
- control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
- sprintf(buffer, "%.15g %.15g moveton%.15g %.15g %.15g %.15g %.15g %.15g curveton",
- control[0], Tk_CanvasPsY(canvas, control[1]),
- control[2], Tk_CanvasPsY(canvas, control[3]),
- control[4], Tk_CanvasPsY(canvas, control[5]),
- control[6], Tk_CanvasPsY(canvas, control[7]));
- } else {
- closed = 0;
- control[6] = pointPtr[0];
- control[7] = pointPtr[1];
- sprintf(buffer, "%.15g %.15g moveton",
- control[6], Tk_CanvasPsY(canvas, control[7]));
- }
- Tcl_AppendResult(interp, buffer, (char *) NULL);
- /*
- * Cycle through all the remaining points in the curve, generating
- * a curve section for each vertex in the linear path.
- */
- for (i = numPoints-2, pointPtr += 2; i > 0; i--, pointPtr += 2) {
- control[2] = 0.333*control[6] + 0.667*pointPtr[0];
- control[3] = 0.333*control[7] + 0.667*pointPtr[1];
- /*
- * Set up the last two control points. This is done
- * differently for the last spline of an open curve
- * than for other cases.
- */
- if ((i == 1) && !closed) {
- control[6] = pointPtr[2];
- control[7] = pointPtr[3];
- } else {
- control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
- control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
- }
- control[4] = 0.333*control[6] + 0.667*pointPtr[0];
- control[5] = 0.333*control[7] + 0.667*pointPtr[1];
- sprintf(buffer, "%.15g %.15g %.15g %.15g %.15g %.15g curveton",
- control[2], Tk_CanvasPsY(canvas, control[3]),
- control[4], Tk_CanvasPsY(canvas, control[5]),
- control[6], Tk_CanvasPsY(canvas, control[7]));
- Tcl_AppendResult(interp, buffer, (char *) NULL);
- }
- }
- /*
- *--------------------------------------------------------------
- *
- * TkGetMiterPoints --
- *
- * Given three points forming an angle, compute the
- * coordinates of the inside and outside points of
- * the mitered corner formed by a line of a given
- * width at that angle.
- *
- * Results:
- * If the angle formed by the three points is less than
- * 11 degrees then 0 is returned and m1 and m2 aren't
- * modified. Otherwise 1 is returned and the points at
- * m1 and m2 are filled in with the positions of the points
- * of the mitered corner.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- int
- TkGetMiterPoints(p1, p2, p3, width, m1, m2)
- double p1[]; /* Points to x- and y-coordinates of point
- * before vertex. */
- double p2[]; /* Points to x- and y-coordinates of vertex
- * for mitered joint. */
- double p3[]; /* Points to x- and y-coordinates of point
- * after vertex. */
- double width; /* Width of line. */
- double m1[]; /* Points to place to put "left" vertex
- * point (see as you face from p1 to p2). */
- double m2[]; /* Points to place to put "right" vertex
- * point. */
- {
- double theta1; /* Angle of segment p2-p1. */
- double theta2; /* Angle of segment p2-p3. */
- double theta; /* Angle between line segments (angle
- * of joint). */
- double theta3; /* Angle that bisects theta1 and
- * theta2 and points to m1. */
- double dist; /* Distance of miter points from p2. */
- double deltaX, deltaY; /* X and y offsets cooresponding to
- * dist (fudge factors for bounding
- * box). */
- double p1x, p1y, p2x, p2y, p3x, p3y;
- static double elevenDegrees = (11.0*2.0*PI)/360.0;
- /*
- * Round the coordinates to integers to mimic what happens when the
- * line segments are displayed; without this code, the bounding box
- * of a mitered line can be miscomputed greatly.
- */
- p1x = floor(p1[0]+0.5);
- p1y = floor(p1[1]+0.5);
- p2x = floor(p2[0]+0.5);
- p2y = floor(p2[1]+0.5);
- p3x = floor(p3[0]+0.5);
- p3y = floor(p3[1]+0.5);
- if (p2y == p1y) {
- theta1 = (p2x < p1x) ? 0 : PI;
- } else if (p2x == p1x) {
- theta1 = (p2y < p1y) ? PI/2.0 : -PI/2.0;
- } else {
- theta1 = atan2(p1y - p2y, p1x - p2x);
- }
- if (p3y == p2y) {
- theta2 = (p3x > p2x) ? 0 : PI;
- } else if (p3x == p2x) {
- theta2 = (p3y > p2y) ? PI/2.0 : -PI/2.0;
- } else {
- theta2 = atan2(p3y - p2y, p3x - p2x);
- }
- theta = theta1 - theta2;
- if (theta > PI) {
- theta -= 2*PI;
- } else if (theta < -PI) {
- theta += 2*PI;
- }
- if ((theta < elevenDegrees) && (theta > -elevenDegrees)) {
- return 0;
- }
- dist = 0.5*width/sin(0.5*theta);
- if (dist < 0.0) {
- dist = -dist;
- }
- /*
- * Compute theta3 (make sure that it points to the left when
- * looking from p1 to p2).
- */
- theta3 = (theta1 + theta2)/2.0;
- if (sin(theta3 - (theta1 + PI)) < 0.0) {
- theta3 += PI;
- }
- deltaX = dist*cos(theta3);
- m1[0] = p2x + deltaX;
- m2[0] = p2x - deltaX;
- deltaY = dist*sin(theta3);
- m1[1] = p2y + deltaY;
- m2[1] = p2y - deltaY;
- return 1;
- }
- /*
- *--------------------------------------------------------------
- *
- * TkGetButtPoints --
- *
- * Given two points forming a line segment, compute the
- * coordinates of two endpoints of a rectangle formed by
- * bloating the line segment until it is width units wide.
- *
- * Results:
- * There is no return value. M1 and m2 are filled in to
- * correspond to m1 and m2 in the diagram below:
- *
- * ----------------* m1
- * |
- * p1 *---------------* p2
- * |
- * ----------------* m2
- *
- * M1 and m2 will be W units apart, with p2 centered between
- * them and m1-m2 perpendicular to p1-p2. However, if
- * "project" is true then m1 and m2 will be as follows:
- *
- * -------------------* m1
- * p2 |
- * p1 *---------------* |
- * |
- * -------------------* m2
- *
- * In this case p2 will be width/2 units from the segment m1-m2.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
- void
- TkGetButtPoints(p1, p2, width, project, m1, m2)
- double p1[]; /* Points to x- and y-coordinates of point
- * before vertex. */
- double p2[]; /* Points to x- and y-coordinates of vertex
- * for mitered joint. */
- double width; /* Width of line. */
- int project; /* Non-zero means project p2 by an additional
- * width/2 before computing m1 and m2. */
- double m1[]; /* Points to place to put "left" result
- * point, as you face from p1 to p2. */
- double m2[]; /* Points to place to put "right" result
- * point. */
- {
- double length; /* Length of p1-p2 segment. */
- double deltaX, deltaY; /* Increments in coords. */
- width *= 0.5;
- length = hypot(p2[0] - p1[0], p2[1] - p1[1]);
- if (length == 0.0) {
- m1[0] = m2[0] = p2[0];
- m1[1] = m2[1] = p2[1];
- } else {
- deltaX = -width * (p2[1] - p1[1]) / length;
- deltaY = width * (p2[0] - p1[0]) / length;
- m1[0] = p2[0] + deltaX;
- m2[0] = p2[0] - deltaX;
- m1[1] = p2[1] + deltaY;
- m2[1] = p2[1] - deltaY;
- if (project) {
- m1[0] += deltaY;
- m2[0] += deltaY;
- m1[1] -= deltaX;
- m2[1] -= deltaX;
- }
- }
- }