fdct.c
资源名称:NETVIDEO.rar [点击查看]
上传用户:sun1608
上传日期:2007-02-02
资源大小:6116k
文件大小:10k
源码类别:
流媒体/Mpeg4/MP4
开发平台:
Visual C++
- /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
- /*
- * Disclaimer of Warranty
- *
- * These software programs are available to the user without any license fee or
- * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
- * any and all warranties, whether express, implied, or statuary, including any
- * implied warranties or merchantability or of fitness for a particular
- * purpose. In no event shall the copyright-holder be liable for any
- * incidental, punitive, or consequential damages of any kind whatsoever
- * arising from the use of these programs.
- *
- * This disclaimer of warranty extends to the user of these programs and user's
- * customers, employees, agents, transferees, successors, and assigns.
- *
- * The MPEG Software Simulation Group does not represent or warrant that the
- * programs furnished hereunder are free of infringement of any third-party
- * patents.
- *
- * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
- * are subject to royalty fees to patent holders. Many of these patents are
- * general enough such that they are unavoidable regardless of implementation
- * design.
- *
- */
- /* This routine is a slow-but-accurate integer implementation of the
- * forward DCT (Discrete Cosine Transform). Taken from the IJG software
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- *
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
- * larger than the true DCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D DCT,
- * because the y0 and y4 outputs need not be divided by sqrt(N).
- * In the IJG code, this factor of 8 is removed by the quantization step
- * (in jcdctmgr.c), here it is removed.
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require 8 + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (For 12-bit sample data, the intermediate
- * array is INT32 anyway.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have 8 + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- *
- * We can gain a little more speed, with a further compromise in accuracy,
- * by omitting the addition in a descaling shift. This yields an incorrectly
- * rounded result half the time...
- */
- #include "fdct.h"
- #define USE_ACCURATE_ROUNDING
- #define RIGHT_SHIFT(x, shft) ((x) >> (shft))
- #ifdef USE_ACCURATE_ROUNDING
- #define ONE ((int) 1)
- #define DESCALE(x, n) RIGHT_SHIFT((x) + (ONE << ((n) - 1)), n)
- #else
- #define DESCALE(x, n) RIGHT_SHIFT(x, n)
- #endif
- #define CONST_BITS 13
- #define PASS1_BITS 2
- #define FIX_0_298631336 ((int) 2446) /* FIX(0.298631336) */
- #define FIX_0_390180644 ((int) 3196) /* FIX(0.390180644) */
- #define FIX_0_541196100 ((int) 4433) /* FIX(0.541196100) */
- #define FIX_0_765366865 ((int) 6270) /* FIX(0.765366865) */
- #define FIX_0_899976223 ((int) 7373) /* FIX(0.899976223) */
- #define FIX_1_175875602 ((int) 9633) /* FIX(1.175875602) */
- #define FIX_1_501321110 ((int) 12299) /* FIX(1.501321110) */
- #define FIX_1_847759065 ((int) 15137) /* FIX(1.847759065) */
- #define FIX_1_961570560 ((int) 16069) /* FIX(1.961570560) */
- #define FIX_2_053119869 ((int) 16819) /* FIX(2.053119869) */
- #define FIX_2_562915447 ((int) 20995) /* FIX(2.562915447) */
- #define FIX_3_072711026 ((int) 25172) /* FIX(3.072711026) */
- // function pointer
- fdctFuncPtr fdct;
- /*
- * Perform an integer forward DCT on one block of samples.
- */
- void fdct_int32(short * const block)
- {
- int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- int tmp10, tmp11, tmp12, tmp13;
- int z1, z2, z3, z4, z5;
- short *blkptr;
- int *dataptr;
- int data[64];
- int i;
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- dataptr = data;
- blkptr = block;
- for (i = 0; i < 8; i++)
- {
- tmp0 = blkptr[0] + blkptr[7];
- tmp7 = blkptr[0] - blkptr[7];
- tmp1 = blkptr[1] + blkptr[6];
- tmp6 = blkptr[1] - blkptr[6];
- tmp2 = blkptr[2] + blkptr[5];
- tmp5 = blkptr[2] - blkptr[5];
- tmp3 = blkptr[3] + blkptr[4];
- tmp4 = blkptr[3] - blkptr[4];
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- dataptr[0] = (tmp10 + tmp11) << PASS1_BITS;
- dataptr[4] = (tmp10 - tmp11) << PASS1_BITS;
- z1 = (tmp12 + tmp13) * FIX_0_541196100;
- dataptr[2] = DESCALE(z1 + tmp13 * FIX_0_765366865, CONST_BITS - PASS1_BITS);
- dataptr[6] = DESCALE(z1 + tmp12 * (-FIX_1_847759065), CONST_BITS - PASS1_BITS);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * cK represents cos(K*pi/16).
- * i0..i3 in the paper are tmp4..tmp7 here.
- */
- z1 = tmp4 + tmp7;
- z2 = tmp5 + tmp6;
- z3 = tmp4 + tmp6;
- z4 = tmp5 + tmp7;
- z5 = (z3 + z4) * FIX_1_175875602; /* sqrt(2) * c3 */
- tmp4 *= FIX_0_298631336; /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp5 *= FIX_2_053119869; /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp6 *= FIX_3_072711026; /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp7 *= FIX_1_501321110; /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 *= -FIX_0_899976223; /* sqrt(2) * (c7-c3) */
- z2 *= -FIX_2_562915447; /* sqrt(2) * (-c1-c3) */
- z3 *= -FIX_1_961570560; /* sqrt(2) * (-c3-c5) */
- z4 *= -FIX_0_390180644; /* sqrt(2) * (c5-c3) */
- z3 += z5;
- z4 += z5;
- dataptr[7] = DESCALE(tmp4 + z1 + z3, CONST_BITS - PASS1_BITS);
- dataptr[5] = DESCALE(tmp5 + z2 + z4, CONST_BITS - PASS1_BITS);
- dataptr[3] = DESCALE(tmp6 + z2 + z3, CONST_BITS - PASS1_BITS);
- dataptr[1] = DESCALE(tmp7 + z1 + z4, CONST_BITS - PASS1_BITS);
- dataptr += 8; /* advance pointer to next row */
- blkptr += 8;
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- */
- dataptr = data;
- for (i = 0; i < 8; i++)
- {
- tmp0 = dataptr[0] + dataptr[56];
- tmp7 = dataptr[0] - dataptr[56];
- tmp1 = dataptr[8] + dataptr[48];
- tmp6 = dataptr[8] - dataptr[48];
- tmp2 = dataptr[16] + dataptr[40];
- tmp5 = dataptr[16] - dataptr[40];
- tmp3 = dataptr[24] + dataptr[32];
- tmp4 = dataptr[24] - dataptr[32];
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- dataptr[0] = DESCALE(tmp10 + tmp11, PASS1_BITS);
- dataptr[32] = DESCALE(tmp10 - tmp11, PASS1_BITS);
- z1 = (tmp12 + tmp13) * FIX_0_541196100;
- dataptr[16] = DESCALE(z1 + tmp13 * FIX_0_765366865, CONST_BITS + PASS1_BITS);
- dataptr[48] = DESCALE(z1 + tmp12 * (-FIX_1_847759065), CONST_BITS + PASS1_BITS);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * cK represents cos(K*pi/16).
- * i0..i3 in the paper are tmp4..tmp7 here.
- */
- z1 = tmp4 + tmp7;
- z2 = tmp5 + tmp6;
- z3 = tmp4 + tmp6;
- z4 = tmp5 + tmp7;
- z5 = (z3 + z4) * FIX_1_175875602; /* sqrt(2) * c3 */
- tmp4 *= FIX_0_298631336; /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp5 *= FIX_2_053119869; /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp6 *= FIX_3_072711026; /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp7 *= FIX_1_501321110; /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 *= -FIX_0_899976223; /* sqrt(2) * (c7-c3) */
- z2 *= -FIX_2_562915447; /* sqrt(2) * (-c1-c3) */
- z3 *= -FIX_1_961570560; /* sqrt(2) * (-c3-c5) */
- z4 *= -FIX_0_390180644; /* sqrt(2) * (c5-c3) */
- z3 += z5;
- z4 += z5;
- dataptr[56] = DESCALE(tmp4 + z1 + z3, CONST_BITS + PASS1_BITS);
- dataptr[40] = DESCALE(tmp5 + z2 + z4, CONST_BITS + PASS1_BITS);
- dataptr[24] = DESCALE(tmp6 + z2 + z3, CONST_BITS + PASS1_BITS);
- dataptr[8] = DESCALE(tmp7 + z1 + z4, CONST_BITS + PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- /* descale */
- for (i = 0; i < 64; i++)
- block[i] = (short int) DESCALE(data[i], 3);
- }