rijndael-api-fst.c
资源名称:NETVIDEO.rar [点击查看]
上传用户:sun1608
上传日期:2007-02-02
资源大小:6116k
文件大小:14k
源码类别:
流媒体/Mpeg4/MP4
开发平台:
Visual C++
- /*
- * rijndael-api-fst.c v2.4 April '2000
- *
- * Optimised ANSI C code
- *
- * authors: v1.0: Antoon Bosselaers
- * v2.0: Vincent Rijmen
- * v2.1: Vincent Rijmen
- * v2.2: Vincent Rijmen
- * v2.3: Paulo Barreto
- * v2.4: Vincent Rijmen
- *
- * This code is placed in the public domain.
- */
- #include <assert.h>
- #include <stdlib.h>
- #include <string.h>
- #include "rijndael-alg-fst.h"
- #include "rijndael-api-fst.h"
- int makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial) {
- word8 k[MAXKC][4];
- int i;
- char *keyMat;
- if (key == NULL) {
- return BAD_KEY_INSTANCE;
- }
- if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
- key->direction = direction;
- } else {
- return BAD_KEY_DIR;
- }
- if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {
- key->keyLen = keyLen;
- } else {
- return BAD_KEY_MAT;
- }
- if (keyMaterial != NULL) {
- strncpy(key->keyMaterial, keyMaterial, keyLen/4);
- }
- key->ROUNDS = keyLen/32 + 6;
- /* initialize key schedule: */
- keyMat = key->keyMaterial;
- #ifndef BINARY_KEY_MATERIAL
- for (i = 0; i < key->keyLen/8; i++) {
- int t, j;
- t = *keyMat++;
- if ((t >= '0') && (t <= '9')) j = (t - '0') << 4;
- else if ((t >= 'a') && (t <= 'f')) j = (t - 'a' + 10) << 4;
- else if ((t >= 'A') && (t <= 'F')) j = (t - 'A' + 10) << 4;
- else return BAD_KEY_MAT;
- t = *keyMat++;
- if ((t >= '0') && (t <= '9')) j ^= (t - '0');
- else if ((t >= 'a') && (t <= 'f')) j ^= (t - 'a' + 10);
- else if ((t >= 'A') && (t <= 'F')) j ^= (t - 'A' + 10);
- else return BAD_KEY_MAT;
- k[i >> 2][i & 3] = (word8)j;
- }
- #else
- for (i = 0; i < key->keyLen/8; i++) {
- k[i >> 2][i & 3] = (word8)keyMat[i];
- }
- #endif /* ?BINARY_KEY_MATERIAL */
- rijndaelKeySched(k, key->keySched, key->ROUNDS);
- if (direction == DIR_DECRYPT) {
- rijndaelKeyEncToDec(key->keySched, key->ROUNDS);
- }
- return TRUE;
- }
- int cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {
- if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
- cipher->mode = mode;
- } else {
- return BAD_CIPHER_MODE;
- }
- if (IV != NULL) {
- #ifndef BINARY_KEY_MATERIAL
- int i;
- for (i = 0; i < MAX_IV_SIZE; i++) {
- int t, j;
- t = IV[2*i];
- if ((t >= '0') && (t <= '9')) j = (t - '0') << 4;
- else if ((t >= 'a') && (t <= 'f')) j = (t - 'a' + 10) << 4;
- else if ((t >= 'A') && (t <= 'F')) j = (t - 'A' + 10) << 4;
- else return BAD_CIPHER_INSTANCE;
- t = IV[2*i+1];
- if ((t >= '0') && (t <= '9')) j ^= (t - '0');
- else if ((t >= 'a') && (t <= 'f')) j ^= (t - 'a' + 10);
- else if ((t >= 'A') && (t <= 'F')) j ^= (t - 'A' + 10);
- else return BAD_CIPHER_INSTANCE;
- cipher->IV[i] = (word8)j;
- }
- #else
- memcpy(cipher->IV, IV, MAX_IV_SIZE);
- #endif /* ?BINARY_KEY_MATERIAL */
- } else {
- memset(cipher->IV, 0, MAX_IV_SIZE);
- }
- return TRUE;
- }
- int blockEncrypt(cipherInstance *cipher, keyInstance *key,
- BYTE *input, int inputLen, BYTE *outBuffer) {
- int i, k, numBlocks;
- word8 block[16], iv[4][4];
- if (cipher == NULL ||
- key == NULL ||
- key->direction == DIR_DECRYPT) {
- return BAD_CIPHER_STATE;
- }
- if (input == NULL || inputLen <= 0) {
- return 0; /* nothing to do */
- }
- numBlocks = inputLen/128;
- switch (cipher->mode) {
- case MODE_ECB:
- for (i = numBlocks; i > 0; i--) {
- rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS);
- input += 16;
- outBuffer += 16;
- }
- break;
- case MODE_CBC:
- ((word32*)block)[0] = ((word32*)cipher->IV)[0] ^ ((word32*)input)[0];
- ((word32*)block)[1] = ((word32*)cipher->IV)[1] ^ ((word32*)input)[1];
- ((word32*)block)[2] = ((word32*)cipher->IV)[2] ^ ((word32*)input)[2];
- ((word32*)block)[3] = ((word32*)cipher->IV)[3] ^ ((word32*)input)[3];
- rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
- input += 16;
- for (i = numBlocks - 1; i > 0; i--) {
- ((word32*)block)[0] = ((word32*)outBuffer)[0] ^ ((word32*)input)[0];
- ((word32*)block)[1] = ((word32*)outBuffer)[1] ^ ((word32*)input)[1];
- ((word32*)block)[2] = ((word32*)outBuffer)[2] ^ ((word32*)input)[2];
- ((word32*)block)[3] = ((word32*)outBuffer)[3] ^ ((word32*)input)[3];
- outBuffer += 16;
- rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
- input += 16;
- }
- break;
- case MODE_CFB1:
- #if STRICT_ALIGN
- memcpy(iv, cipher->IV, 16);
- #else /* !STRICT_ALIGN */
- *((word32*)iv[0]) = *((word32*)(cipher->IV ));
- *((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));
- *((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));
- *((word32*)iv[3]) = *((word32*)(cipher->IV+12));
- #endif /* ?STRICT_ALIGN */
- for (i = numBlocks; i > 0; i--) {
- for (k = 0; k < 128; k++) {
- *((word32*) block ) = *((word32*)iv[0]);
- *((word32*)(block+ 4)) = *((word32*)iv[1]);
- *((word32*)(block+ 8)) = *((word32*)iv[2]);
- *((word32*)(block+12)) = *((word32*)iv[3]);
- rijndaelEncrypt(block, block, key->keySched, key->ROUNDS);
- outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
- iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
- iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
- iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
- iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
- iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
- iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
- iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
- iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
- iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
- iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
- iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
- iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
- iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
- iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
- iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
- iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1);
- }
- }
- break;
- default:
- return BAD_CIPHER_STATE;
- }
- return 128*numBlocks;
- }
- /**
- * Encrypt data partitioned in octets, using RFC 2040-like padding.
- *
- * @param input data to be encrypted (octet sequence)
- * @param inputOctets input length in octets (not bits)
- * @param outBuffer encrypted output data
- *
- * @return length in octets (not bits) of the encrypted output buffer.
- */
- int padEncrypt(cipherInstance *cipher, keyInstance *key,
- BYTE *input, int inputOctets, BYTE *outBuffer) {
- int i, numBlocks, padLen;
- word8 block[16], *iv;
- if (cipher == NULL ||
- key == NULL ||
- key->direction == DIR_DECRYPT) {
- return BAD_CIPHER_STATE;
- }
- if (input == NULL || inputOctets <= 0) {
- return 0; /* nothing to do */
- }
- numBlocks = inputOctets/16;
- switch (cipher->mode) {
- case MODE_ECB:
- for (i = numBlocks; i > 0; i--) {
- rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS);
- input += 16;
- outBuffer += 16;
- }
- padLen = 16 - (inputOctets - 16*numBlocks);
- assert(padLen > 0 && padLen <= 16);
- memcpy(block, input, 16 - padLen);
- memset(block + 16 - padLen, padLen, padLen);
- rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
- break;
- case MODE_CBC:
- iv = cipher->IV;
- for (i = numBlocks; i > 0; i--) {
- ((word32*)block)[0] = ((word32*)input)[0] ^ ((word32*)iv)[0];
- ((word32*)block)[1] = ((word32*)input)[1] ^ ((word32*)iv)[1];
- ((word32*)block)[2] = ((word32*)input)[2] ^ ((word32*)iv)[2];
- ((word32*)block)[3] = ((word32*)input)[3] ^ ((word32*)iv)[3];
- rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
- iv = outBuffer;
- input += 16;
- outBuffer += 16;
- }
- padLen = 16 - (inputOctets - 16*numBlocks);
- assert(padLen > 0 && padLen <= 16);
- for (i = 0; i < 16 - padLen; i++) {
- block[i] = input[i] ^ iv[i];
- }
- for (i = 16 - padLen; i < 16; i++) {
- block[i] = (BYTE)padLen ^ iv[i];
- }
- rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
- break;
- default:
- return BAD_CIPHER_STATE;
- }
- return 16*(numBlocks + 1);
- }
- int blockDecrypt(cipherInstance *cipher, keyInstance *key,
- BYTE *input, int inputLen, BYTE *outBuffer) {
- int i, k, numBlocks;
- word8 block[16], iv[4][4];
- if (cipher == NULL ||
- key == NULL ||
- (cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {
- return BAD_CIPHER_STATE;
- }
- if (input == NULL || inputLen <= 0) {
- return 0; /* nothing to do */
- }
- numBlocks = inputLen/128;
- switch (cipher->mode) {
- case MODE_ECB:
- for (i = numBlocks; i > 0; i--) {
- rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS);
- input += 16;
- outBuffer += 16;
- }
- break;
- case MODE_CBC:
- #if STRICT_ALIGN
- memcpy(iv, cipher->IV, 16);
- #else
- *((word32*)iv[0]) = *((word32*)(cipher->IV ));
- *((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));
- *((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));
- *((word32*)iv[3]) = *((word32*)(cipher->IV+12));
- #endif
- for (i = numBlocks; i > 0; i--) {
- rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);
- ((word32*)block)[0] ^= *((word32*)iv[0]);
- ((word32*)block)[1] ^= *((word32*)iv[1]);
- ((word32*)block)[2] ^= *((word32*)iv[2]);
- ((word32*)block)[3] ^= *((word32*)iv[3]);
- #if STRICT_ALIGN
- memcpy(iv, input, 16);
- memcpy(outBuf, block, 16);
- #else
- *((word32*)iv[0]) = ((word32*)input)[0]; ((word32*)outBuffer)[0] = ((word32*)block)[0];
- *((word32*)iv[1]) = ((word32*)input)[1]; ((word32*)outBuffer)[1] = ((word32*)block)[1];
- *((word32*)iv[2]) = ((word32*)input)[2]; ((word32*)outBuffer)[2] = ((word32*)block)[2];
- *((word32*)iv[3]) = ((word32*)input)[3]; ((word32*)outBuffer)[3] = ((word32*)block)[3];
- #endif
- input += 16;
- outBuffer += 16;
- }
- break;
- case MODE_CFB1:
- #if STRICT_ALIGN
- memcpy(iv, cipher->IV, 16);
- #else
- *((word32*)iv[0]) = *((word32*)(cipher->IV));
- *((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));
- *((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));
- *((word32*)iv[3]) = *((word32*)(cipher->IV+12));
- #endif
- for (i = numBlocks; i > 0; i--) {
- for (k = 0; k < 128; k++) {
- *((word32*) block ) = *((word32*)iv[0]);
- *((word32*)(block+ 4)) = *((word32*)iv[1]);
- *((word32*)(block+ 8)) = *((word32*)iv[2]);
- *((word32*)(block+12)) = *((word32*)iv[3]);
- rijndaelEncrypt(block, block, key->keySched, key->ROUNDS);
- iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
- iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
- iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
- iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
- iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
- iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
- iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
- iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
- iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
- iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
- iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
- iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
- iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
- iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
- iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
- iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1);
- outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
- }
- }
- break;
- default:
- return BAD_CIPHER_STATE;
- }
- return 128*numBlocks;
- }
- int padDecrypt(cipherInstance *cipher, keyInstance *key,
- BYTE *input, int inputOctets, BYTE *outBuffer) {
- int i, numBlocks, padLen;
- word8 block[16];
- word32 iv[4];
- if (cipher == NULL ||
- key == NULL ||
- key->direction == DIR_ENCRYPT) {
- return BAD_CIPHER_STATE;
- }
- if (input == NULL || inputOctets <= 0) {
- return 0; /* nothing to do */
- }
- if (inputOctets % 16 != 0) {
- return BAD_DATA;
- }
- numBlocks = inputOctets/16;
- switch (cipher->mode) {
- case MODE_ECB:
- /* all blocks but last */
- for (i = numBlocks - 1; i > 0; i--) {
- rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS);
- input += 16;
- outBuffer += 16;
- }
- /* last block */
- rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);
- padLen = block[15];
- if (padLen >= 16) {
- return BAD_DATA;
- }
- for (i = 16 - padLen; i < 16; i++) {
- if (block[i] != padLen) {
- return BAD_DATA;
- }
- }
- memcpy(outBuffer, block, 16 - padLen);
- break;
- case MODE_CBC:
- memcpy(iv, cipher->IV, 16);
- /* all blocks but last */
- for (i = numBlocks - 1; i > 0; i--) {
- rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);
- ((word32*)block)[0] ^= iv[0];
- ((word32*)block)[1] ^= iv[1];
- ((word32*)block)[2] ^= iv[2];
- ((word32*)block)[3] ^= iv[3];
- memcpy(iv, input, 16);
- memcpy(outBuffer, block, 16);
- input += 16;
- outBuffer += 16;
- }
- /* last block */
- rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);
- ((word32*)block)[0] ^= iv[0];
- ((word32*)block)[1] ^= iv[1];
- ((word32*)block)[2] ^= iv[2];
- ((word32*)block)[3] ^= iv[3];
- padLen = block[15];
- if (padLen <= 0 || padLen > 16) {
- return BAD_DATA;
- }
- for (i = 16 - padLen; i < 16; i++) {
- if (block[i] != padLen) {
- return BAD_DATA;
- }
- }
- memcpy(outBuffer, block, 16 - padLen);
- break;
- default:
- return BAD_CIPHER_STATE;
- }
- return 16*numBlocks - padLen;
- }
- #ifdef INTERMEDIATE_VALUE_KAT
- /**
- * cipherUpdateRounds:
- *
- * Encrypts/Decrypts exactly one full block a specified number of rounds.
- * Only used in the Intermediate Value Known Answer Test.
- *
- * Returns:
- * TRUE - on success
- * BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized)
- */
- int cipherUpdateRounds(cipherInstance *cipher, keyInstance *key,
- BYTE *input, int inputLen, BYTE *outBuffer, int rounds) {
- int j;
- word8 block[4][4];
- if (cipher == NULL || key == NULL) {
- return BAD_CIPHER_STATE;
- }
- for (j = 3; j >= 0; j--) {
- /* parse input stream into rectangular array */
- *((word32*)block[j]) = *((word32*)(input+4*j));
- }
- switch (key->direction) {
- case DIR_ENCRYPT:
- rijndaelEncryptRound(block, key->keySched, key->ROUNDS, rounds);
- break;
- case DIR_DECRYPT:
- rijndaelDecryptRound(block, key->keySched, key->ROUNDS, rounds);
- break;
- default:
- return BAD_KEY_DIR;
- }
- for (j = 3; j >= 0; j--) {
- /* parse rectangular array into output ciphertext bytes */
- *((word32*)(outBuffer+4*j)) = *((word32*)block[j]);
- }
- return TRUE;
- }
- #endif /* INTERMEDIATE_VALUE_KAT */