g72x.c
上传用户:haomin008
上传日期:2007-01-06
资源大小:12k
文件大小:14k
- /*
- * This source code is a product of Sun Microsystems, Inc. and is provided
- * for unrestricted use. Users may copy or modify this source code without
- * charge.
- *
- * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
- * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
- *
- * Sun source code is provided with no support and without any obligation on
- * the part of Sun Microsystems, Inc. to assist in its use, correction,
- * modification or enhancement.
- *
- * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
- * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
- * OR ANY PART THEREOF.
- *
- * In no event will Sun Microsystems, Inc. be liable for any lost revenue
- * or profits or other special, indirect and consequential damages, even if
- * Sun has been advised of the possibility of such damages.
- *
- * Sun Microsystems, Inc.
- * 2550 Garcia Avenue
- * Mountain View, California 94043
- */
- /*
- * g72x.c
- *
- * Common routines for G.721 and G.723 conversions.
- */
- #include "g72x.h"
- static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
- 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
- /*
- * quan()
- *
- * quantizes the input val against the table of size short integers.
- * It returns i if table[i - 1] <= val < table[i].
- *
- * Using linear search for simple coding.
- */
- static int
- quan(
- int val,
- short *table,
- int size)
- {
- int i;
- for (i = 0; i < size; i++)
- if (val < *table++)
- break;
- return (i);
- }
- /*
- * fmult()
- *
- * returns the integer product of the 14-bit integer "an" and
- * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
- */
- static int
- fmult(
- int an,
- int srn)
- {
- short anmag, anexp, anmant;
- short wanexp, wanmag, wanmant;
- short retval;
- anmag = (an > 0) ? an : ((-an) & 0x1FFF);
- anexp = quan(anmag, power2, 15) - 6;
- anmant = (anmag == 0) ? 32 :
- (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
- wanexp = anexp + ((srn >> 6) & 0xF) - 13;
- wanmant = (anmant * (srn & 077) + 0x30) >> 4;
- retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
- (wanmant >> -wanexp);
- return (((an ^ srn) < 0) ? -retval : retval);
- }
- /*
- * g72x_init_state()
- *
- * This routine initializes and/or resets the g72x_state structure
- * pointed to by 'state_ptr'.
- * All the initial state values are specified in the CCITT G.721 document.
- */
- void
- g72x_init_state(
- struct g72x_state *state_ptr)
- {
- int cnta;
- state_ptr->yl = 34816;
- state_ptr->yu = 544;
- state_ptr->dms = 0;
- state_ptr->dml = 0;
- state_ptr->ap = 0;
- for (cnta = 0; cnta < 2; cnta++) {
- state_ptr->a[cnta] = 0;
- state_ptr->pk[cnta] = 0;
- state_ptr->sr[cnta] = 32;
- }
- for (cnta = 0; cnta < 6; cnta++) {
- state_ptr->b[cnta] = 0;
- state_ptr->dq[cnta] = 32;
- }
- state_ptr->td = 0;
- }
- /*
- * predictor_zero()
- *
- * computes the estimated signal from 6-zero predictor.
- *
- */
- int
- predictor_zero(
- struct g72x_state *state_ptr)
- {
- int i;
- int sezi;
- sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
- for (i = 1; i < 6; i++) /* ACCUM */
- sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
- return (sezi);
- }
- /*
- * predictor_pole()
- *
- * computes the estimated signal from 2-pole predictor.
- *
- */
- int
- predictor_pole(
- struct g72x_state *state_ptr)
- {
- return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
- fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
- }
- /*
- * step_size()
- *
- * computes the quantization step size of the adaptive quantizer.
- *
- */
- int
- step_size(
- struct g72x_state *state_ptr)
- {
- int y;
- int dif;
- int al;
- if (state_ptr->ap >= 256)
- return (state_ptr->yu);
- else {
- y = state_ptr->yl >> 6;
- dif = state_ptr->yu - y;
- al = state_ptr->ap >> 2;
- if (dif > 0)
- y += (dif * al) >> 6;
- else if (dif < 0)
- y += (dif * al + 0x3F) >> 6;
- return (y);
- }
- }
- /*
- * quantize()
- *
- * Given a raw sample, 'd', of the difference signal and a
- * quantization step size scale factor, 'y', this routine returns the
- * ADPCM codeword to which that sample gets quantized. The step
- * size scale factor division operation is done in the log base 2 domain
- * as a subtraction.
- */
- int
- quantize(
- int d, /* Raw difference signal sample */
- int y, /* Step size multiplier */
- short *table, /* quantization table */
- int size) /* table size of short integers */
- {
- short dqm; /* Magnitude of 'd' */
- short exp; /* Integer part of base 2 log of 'd' */
- short mant; /* Fractional part of base 2 log */
- short dl; /* Log of magnitude of 'd' */
- short dln; /* Step size scale factor normalized log */
- int i;
- /*
- * LOG
- *
- * Compute base 2 log of 'd', and store in 'dl'.
- */
- dqm = abs(d);
- exp = quan(dqm >> 1, power2, 15);
- mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
- dl = (exp << 7) + mant;
- /*
- * SUBTB
- *
- * "Divide" by step size multiplier.
- */
- dln = dl - (y >> 2);
- /*
- * QUAN
- *
- * Obtain codword i for 'd'.
- */
- i = quan(dln, table, size);
- if (d < 0) /* take 1's complement of i */
- return ((size << 1) + 1 - i);
- else if (i == 0) /* take 1's complement of 0 */
- return ((size << 1) + 1); /* new in 1988 */
- else
- return (i);
- }
- /*
- * reconstruct()
- *
- * Returns reconstructed difference signal 'dq' obtained from
- * codeword 'i' and quantization step size scale factor 'y'.
- * Multiplication is performed in log base 2 domain as addition.
- */
- int
- reconstruct(
- int sign, /* 0 for non-negative value */
- int dqln, /* G.72x codeword */
- int y) /* Step size multiplier */
- {
- short dql; /* Log of 'dq' magnitude */
- short dex; /* Integer part of log */
- short dqt;
- short dq; /* Reconstructed difference signal sample */
- dql = dqln + (y >> 2); /* ADDA */
- if (dql < 0) {
- return ((sign) ? -0x8000 : 0);
- } else { /* ANTILOG */
- dex = (dql >> 7) & 15;
- dqt = 128 + (dql & 127);
- dq = (dqt << 7) >> (14 - dex);
- return ((sign) ? (dq - 0x8000) : dq);
- }
- }
- /*
- * update()
- *
- * updates the state variables for each output code
- */
- void
- update(
- int code_size, /* distinguish 723_40 with others */
- int y, /* quantizer step size */
- int wi, /* scale factor multiplier */
- int fi, /* for long/short term energies */
- int dq, /* quantized prediction difference */
- int sr, /* reconstructed signal */
- int dqsez, /* difference from 2-pole predictor */
- struct g72x_state *state_ptr) /* coder state pointer */
- {
- int cnt;
- short mag, exp, mant; /* Adaptive predictor, FLOAT A */
- short a2p; /* LIMC */
- short a1ul; /* UPA1 */
- short ua2, pks1; /* UPA2 */
- short uga2a, fa1;
- short uga2b;
- char tr; /* tone/transition detector */
- short ylint, thr2, dqthr;
- short ylfrac, thr1;
- short pk0;
- pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
- mag = dq & 0x7FFF; /* prediction difference magnitude */
- /* TRANS */
- ylint = state_ptr->yl >> 15; /* exponent part of yl */
- ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
- thr1 = (32 + ylfrac) << ylint; /* threshold */
- thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
- dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
- if (state_ptr->td == 0) /* signal supposed voice */
- tr = 0;
- else if (mag <= dqthr) /* supposed data, but small mag */
- tr = 0; /* treated as voice */
- else /* signal is data (modem) */
- tr = 1;
- /*
- * Quantizer scale factor adaptation.
- */
- /* FUNCTW & FILTD & DELAY */
- /* update non-steady state step size multiplier */
- state_ptr->yu = y + ((wi - y) >> 5);
- /* LIMB */
- if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
- state_ptr->yu = 544;
- else if (state_ptr->yu > 5120)
- state_ptr->yu = 5120;
- /* FILTE & DELAY */
- /* update steady state step size multiplier */
- state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
- /*
- * Adaptive predictor coefficients.
- */
- if (tr == 1) { /* reset a's and b's for modem signal */
- state_ptr->a[0] = 0;
- state_ptr->a[1] = 0;
- state_ptr->b[0] = 0;
- state_ptr->b[1] = 0;
- state_ptr->b[2] = 0;
- state_ptr->b[3] = 0;
- state_ptr->b[4] = 0;
- state_ptr->b[5] = 0;
- } else { /* update a's and b's */
- pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
- /* update predictor pole a[1] */
- a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
- if (dqsez != 0) {
- fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
- if (fa1 < -8191) /* a2p = function of fa1 */
- a2p -= 0x100;
- else if (fa1 > 8191)
- a2p += 0xFF;
- else
- a2p += fa1 >> 5;
- if (pk0 ^ state_ptr->pk[1])
- /* LIMC */
- if (a2p <= -12160)
- a2p = -12288;
- else if (a2p >= 12416)
- a2p = 12288;
- else
- a2p -= 0x80;
- else if (a2p <= -12416)
- a2p = -12288;
- else if (a2p >= 12160)
- a2p = 12288;
- else
- a2p += 0x80;
- }
- /* TRIGB & DELAY */
- state_ptr->a[1] = a2p;
- /* UPA1 */
- /* update predictor pole a[0] */
- state_ptr->a[0] -= state_ptr->a[0] >> 8;
- if (dqsez != 0)
- if (pks1 == 0)
- state_ptr->a[0] += 192;
- else
- state_ptr->a[0] -= 192;
- /* LIMD */
- a1ul = 15360 - a2p;
- if (state_ptr->a[0] < -a1ul)
- state_ptr->a[0] = -a1ul;
- else if (state_ptr->a[0] > a1ul)
- state_ptr->a[0] = a1ul;
- /* UPB : update predictor zeros b[6] */
- for (cnt = 0; cnt < 6; cnt++) {
- if (code_size == 5) /* for 40Kbps G.723 */
- state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
- else /* for G.721 and 24Kbps G.723 */
- state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
- if (dq & 0x7FFF) { /* XOR */
- if ((dq ^ state_ptr->dq[cnt]) >= 0)
- state_ptr->b[cnt] += 128;
- else
- state_ptr->b[cnt] -= 128;
- }
- }
- }
- for (cnt = 5; cnt > 0; cnt--)
- state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
- /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
- if (mag == 0) {
- state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
- } else {
- exp = quan(mag, power2, 15);
- state_ptr->dq[0] = (dq >= 0) ?
- (exp << 6) + ((mag << 6) >> exp) :
- (exp << 6) + ((mag << 6) >> exp) - 0x400;
- }
- state_ptr->sr[1] = state_ptr->sr[0];
- /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
- if (sr == 0) {
- state_ptr->sr[0] = 0x20;
- } else if (sr > 0) {
- exp = quan(sr, power2, 15);
- state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
- } else if (sr > -32768) {
- mag = -sr;
- exp = quan(mag, power2, 15);
- state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
- } else
- state_ptr->sr[0] = 0xFC20;
- /* DELAY A */
- state_ptr->pk[1] = state_ptr->pk[0];
- state_ptr->pk[0] = pk0;
- /* TONE */
- if (tr == 1) /* this sample has been treated as data */
- state_ptr->td = 0; /* next one will be treated as voice */
- else if (a2p < -11776) /* small sample-to-sample correlation */
- state_ptr->td = 1; /* signal may be data */
- else /* signal is voice */
- state_ptr->td = 0;
- /*
- * Adaptation speed control.
- */
- state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
- state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
- if (tr == 1)
- state_ptr->ap = 256;
- else if (y < 1536) /* SUBTC */
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else if (state_ptr->td == 1)
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
- (state_ptr->dml >> 3))
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else
- state_ptr->ap += (-state_ptr->ap) >> 4;
- }
- /*
- * tandem_adjust(sr, se, y, i, sign)
- *
- * At the end of ADPCM decoding, it simulates an encoder which may be receiving
- * the output of this decoder as a tandem process. If the output of the
- * simulated encoder differs from the input to this decoder, the decoder output
- * is adjusted by one level of A-law or u-law codes.
- *
- * Input:
- * sr decoder output linear PCM sample,
- * se predictor estimate sample,
- * y quantizer step size,
- * i decoder input code,
- * sign sign bit of code i
- *
- * Return:
- * adjusted A-law or u-law compressed sample.
- */
- int
- tandem_adjust_alaw(
- int sr, /* decoder output linear PCM sample */
- int se, /* predictor estimate sample */
- int y, /* quantizer step size */
- int i, /* decoder input code */
- int sign,
- short *qtab)
- {
- unsigned char sp; /* A-law compressed 8-bit code */
- short dx; /* prediction error */
- char id; /* quantized prediction error */
- int sd; /* adjusted A-law decoded sample value */
- int im; /* biased magnitude of i */
- int imx; /* biased magnitude of id */
- if (sr <= -32768)
- sr = -1;
- sp = linear2alaw((sr >> 1) << 3); /* short to A-law compression */
- dx = (alaw2linear(sp) >> 2) - se; /* 16-bit prediction error */
- id = quantize(dx, y, qtab, sign - 1);
- if (id == i) { /* no adjustment on sp */
- return (sp);
- } else { /* sp adjustment needed */
- /* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */
- im = i ^ sign; /* 2's complement to biased unsigned */
- imx = id ^ sign;
- if (imx > im) { /* sp adjusted to next lower value */
- if (sp & 0x80) {
- sd = (sp == 0xD5) ? 0x55 :
- ((sp ^ 0x55) - 1) ^ 0x55;
- } else {
- sd = (sp == 0x2A) ? 0x2A :
- ((sp ^ 0x55) + 1) ^ 0x55;
- }
- } else { /* sp adjusted to next higher value */
- if (sp & 0x80)
- sd = (sp == 0xAA) ? 0xAA :
- ((sp ^ 0x55) + 1) ^ 0x55;
- else
- sd = (sp == 0x55) ? 0xD5 :
- ((sp ^ 0x55) - 1) ^ 0x55;
- }
- return (sd);
- }
- }
- int
- tandem_adjust_ulaw(
- int sr, /* decoder output linear PCM sample */
- int se, /* predictor estimate sample */
- int y, /* quantizer step size */
- int i, /* decoder input code */
- int sign,
- short *qtab)
- {
- unsigned char sp; /* u-law compressed 8-bit code */
- short dx; /* prediction error */
- char id; /* quantized prediction error */
- int sd; /* adjusted u-law decoded sample value */
- int im; /* biased magnitude of i */
- int imx; /* biased magnitude of id */
- if (sr <= -32768)
- sr = 0;
- sp = linear2ulaw(sr << 2); /* short to u-law compression */
- dx = (ulaw2linear(sp) >> 2) - se; /* 16-bit prediction error */
- id = quantize(dx, y, qtab, sign - 1);
- if (id == i) {
- return (sp);
- } else {
- /* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */
- im = i ^ sign; /* 2's complement to biased unsigned */
- imx = id ^ sign;
- if (imx > im) { /* sp adjusted to next lower value */
- if (sp & 0x80)
- sd = (sp == 0xFF) ? 0x7E : sp + 1;
- else
- sd = (sp == 0) ? 0 : sp - 1;
- } else { /* sp adjusted to next higher value */
- if (sp & 0x80)
- sd = (sp == 0x80) ? 0x80 : sp - 1;
- else
- sd = (sp == 0x7F) ? 0xFE : sp + 1;
- }
- return (sd);
- }
- }