AR_to_SS.m
上传用户:mozhenmi
上传日期:2008-02-18
资源大小:13k
文件大小:1k
- function [F,H,Q,R,initx, initV] = AR_to_SS(coef, C, y)
- %
- % Convert a vector auto-regressive model of order k to state-space form.
- % [F,H,Q,R] = AR_to_SS(coef, C, y)
- %
- % X(i) = A(1) X(i-1) + ... + A(k) X(i-k+1) + v, where v ~ N(0, C)
- % and A(i) = coef(:,:,i) is the weight matrix for i steps ago.
- % We initialize the state vector with [y(:,k)' ... y(:,1)']', since
- % the state vector stores [X(i) ... X(i-k+1)]' in order.
- [s s2 k] = size(coef); % s is the size of the state vector
- bs = s * ones(1,k); % size of each block
- F = zeros(s*k);
- for i=1:k
- F(block(1,bs), block(i,bs)) = coef(:,:,i);
- end
- for i=1:k-1
- F(block(i+1,bs), block(i,bs)) = eye(s);
- end
- H = zeros(1*s, k*s);
- % we get to see the most recent component of the state vector
- H(block(1,bs), block(1,bs)) = eye(s);
- %for i=1:k
- % H(block(1,bs), block(i,bs)) = eye(s);
- %end
- Q = zeros(k*s);
- Q(block(1,bs), block(1,bs)) = C;
- R = zeros(s);
- initx = zeros(k*s, 1);
- for i=1:k
- initx(block(i,bs)) = y(:, k-i+1); % concatenate the first k observation vectors
- end
- initV = zeros(k*s); % no uncertainty about the state (since perfectly observable)