log__L.c
上传用户:baixin
上传日期:2008-03-13
资源大小:4795k
文件大小:5k
- /* log__L.c - math routine */
- /* Copyright 1992 Wind River Systems, Inc. */
- /*
- modification history
- --------------------
- 01a,08jul92,smb documentation.
- */
- /*
- DESCRIPTION
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that the above copyright notice and this paragraph are
- * duplicated in all such forms and that any documentation,
- * advertising materials, and other materials related to such
- * distribution and use acknowledge that the software was developed
- * by the University of California, Berkeley. The name of the
- * University may not be used to endorse or promote products derived
- * from this software without specific prior written permission.
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
- * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- *
- SEE ALSO: American National Standard X3.159-1989
- NOMANUAL
- */
- #include "vxWorks.h"
- #include "math.h"
- #if defined(vax)||defined(tahoe) /* VAX D format (56 bits) */
- #ifdef vax
- #define _0x(A,B) 0x/**/A/**/B
- #else /* vax */
- #define _0x(A,B) 0x/**/B/**/A
- #endif /* vax */
- /* static double */
- /* L1 = 6.6666666666666703212E-1 , Hex 2^ 0 * .AAAAAAAAAAAAC5 */
- /* L2 = 3.9999999999970461961E-1 , Hex 2^ -1 * .CCCCCCCCCC2684 */
- /* L3 = 2.8571428579395698188E-1 , Hex 2^ -1 * .92492492F85782 */
- /* L4 = 2.2222221233634724402E-1 , Hex 2^ -2 * .E38E3839B7AF2C */
- /* L5 = 1.8181879517064680057E-1 , Hex 2^ -2 * .BA2EB4CC39655E */
- /* L6 = 1.5382888777946145467E-1 , Hex 2^ -2 * .9D8551E8C5781D */
- /* L7 = 1.3338356561139403517E-1 , Hex 2^ -2 * .8895B3907FCD92 */
- /* L8 = 1.2500000000000000000E-1 , Hex 2^ -2 * .80000000000000 */
- static long L1x[] = { _0x(aaaa,402a), _0x(aac5,aaaa)};
- static long L2x[] = { _0x(cccc,3fcc), _0x(2684,cccc)};
- static long L3x[] = { _0x(4924,3f92), _0x(5782,92f8)};
- static long L4x[] = { _0x(8e38,3f63), _0x(af2c,39b7)};
- static long L5x[] = { _0x(2eb4,3f3a), _0x(655e,cc39)};
- static long L6x[] = { _0x(8551,3f1d), _0x(781d,e8c5)};
- static long L7x[] = { _0x(95b3,3f08), _0x(cd92,907f)};
- static long L8x[] = { _0x(0000,3f00), _0x(0000,0000)};
- #define L1 (*(double*)L1x)
- #define L2 (*(double*)L2x)
- #define L3 (*(double*)L3x)
- #define L4 (*(double*)L4x)
- #define L5 (*(double*)L5x)
- #define L6 (*(double*)L6x)
- #define L7 (*(double*)L7x)
- #define L8 (*(double*)L8x)
- #else /* defined(vax)||defined(tahoe) */
- static double
- L1 = 6.6666666666667340202E-1 , /*Hex 2^ -1 * 1.5555555555592 */
- L2 = 3.9999999999416702146E-1 , /*Hex 2^ -2 * 1.999999997FF24 */
- L3 = 2.8571428742008753154E-1 , /*Hex 2^ -2 * 1.24924941E07B4 */
- L4 = 2.2222198607186277597E-1 , /*Hex 2^ -3 * 1.C71C52150BEA6 */
- L5 = 1.8183562745289935658E-1 , /*Hex 2^ -3 * 1.74663CC94342F */
- L6 = 1.5314087275331442206E-1 , /*Hex 2^ -3 * 1.39A1EC014045B */
- L7 = 1.4795612545334174692E-1 ; /*Hex 2^ -3 * 1.2F039F0085122 */
- #endif /* defined(vax)||defined(tahoe) */
- /*****************************************************************************
- * log__l -
- *
- * log__L(Z)
- * LOG(1+X) - 2S X
- * RETURN --------------- WHERE Z = S*S, S = ------- , 0 <= Z <= .0294...
- * S 2 + X
- *
- * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
- * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS
- * CODED IN C BY K.C. NG, 1/19/85;
- * REVISED BY K.C. Ng, 2/3/85, 4/16/85.
- *
- * Method :
- * 1. Polynomial approximation: let s = x/(2+x).
- * Based on log(1+x) = log(1+s) - log(1-s)
- * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- *
- * (log(1+x) - 2s)/s is computed by
- *
- * z*(L1 + z*(L2 + z*(... (L7 + z*L8)...)))
- *
- * where z=s*s. (See the listing below for Lk's values.) The
- * coefficients are obtained by a special Remez algorithm.
- *
- * Accuracy:
- * Assuming no rounding error, the maximum magnitude of the approximation
- * error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63)
- * for VAX D format.
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- NOMANUAL
- */
- double log__L(z)
- double z;
- {
- #if defined(vax)||defined(tahoe)
- return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8))))))));
- #else /* defined(vax)||defined(tahoe) */
- return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7)))))));
- #endif /* defined(vax)||defined(tahoe) */
- }