sqrt.c
上传用户:baixin
上传日期:2008-03-13
资源大小:4795k
文件大小:6k
- /* sqrt.c - software version of sqare-root routine */
- /* Copyright 1992-1994 Wind River Systems, Inc. */
- /*
- modification history
- --------------------
- 01h,18nov99,dra added SPARCV9 support for h/w sqrt.
- 01g,05feb99,dgp document errno values
- 01f,02sep93,jwt moved sparcHardSqrt to src/arch/sparc/sparcLib.c.
- 01e,05feb93,jdi doc changes based on kdl review.
- 01d,02dec92,jdi doc tweaks.
- 01c,28oct92,jdi documentation cleanup.
- 01b,13oct92,jdi mangen fixes.
- 01a,23jun92,kdl extracted from v.01d of support.c.
- */
- /*
- DESCRIPTION
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that the above copyright notice and this paragraph are
- * duplicated in all such forms and that any documentation,
- * advertising materials, and other materials related to such
- * distribution and use acknowledge that the software was developed
- * by the University of California, Berkeley. The name of the
- * University may not be used to endorse or promote products derived
- * from this software without specific prior written permission.
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
- * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- *
- * Some IEEE standard 754 recommended functions and remainder and sqrt for
- * supporting the C elementary functions.
- * -------------------------------------------------------------------------
- * WARNING:
- * These codes are developed (in double) to support the C elementary
- * functions temporarily. They are not universal, and some of them are very
- * slow (in particular, drem and sqrt is extremely inefficient). Each
- * computer system should have its implementation of these functions using
- * its own assembler.
- * -------------------------------------------------------------------------
- *
- * IEEE 754 required operations:
- * drem(x,p)
- * returns x REM y = x - [x/y]*y , where [x/y] is the integer
- * nearest x/y; in half way case, choose the even one.
- * sqrt(x)
- * returns the square root of x correctly rounded according to
- * the rounding mod.
- *
- * IEEE 754 recommended functions:
- * (a) copysign(x,y)
- * returns x with the sign of y.
- * (b) scalb(x,N)
- * returns x * (2**N), for integer values N.
- * (c) logb(x)
- * returns the unbiased exponent of x, a signed integer in
- * double precision, except that logb(0) is -INF, logb(INF)
- * is +INF, and logb(NAN) is that NAN.
- * (d) finite(x)
- * returns the value TRUE if -INF < x < +INF and returns
- * FALSE otherwise.
- *
- *
- * CODED IN C BY K.C. NG, 11/25/84;
- * REVISED BY K.C. NG on 1/22/85, 2/13/85, 3/24/85.
- *
- * SEE ALSO: American National Standard X3.159-1989
- * NOMANUAL
- */
- #include "vxWorks.h"
- #include "math.h"
- #include "private/mathP.h"
- #include "errno.h"
- extern double scalb();
- extern double logb();
- extern int finite();
- /*******************************************************************************
- *
- * sqrt - compute a non-negative square root (ANSI)
- *
- * This routine computes the non-negative square root of <x> in double
- * precision. A domain error occurs if the argument is negative.
- *
- * INCLUDE FILES: math.h
- *
- * RETURNS: The double-precision square root of <x>.
- *
- * ERROR: EDOM
- *
- * SEE ALSO: mathALib
- */
- double sqrt
- (
- double x /* value to compute the square root of */
- )
- {
- double q,s,b,r;
- double t,zero=0.0;
- int m,n,i;
- #if defined(vax)||defined(tahoe)
- int k=54;
- #else /* defined(vax)||defined(tahoe) */
- int k=51;
- #endif /* defined(vax)||defined(tahoe) */
- /* Select hardware/software square root */
- #if (CPU_FAMILY == SPARC) || (CPU_FAMILY == SPARCV9)
- extern BOOL sparcHardSqrt;
- if (sparcHardSqrt == TRUE)
- {
- double sqrtHw();
- return (sqrtHw (x));
- }
- #endif /* (CPU_FAMILY == SPARC) */
- /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
- if(x!=x||x==zero) return(x);
- /* sqrt(negative) is invalid */
- if(x<zero) {
- #if defined(vax)||defined(tahoe)
- extern double infnan();
- return (infnan(EDOM)); /* NaN */
- #else /* defined(vax)||defined(tahoe) */
- errno = EDOM;
- return(zero/zero);
- #endif /* defined(vax)||defined(tahoe) */
- }
- /* sqrt(INF) is INF */
- if(!finite(x)) return(x);
- /* scale x to [1,4) */
- n=logb(x);
- x=scalb(x,-n);
- if((m=logb(x))!=0) x=scalb(x,-m); /* subnormal number */
- m += n;
- n = m/2;
- if((n+n)!=m) {x *= 2; m -=1; n=m/2;}
- /* generate sqrt(x) bit by bit (accumulating in q) */
- q=1.0; s=4.0; x -= 1.0; r=1;
- for(i=1;i<=k;i++) {
- t=s+1; x *= 4; r /= 2;
- if(t<=x) {
- s=t+t+2, x -= t; q += r;}
- else
- s *= 2;
- }
- /* generate the last bit and determine the final rounding */
- r/=2; x *= 4;
- if(x==zero) goto end; 100+r; /* trigger inexact flag */
- if(s<x) {
- q+=r; x -=s; s += 2; s *= 2; x *= 4;
- t = (x-s)-5;
- b=1.0+3*r/4; if(b==1.0) goto end; /* b==1 : Round-to-zero */
- b=1.0+r/4; if(b>1.0) t=1; /* b>1 : Round-to-(+INF) */
- if(t>=0) q+=r; } /* else: Round-to-nearest */
- else {
- s *= 2; x *= 4;
- t = (x-s)-1;
- b=1.0+3*r/4; if(b==1.0) goto end;
- b=1.0+r/4; if(b>1.0) t=1;
- if(t>=0) q+=r; }
- end: return(scalb(q,n));
- }