inflateLib.c
上传用户:baixin
上传日期:2008-03-13
资源大小:4795k
文件大小:73k
- /* inflateLib.c - inflate code using public domain zlib functions */
- /*
- modification history
- --------------------
- 01g,26oct01,cyr doc: correct SPR 22609 url link
- 01f,19oct01,dat Documentation formatting
- 01e,23mar99,fle doc : fixed INTERNAL handling
- 01d,27aug98,fle doc : documented inflate_codes_new routine header
- 01c,01may98,cdp fix bzero; fix storage allocator overwriting memory.
- 01b,07nov96,dgp doc: final formatting
- 01a,18aug96,ms written based on public domain zlib code.
- */
- /*
- DESCRIPTION
- This library is used to inflate a compressed data stream, primarily
- for boot ROM decompression.
- Compressed boot ROMs contain a compressed executable in the data segment
- between the symbols `binArrayStart' and `binArrayEnd' (the compressed
- data is generated by deflate() and `binToAsm').
- The boot ROM startup code (in target/src/config/all/bootInit.c) calls
- inflate() to decompress the executable and then jump to it.
- This library is based on the public domain zlib code, which has been
- modified by Wind River Systems. For more information, see
- the zlib home page at `http://www.gzip.org/zlib/'.
- INTERNAL
- Questions about zlib should be sent to <zlib@quest.jpl.nasa.gov> or,
- if this fails, to the addresses given below in the Copyright section.
- .SH The following copyright notice is part of the zlib source distribution.
- Copyright notice:
- (C) 1995-1996 Jean-loup Gailly and Mark Adler
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the authors be held liable for any damages
- arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- Jean-loup Gailly Mark Adler
- gzip@prep.ai.mit.edu madler@alumni.caltech.edu
- .SH Overview of the compression/decompression
- 1. Compression algorithm (deflate)
- The deflation algorithm used by zlib (also zip and gzip) is a variation of
- LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
- the input data. The second occurrence of a string is replaced by a
- pointer to the previous string, in the form of a pair (distance,
- length). Distances are limited to 32K bytes, and lengths are limited
- to 258 bytes. When a string does not occur anywhere in the previous
- 32K bytes, it is emitted as a sequence of literal bytes. (In this
- description, `string' must be taken as an arbitrary sequence of bytes,
- and is not restricted to printable characters.)
- Literals or match lengths are compressed with one Huffman tree, and
- match distances are compressed with another tree. The trees are stored
- in a compact form at the start of each block. The blocks can have any
- size (except that the compressed data for one block must fit in
- available memory). A block is terminated when deflate() determines that
- it would be useful to start another block with fresh trees. (This is
- somewhat similar to the behavior of LZW-based _compress_.)
- Duplicated strings are found using a hash table. All input strings of
- length 3 are inserted in the hash table. A hash index is computed for
- the next 3 bytes. If the hash chain for this index is not empty, all
- strings in the chain are compared with the current input string, and
- the longest match is selected.
- The hash chains are searched starting with the most recent strings, to
- favor small distances and thus take advantage of the Huffman encoding.
- The hash chains are singly linked. There are no deletions from the
- hash chains, the algorithm simply discards matches that are too old.
- To avoid a worst-case situation, very long hash chains are arbitrarily
- truncated at a certain length, determined by a runtime option (level
- parameter of deflateInit). So deflate() does not always find the longest
- possible match but generally finds a match which is long enough.
- deflate() also defers the selection of matches with a lazy evaluation
- mechanism. After a match of length N has been found, deflate() searches for a
- longer match at the next input byte. If a longer match is found, the
- previous match is truncated to a length of one (thus producing a single
- literal byte) and the longer match is emitted afterwards. Otherwise,
- the original match is kept, and the next match search is attempted only
- N steps later.
- The lazy match evaluation is also subject to a runtime parameter. If
- the current match is long enough, deflate() reduces the search for a longer
- match, thus speeding up the whole process. If compression ratio is more
- important than speed, deflate() attempts a complete second search even if
- the first match is already long enough.
- The lazy match evaluation is not performed for the fastest compression
- modes (level parameter 1 to 3). For these fast modes, new strings
- are inserted in the hash table only when no match was found, or
- when the match is not too long. This degrades the compression ratio
- but saves time since there are both fewer insertions and fewer searches.
- 2. Decompression algorithm (zinflate)
- The real question is, given a Huffman tree, how to decode fast. The most
- important realization is that shorter codes are much more common than
- longer codes, so pay attention to decoding the short codes fast, and let
- the long codes take longer to decode.
- zinflate() sets up a first level table that covers some number of bits of
- input less than the length of longest code. It gets that many bits from the
- stream, and looks it up in the table. The table will tell if the next
- code is that many bits or less and how many, and if it is, it will tell
- the value, else it will point to the next level table for which zinflate()
- grabs more bits and tries to decode a longer code.
- How many bits to make the first lookup is a tradeoff between the time it
- takes to decode and the time it takes to build the table. If building the
- table took no time (and if you had infinite memory), then there would only
- be a first level table to cover all the way to the longest code. However,
- building the table ends up taking a lot longer for more bits since short
- codes are replicated many times in such a table. What zinflate() does is
- simply to make the number of bits in the first table a variable, and set it
- for the maximum speed.
- zinflate() sends new trees relatively often, so it is possibly set for a
- smaller first level table than an application that has only one tree for
- all the data. For zinflate, which has 286 possible codes for the
- literal/length tree, the size of the first table is nine bits. Also the
- distance trees have 30 possible values, and the size of the first table is
- six bits. Note that for each of those cases, the table ended up one bit
- longer than the `average' code length, i.e. the code length of an
- approximately flat code which would be a little more than eight bits for
- 286 symbols and a little less than five bits for 30 symbols. It would be
- interesting to see if optimizing the first level table for other
- applications gave values within a bit or two of the flat code size.
- Jean-loup Gailly Mark Adler
- gzip@prep.ai.mit.edu madler@alumni.caltech.edu
- References:
- [LZ77] Ziv J., Lempel A., `A Universal Algorithm for Sequential Data
- Compression,' IEEE Transactions on Information Theory, Vol. 23, No. 3,
- pp. 337-343.
- `DEFLATE Compressed Data Format Specification' available in
- ftp://ds.internic.net/rfc/rfc1951.txt
- .SH More internal details
- Huffman code decoding is performed using a multi-level table lookup.
- The fastest way to decode is to simply build a lookup table whose
- size is determined by the longest code. However, the time it takes
- to build this table can also be a factor if the data being decoded
- is not very long. The most common codes are necessarily the
- shortest codes, so those codes dominate the decoding time, and hence
- the speed. The idea is you can have a shorter table that decodes the
- shorter, more probable codes, and then point to subsidiary tables for
- the longer codes. The time it costs to decode the longer codes is
- then traded against the time it takes to make longer tables.
- This results of this trade are in the variables lbits and dbits
- below. lbits is the number of bits the first level table for literal/
- length codes can decode in one step, and dbits is the same thing for
- the distance codes. Subsequent tables are also less than or equal to
- those sizes. These values may be adjusted either when all of the
- codes are shorter than that, in which case the longest code length in
- bits is used, or when the shortest code is *longer* than the requested
- table size, in which case the length of the shortest code in bits is
- used.
- There are two different values for the two tables, since they code a
- different number of possibilities each. The literal/length table
- codes 286 possible values, or in a flat code, a little over eight
- bits. The distance table codes 30 possible values, or a little less
- than five bits, flat. The optimum values for speed end up being
- about one bit more than those, so lbits is 8+1 and dbits is 5+1.
- The optimum values may differ though from machine to machine, and
- possibly even between compilers. Your mileage may vary.
- Notes beyond the 1.93a appnote.txt:
- 1. Distance pointers never point before the beginning of the output
- stream.
- 2. Distance pointers can point back across blocks, up to 32k away.
- 3. There is an implied maximum of 7 bits for the bit length table and
- 15 bits for the actual data.
- 4. If only one code exists, then it is encoded using one bit. (Zero
- would be more efficient, but perhaps a little confusing.) If two
- codes exist, they are coded using one bit each (0 and 1).
- 5. There is no way of sending zero distance codes--a dummy must be
- sent if there are none. (History: a pre 2.0 version of PKZIP would
- store blocks with no distance codes, but this was discovered to be
- too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
- zero distance codes, which is sent as one code of zero bits in
- length.
- 6. There are up to 286 literal/length codes. Code 256 represents the
- end-of-block. Note however that the static length tree defines
- 288 codes just to fill out the Huffman codes. Codes 286 and 287
- cannot be used though, since there is no length base or extra bits
- defined for them. Similarily, there are up to 30 distance codes.
- However, static trees define 32 codes (all 5 bits) to fill out the
- Huffman codes, but the last two had better not show up in the data.
- 7. Unzip can check dynamic Huffman blocks for complete code sets.
- The exception is that a single code would not be complete (see #4).
- 8. The five bits following the block type is really the number of
- literal codes sent minus 257.
- 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
- (1+6+6). Therefore, to output three times the length, you output
- three codes (1+1+1), whereas to output four times the same length,
- you only need two codes (1+3). Hmm.
- 0. In the tree reconstruction algorithm, Code = Code + Increment
- only if BitLength(i) is not zero. (Pretty obvious.)
- 1. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
- 2. Note: length code 284 can represent 227-258, but length code 285
- really is 258. The last length deserves its own, short code
- since it gets used a lot in very redundant files. The length
- 258 is special since 258 - 3 (the min match length) is 255.
- 3. The literal/length and distance code bit lengths are read as a
- single stream of lengths. It is possible (and advantageous) for
- a repeat code (16, 17, or 18) to go across the boundary between
- the two sets of lengths.
- */
- /* includes */
- #include "types/vxCpu.h"
- /* definitions */
- /* Maximum value for windowBits in deflateInit2 and inflateInit */
- #define DEF_WBITS 15 /* 32K LZ77 window */
- #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
- /* Type declarations */
- #ifndef OF /* function prototypes */
- # ifdef STDC
- # define OF(args) args
- # else
- # define OF(args) ()
- # endif
- #endif
- #define Z_OK 0
- #define Z_STREAM_END 1
- #define Z_NEED_DICT 2
- #define Z_ERRNO (-1)
- #define Z_STREAM_ERROR (-2)
- #define Z_DATA_ERROR (-3)
- #define Z_MEM_ERROR (-4)
- #define Z_BUF_ERROR (-5)
- #define Z_VERSION_ERROR (-6)
- /* Return codes for the compression/decompression functions. Negative
- * values are errors, positive values are used for special but normal events.
- */
- #define Z_DEFLATED 8
- /* The deflate compression method (the only one supported in this version) */
- #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
- #define BASE 65521L /* largest prime smaller than 65536 */
- #define NMAX 5552
- /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
- #define ZALLOC(strm, items, size)
- (*((strm)->zalloc))((strm)->opaque, (items), (size))
- #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidp)(addr))
- #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
- /* ===========================================================================
- * Internal compression state.
- */
- #define LENGTH_CODES 29
- /* number of length codes, not counting the special END_BLOCK code */
- #define LITERALS 256
- /* number of literal bytes 0..255 */
- #define L_CODES (LITERALS+1+LENGTH_CODES)
- /* number of Literal or Length codes, including the END_BLOCK code */
- #define D_CODES 30
- /* number of distance codes */
- #define BL_CODES 19
- /* number of codes used to transfer the bit lengths */
- #define HEAP_SIZE (2*L_CODES+1)
- /* maximum heap size */
- #define MAX_BITS 15
- /* All codes must not exceed MAX_BITS bits */
- #define INIT_STATE 42
- #define BUSY_STATE 113
- #define FINISH_STATE 666
- /* Stream status */
- #define Freq fc.freq
- #define Code fc.code
- #define Dad dl.dad
- #define Len dl.len
- /* defines for inflate input/output */
- /* update pointers and return */
- #define UPDBITS {s->bitb=b;s->bitk=k;}
- #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
- #define UPDOUT {s->write=q;}
- #define UPDATE {UPDBITS UPDIN UPDOUT}
- #define LEAVE {UPDATE return inflate_flush(s,z,r);}
- /* get bytes and bits */
- #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
- #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
- #define NEXTBYTE (n--,*p++)
- #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
- #define DUMPBITS(j) {b>>=(j);k-=(j);}
- /* output bytes */
- #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
- #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
- #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
- #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
- #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
- #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
- /* load local pointers */
- #define LOAD {LOADIN LOADOUT}
- /* Output a byte on the stream.
- * IN assertion: there is enough room in pending_buf.
- */
- #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
- #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
- #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
- #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
- #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
- #define DO16(buf) DO8(buf,0); DO8(buf,8);
- /* simplify the use of the inflate_huft type with some defines */
- #define base more.Base
- #define next more.Next
- #define exop word.what.Exop
- #define bits word.what.Bits
- /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
- #define BMAX 15 /* maximum bit length of any code */
- #define N_MAX 288 /* maximum number of codes in any set */
- #define C0 *p++ = 0;
- #define C2 C0 C0 C0 C0
- #define C4 C2 C2 C2 C2
- #define FIXEDH 530 /* number of hufts used by fixed tables */
- #define BUF_SIZE 100000
- #define MEM_ALIGN 4
- #define BLK_ALIGN sizeof(int)
- #define ROUND_UP(n) ((n + BLK_ALIGN - 1) & (~(BLK_ALIGN - 1)))
- #define BLK_HDR_SIZE (2 * sizeof(int))
- #define BLK_NEXT(b) (*(((int *)(b)) - 1))
- #define BLK_PREV(b) (*(((int *)(b)) - 2))
- #define BLK_HDRS_LINK(this,next)
- {
- BLK_NEXT(this) = (int)(next);
- BLK_PREV(next) = (int)(this);
- }
- #define BLK_IS_FREE(b) (BLK_NEXT(b) & 1)
- #define BLK_FREE_SET(b) (BLK_NEXT(b) |= 1)
- #define BLK_IS_VALID(b) (((char *)b == buf)
- || (BLK_PREV(BLK_NEXT(b)) == (int)(b)))
- /* simplify the use of the inflate_huft type with some defines */
- #define base more.Base
- #define next more.Next
- #define exop word.what.Exop
- #define bits word.what.Bits
- /* macros for bit input with no checking and for returning unused bytes */
- #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
- #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
- /* Diagnostic functions */
- #ifdef DEBUG
- # include <stdio.h>
- # ifndef verbose
- # define verbose 0
- # endif
- # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
- # define Trace(x) fprintf x
- # define Tracev(x) {if (verbose) fprintf x ;}
- # define Tracevv(x) {if (verbose>1) fprintf x ;}
- # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
- # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
- # define DBG_PUT(a,b) fprintf (stderr, a, (unsigned int)b);
- #else
- # define Assert(cond,msg)
- # define Trace(x)
- # define Tracev(x)
- # define Tracevv(x)
- # define Tracec(c,x)
- # define Tracecv(c,x)
- # define DBG_PUT(a,b)
- #endif
- /* internal data types */
- typedef unsigned char Byte; /* 8 bits */
- typedef unsigned int uInt; /* 16 bits or more */
- typedef unsigned long uLong; /* 32 bits or more */
- typedef void * voidp;
- typedef unsigned char uch;
- typedef unsigned short ush;
- typedef unsigned long ulg;
- #ifdef __cplusplus
- extern "C" {
- #endif
- typedef voidp (*alloc_func) OF((voidp opaque, uInt items, uInt size));
- typedef void (*free_func) OF((voidp opaque, voidp address));
- struct internal_state;
- typedef struct z_stream_s {
- Byte *next_in; /* next input byte */
- uInt avail_in; /* number of bytes available at next_in */
- uLong total_in; /* total nb of input bytes read so far */
- Byte *next_out; /* next output byte should be put there */
- uInt avail_out; /* remaining free space at next_out */
- uLong total_out; /* total nb of bytes output so far */
- char *msg; /* last error message, NULL if no error */
- struct internal_state *state; /* not visible by applications */
- alloc_func zalloc; /* used to allocate the internal state */
- free_func zfree; /* used to free the internal state */
- voidp opaque; /* private data object passed to zalloc and zfree */
- int data_type; /* best guess about the data type: ascii or binary */
- uLong adler; /* adler32 value of the uncompressed data */
- uLong reserved; /* reserved for future use */
- } z_stream;
- typedef z_stream *z_streamp;
- #ifdef __cplusplus
- }
- #endif
- typedef uLong (*check_func) OF((uLong check, const Byte *buf, uInt len));
- /* Data structure describing a single value and its code string. */
- typedef struct ct_data_s {
- union {
- ush freq; /* frequency count */
- ush code; /* bit string */
- } fc;
- union {
- ush dad; /* father node in Huffman tree */
- ush len; /* length of bit string */
- } dl;
- } ct_data;
- typedef struct static_tree_desc_s static_tree_desc;
- typedef struct tree_desc_s {
- ct_data *dyn_tree; /* the dynamic tree */
- int max_code; /* largest code with non zero frequency */
- static_tree_desc *stat_desc; /* the corresponding static tree */
- } tree_desc;
- typedef ush Pos;
- typedef Pos Posf;
- typedef unsigned IPos;
- /* Huffman code lookup table entry--this entry is four bytes for machines
- that have 16-bit pointers (e.g. PC's in the small or medium model). */
- typedef struct inflate_huft_s inflate_huft;
- struct inflate_huft_s {
- union {
- struct {
- Byte Exop; /* number of extra bits or operation */
- Byte Bits; /* number of bits in this code or subcode */
- } what;
- Byte *pad; /* pad structure to a power of 2 (4 bytes for */
- } word; /* 16-bit, 8 bytes for 32-bit machines) */
- union {
- uInt Base; /* literal, length base, or distance base */
- inflate_huft *Next; /* pointer to next level of table */
- } more;
- };
- struct inflate_blocks_state;
- typedef struct inflate_blocks_state inflate_blocks_statef;
- struct inflate_codes_state;
- typedef struct inflate_codes_state inflate_codes_statef;
- typedef enum {
- TYPE, /* get type bits (3, including end bit) */
- LENS, /* get lengths for stored */
- STORED, /* processing stored block */
- TABLE, /* get table lengths */
- BTREE, /* get bit lengths tree for a dynamic block */
- DTREE, /* get length, distance trees for a dynamic block */
- CODES, /* processing fixed or dynamic block */
- DRY, /* output remaining window bytes */
- DONE, /* finished last block, done */
- BAD} /* got a data error--stuck here */
- inflate_block_mode;
- /* inflate blocks semi-private state */
- struct inflate_blocks_state {
- /* mode */
- inflate_block_mode mode; /* current inflate_block mode */
- /* mode dependent information */
- union {
- uInt left; /* if STORED, bytes left to copy */
- struct {
- uInt table; /* table lengths (14 bits) */
- uInt index; /* index into blens (or border) */
- uInt *blens; /* bit lengths of codes */
- uInt bb; /* bit length tree depth */
- inflate_huft *tb; /* bit length decoding tree */
- } trees; /* if DTREE, decoding info for trees */
- struct {
- inflate_huft *tl;
- inflate_huft *td; /* trees to free */
- inflate_codes_statef
- *codes;
- } decode; /* if CODES, current state */
- } sub; /* submode */
- uInt last; /* true if this block is the last block */
- /* mode independent information */
- uInt bitk; /* bits in bit buffer */
- uLong bitb; /* bit buffer */
- Byte *window; /* sliding window */
- Byte *end; /* one byte after sliding window */
- Byte *read; /* window read pointer */
- Byte *write; /* window write pointer */
- check_func checkfn; /* check function */
- uLong check; /* check on output */
- };
- /* inflate codes private state */
- struct inflate_codes_state {
- /* mode */
- enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
- START, /* x: set up for LEN */
- LEN, /* i: get length/literal/eob next */
- LENEXT, /* i: getting length extra (have base) */
- DIST, /* i: get distance next */
- DISTEXT, /* i: getting distance extra */
- COPY, /* o: copying bytes in window, waiting for space */
- LIT, /* o: got literal, waiting for output space */
- WASH, /* o: got eob, possibly still output waiting */
- END, /* x: got eob and all data flushed */
- BADCODE} /* x: got error */
- mode; /* current inflate_codes mode */
- /* mode dependent information */
- uInt len;
- union {
- struct {
- inflate_huft *tree; /* pointer into tree */
- uInt need; /* bits needed */
- } code; /* if LEN or DIST, where in tree */
- uInt lit; /* if LIT, literal */
- struct {
- uInt get; /* bits to get for extra */
- uInt dist; /* distance back to copy from */
- } copy; /* if EXT or COPY, where and how much */
- } sub; /* submode */
- /* mode independent information */
- Byte lbits; /* ltree bits decoded per branch */
- Byte dbits; /* dtree bits decoder per branch */
- inflate_huft *ltree; /* literal/length/eob tree */
- inflate_huft *dtree; /* distance tree */
- };
- /* inflate private state */
- struct internal_state {
- /* mode */
- enum {
- METHOD, /* waiting for method byte */
- FLAG, /* waiting for flag byte */
- DICT4, /* four dictionary check bytes to go */
- DICT3, /* three dictionary check bytes to go */
- DICT2, /* two dictionary check bytes to go */
- DICT1, /* one dictionary check byte to go */
- DICT0, /* waiting for inflateSetDictionary */
- BLOCKS, /* decompressing blocks */
- CHECK4, /* four check bytes to go */
- CHECK3, /* three check bytes to go */
- CHECK2, /* two check bytes to go */
- CHECK1, /* one check byte to go */
- INF_DONE, /* finished check, done */
- INF_BAD} /* got an error--stay here */
- mode; /* current inflate mode */
- /* mode dependent information */
- union {
- uInt method; /* if FLAGS, method byte */
- struct {
- uLong was; /* computed check value */
- uLong need; /* stream check value */
- } check; /* if CHECK, check values to compare */
- } sub; /* submode */
- /* mode independent information */
- int nowrap; /* flag for no wrapper */
- uInt wbits; /* log2(window size) (8..15, defaults to 15) */
- inflate_blocks_statef
- *blocks; /* current inflate_blocks state */
- };
- /* static variables */
- /* Tables for deflate from PKZIP's appnote.txt. */
- static uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
- 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
- 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
- /* actually lengths - 2; also see note #13 above about 258 */
- static uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
- 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
- static uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
- 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
- 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
- 8193, 12289, 16385, 24577};
- static uInt cpdext[30] = { /* Extra bits for distance codes */
- 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
- 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
- 12, 12, 13, 13};
- static uInt inflate_mask[17] = {
- 0x0000,
- 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
- 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
- };
- /* Table for deflate from PKZIP's appnote.txt. */
- static uInt border[] = { /* Order of the bit length code lengths */
- 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
- /* build fixed tables only once--keep them here */
- static int fixed_built = 0;
- static inflate_huft fixed_mem[FIXEDH];
- static uInt fixed_bl = 0;
- static uInt fixed_bd = 0;
- static inflate_huft *fixed_tl = 0;
- static inflate_huft *fixed_td = 0;
- /* allocate two extra words for prev/next pointers for first block */
- static int intBuf [(BLK_HDR_SIZE + BUF_SIZE)/sizeof(int)];
- static char * buf = BLK_HDR_SIZE + (char *)intBuf;
- static char * nextBlock = BLK_HDR_SIZE + (char *)intBuf;
- /* forward static function declarations */
- static int huft_build OF((
- uInt *, /* code lengths in bits */
- uInt, /* number of codes */
- uInt, /* number of "simple" codes */
- uInt *, /* list of base values for non-simple codes */
- uInt *, /* list of extra bits for non-simple codes */
- inflate_huft * *, /* result: starting table */
- uInt *, /* maximum lookup bits (returns actual) */
- z_streamp )); /* for zalloc function */
- static voidp falloc OF((
- voidp, /* opaque pointer (not used) */
- uInt, /* number of items */
- uInt)); /* size of item */
- static int inflate_trees_free OF((
- inflate_huft * t, /* table to free */
- z_streamp z /* for zfree function */
- ));
- static int inflate_flush OF((
- inflate_blocks_statef *,
- z_streamp ,
- int));
- static int inflate_fast OF((
- uInt,
- uInt,
- inflate_huft *,
- inflate_huft *,
- inflate_blocks_statef *,
- z_streamp ));
- /******************************************************************************
- *
- * memcpy - copy memory
- */
- static void memcpy
- (
- Byte * dest,
- Byte * src,
- uInt nBytes
- )
- {
- if ((((uInt)dest & 0x3) == 0) && (((uInt)src & 0x3) == 0))
- {
- while (nBytes >= 4)
- {
- *((uInt *)dest) = *((uInt *)src);
- dest += 4;
- src += 4;
- nBytes -= 4;
- }
- }
- while (nBytes > 0)
- {
- *dest++ = *src++;
- nBytes--;
- }
- }
- /******************************************************************************
- *
- * bzero - zeroes a buffer
- */
- static void bzero
- (
- char *buffer, /* buffer to be zeroed */
- int nbytes /* number of bytes in buffer */
- )
- {
- if (((int)buffer & 0x3) == 0)
- {
- while (nbytes >= 4)
- {
- *(int *)buffer = 0;
- buffer += 4;
- nbytes -= 4;
- }
- }
- while (nbytes >= 1)
- {
- *buffer = 0;
- buffer += 1;
- nbytes -= 1;
- }
- }
- /******************************************************************************
- *
- * adler32 - 32 bit checksum
- */
- static uLong adler32
- (
- uLong adler, /* previous total */
- const Byte *buf, /* buffer to checksum */
- uInt len /* size of buffer */
- )
- {
- unsigned long s1 = adler & 0xffff;
- unsigned long s2 = (adler >> 16) & 0xffff;
- int k;
- if (buf == Z_NULL)
- return 1L;
- while (len > 0)
- {
- k = len < NMAX ? len : NMAX;
- len -= k;
- while (k >= 16)
- {
- DO16(buf);
- buf += 16;
- k -= 16;
- }
- if (k != 0)
- do
- {
- s1 += *buf++;
- s2 += s1;
- } while (--k);
- s1 %= BASE;
- s2 %= BASE;
- }
- return (s2 << 16) | s1;
- }
- /******************************************************************************
- *
- * cksum - compute checksum
- *
- */
- static ush cksum
- (
- ush prevSum, /* previous total */
- const uch * buf, /* buffer to checksum */
- ulg len /* size of buffer */
- )
- {
- int doSwap = 0;
- ulg sum = prevSum;
- union
- {
- uch c[2];
- ush s;
- } shorty;
- union
- {
- ush s[2];
- ulg l;
- } longy;
- #define REDUCE(x) {longy.l = x; x = longy.s[0] + longy.s[1];}
- REDUCE(sum);
- /* do the first byte now for misaligned buffers */
- if ((int)buf & 1)
- {
- doSwap = 1;
- shorty.c[0] = 0;
- shorty.c[1] = *buf;
- buf++;
- len--;
- sum += shorty.s;
- }
- /* do the rest two bytes at a time */
- while (len > 1)
- {
- sum += *((ush *)buf);
- buf += 2;
- len -= 2;
- if ((len & 0xffff) == 0)
- REDUCE(sum);
- }
- /* add in the last byte if needed */
- if (len == 1)
- {
- shorty.c[0] = *buf;
- shorty.c[1] = 0;
- sum += shorty.s;
- }
- REDUCE(sum);
- REDUCE(sum);
- shorty.s = sum;
- /* swap bytes if needed */
- if (doSwap)
- {
- uch tmp;
- tmp = shorty.c[0];
- shorty.c[0] = shorty.c[1];
- shorty.c[1] = tmp;
- }
- return (shorty.s);
- }
- /******************************************************************************
- *
- * zcalloc - allocate memory
- */
- static voidp zcalloc
- (
- voidp opaque,
- unsigned items,
- unsigned size
- )
- {
- voidp thisBlock = (voidp)nextBlock;
- int nBytes = ROUND_UP (items * size);
- if ((char *)thisBlock + nBytes + BLK_HDR_SIZE >= &buf[BUF_SIZE])
- {
- DBG_PUT ("zcalloc %d bytes: buffer overflow!n", nBytes);
- return (0);
- }
- nextBlock = (char *)thisBlock + nBytes + BLK_HDR_SIZE;
- BLK_HDRS_LINK (thisBlock, nextBlock);
- return (thisBlock);
- }
- /******************************************************************************
- *
- * zcfree - free memory
- */
- static void zcfree
- (
- voidp opaque,
- voidp ptr
- )
- {
- voidp thisBlock;
- /* make sure block is valid */
- if (!BLK_IS_VALID(ptr))
- {
- DBG_PUT ("free at invalid address 0x%xn", ptr);
- return;
- }
- /* mark block as free */
- BLK_FREE_SET (ptr);
- /* pop free blocks from the top of the stack */
- for (thisBlock = (voidp)BLK_PREV(nextBlock);
- thisBlock != 0 && BLK_IS_FREE(thisBlock);
- thisBlock = (voidp)BLK_PREV(thisBlock))
- {
- nextBlock = thisBlock;
- BLK_NEXT(nextBlock) = 0;
- }
- return;
- }
- /* normally stack variable for huft_build - but stack was too large */
- static uInt c[BMAX+1]; /* bit length count table */
- static inflate_huft *u[BMAX]; /* table stack */
- static uInt v[N_MAX]; /* values in order of bit length */
- static uInt x[BMAX+1]; /* bit offsets, then code stack */
- /******************************************************************************
- *
- * huft_build - build a huffman tree
- *
- * Given a list of code lengths and a maximum table size, make a set of
- * tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
- * if the given code set is incomplete (the tables are still built in this
- * case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
- * over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory.
- */
- static int huft_build
- (
- uInt * b, /* code lengths in bits (all assumed <= BMAX) */
- uInt n, /* number of codes (assumed <= N_MAX) */
- uInt s, /* number of simple-valued codes (0..s-1) */
- uInt * d, /* list of base values for non-simple codes */
- uInt * e, /* list of extra bits for non-simple codes */
- inflate_huft ** t, /* result: starting table */
- uInt * m, /* maximum lookup bits, returns actual */
- z_streamp zs /* for zalloc function */
- )
- {
- uInt a; /* counter for codes of length k */
- uInt f; /* i repeats in table every f entries */
- int g; /* maximum code length */
- int h; /* table level */
- register uInt i; /* counter, current code */
- register uInt j; /* counter */
- register int k; /* number of bits in current code */
- int l; /* bits per table (returned in m) */
- register uInt *p; /* pointer into c[], b[], or v[] */
- inflate_huft *q; /* points to current table */
- struct inflate_huft_s r; /* table entry for structure assignment */
- register int w; /* bits before this table == (l * h) */
- uInt *xp; /* pointer into x */
- int y; /* number of dummy codes added */
- uInt z; /* number of entries in current table */
- /* Generate counts for each bit length */
- p = c;
- C4 /* clear c[]--assume BMAX+1 is 16 */
- p = b; i = n;
- do
- {
- c[*p++]++; /* assume all entries <= BMAX */
- } while (--i);
- if (c[0] == n) /* null input--all zero length codes */
- {
- *t = (inflate_huft *)Z_NULL;
- *m = 0;
- return Z_OK;
- }
- /* Find minimum and maximum length, bound *m by those */
- l = *m;
- for (j = 1; j <= BMAX; j++)
- if (c[j])
- break;
- k = j; /* minimum code length */
- if ((uInt)l < j)
- l = j;
- for (i = BMAX; i; i--)
- if (c[i])
- break;
- g = i; /* maximum code length */
- if ((uInt)l > i)
- l = i;
- *m = l;
- /* Adjust last length count to fill out codes, if needed */
- for (y = 1 << j; j < i; j++, y <<= 1)
- if ((y -= c[j]) < 0)
- return Z_DATA_ERROR;
- if ((y -= c[i]) < 0)
- return Z_DATA_ERROR;
- c[i] += y;
- /* Generate starting offsets into the value table for each length */
- x[1] = j = 0;
- p = c + 1; xp = x + 2;
- while (--i)
- { /* note that i == g from above */
- *xp++ = (j += *p++);
- }
- /* Make a table of values in order of bit lengths */
- p = b; i = 0;
- do
- {
- if ((j = *p++) != 0)
- v[x[j]++] = i;
- } while (++i < n);
- /* Generate the Huffman codes and for each, make the table entries */
- x[0] = i = 0; /* first Huffman code is zero */
- p = v; /* grab values in bit order */
- h = -1; /* no tables yet--level -1 */
- w = -l; /* bits decoded == (l * h) */
- u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
- q = (inflate_huft *)Z_NULL; /* ditto */
- z = 0; /* ditto */
- /* go through the bit lengths (k already is bits in shortest code) */
- for (; k <= g; k++)
- {
- a = c[k];
- while (a--)
- {
- /* here i is the Huffman code of length k bits for value *p */
- /* make tables up to required level */
- while (k > w + l)
- {
- h++;
- w += l; /* previous table always l bits */
- /* compute minimum size table less than or equal to l bits */
- z = g - w;
- z = z > (uInt)l ? l : z; /* table size upper limit */
- if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
- { /* too few codes for k-w bit table */
- f -= a + 1; /* deduct codes from patterns left */
- xp = c + k;
- if (j < z)
- while (++j < z) /* try smaller tables up to z bits */
- {
- if ((f <<= 1) <= *++xp)
- break; /* enough codes to use up j bits */
- f -= *xp; /* else deduct codes from patterns */
- }
- }
- z = 1 << j; /* table entries for j-bit table */
- /* allocate and link in new table */
- q = (inflate_huft *)ZALLOC(zs,z + 1,sizeof(inflate_huft));
- if (q == Z_NULL)
- {
- if (h)
- inflate_trees_free(u[0], zs);
- return Z_MEM_ERROR; /* not enough memory */
- }
- *t = q + 1; /* link to list for huft_free() */
- *(t = &(q->next)) = Z_NULL;
- u[h] = ++q; /* table starts after link */
- /* connect to last table, if there is one */
- if (h)
- {
- x[h] = i; /* save pattern for backing up */
- r.bits = (Byte)l; /* bits to dump before this table */
- r.exop = (Byte)j; /* bits in this table */
- r.next = q; /* pointer to this table */
- j = i >> (w - l); /* (get around Turbo C bug) */
- u[h-1][j] = r; /* connect to last table */
- }
- }
- /* set up table entry in r */
- r.bits = (Byte)(k - w);
- if (p >= v + n)
- r.exop = 128 + 64; /* out of values--invalid code */
- else if (*p < s)
- {
- /* 256 is end-of-block */
- r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);
- r.base = *p++; /* simple code is just the value */
- }
- else
- {
- /* non-simple--look up in lists */
- r.exop = (Byte)(e[*p - s] + 16 + 64);
- r.base = d[*p++ - s];
- }
- /* fill code-like entries with r */
- f = 1 << (k - w);
- for (j = i >> w; j < z; j += f)
- q[j] = r;
- /* backwards increment the k-bit code i */
- for (j = 1 << (k - 1); i & j; j >>= 1)
- i ^= j;
- i ^= j;
- /* backup over finished tables */
- while ((i & ((1 << w) - 1)) != x[h])
- {
- h--; /* don't need to update q */
- w -= l;
- }
- }
- }
- /* Return Z_BUF_ERROR if we were given an incomplete table */
- return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
- }
- /******************************************************************************
- *
- * inflate_trees_bits - inflate bits from huffman tree
- */
- static int inflate_trees_bits
- (
- uInt *c, /* 19 code lengths */
- uInt *bb, /* bits tree desired/actual depth */
- inflate_huft ** tb, /* bits tree result */
- z_streamp z /* for zfree function */
- )
- {
- int r;
- r = huft_build(c, 19, 19, (uInt*)Z_NULL, (uInt*)Z_NULL, tb, bb, z);
- if (r == Z_DATA_ERROR)
- z->msg = (char*)"oversubscribed dynamic bit lengths tree";
- else if (r == Z_BUF_ERROR)
- {
- inflate_trees_free(*tb, z);
- z->msg = (char*)"incomplete dynamic bit lengths tree";
- r = Z_DATA_ERROR;
- }
- return r;
- }
- /******************************************************************************
- *
- * inflate_trees_dynamic - inflate from dynamic huffman tree
- */
- static int inflate_trees_dynamic
- (
- uInt nl, /* number of literal/length codes */
- uInt nd, /* number of distance codes */
- uInt * c, /* that many (total) code lengths */
- uInt * bl, /* literal desired/actual bit depth */
- uInt * bd, /* distance desired/actual bit depth */
- inflate_huft ** tl, /* literal/length tree result */
- inflate_huft ** td, /* distance tree result */
- z_streamp z /* for zfree function */
- )
- {
- int r;
- /* build literal/length tree */
- if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
- {
- if (r == Z_DATA_ERROR)
- z->msg = (char*)"oversubscribed literal/length tree";
- else if (r == Z_BUF_ERROR)
- {
- inflate_trees_free(*tl, z);
- z->msg = (char*)"incomplete literal/length tree";
- r = Z_DATA_ERROR;
- }
- return r;
- }
- /* build distance tree */
- if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
- {
- if (r == Z_DATA_ERROR)
- z->msg = (char*)"oversubscribed literal/length tree";
- else if (r == Z_BUF_ERROR) {
- inflate_trees_free(*td, z);
- z->msg = (char*)"incomplete literal/length tree";
- r = Z_DATA_ERROR;
- }
- inflate_trees_free(*tl, z);
- return r;
- }
- /* done */
- return Z_OK;
- }
- /******************************************************************************
- *
- * falloc - fake memeory allocator for huftman trees
- */
- static voidp falloc
- (
- voidp q, /* opaque pointer */
- uInt n, /* number of items */
- uInt s /* size of item */
- )
- {
- *(int *)q -= n;
- return (voidp)(fixed_mem + *(int *)q);
- }
- /******************************************************************************
- *
- * inflate_trees_fixed - do something
- */
- static int inflate_trees_fixed
- (
- uInt * bl, /* literal desired/actual bit depth */
- uInt * bd, /* distance desired/actual bit depth */
- inflate_huft ** tl, /* literal/length tree result */
- inflate_huft ** td /* distance tree result */
- )
- {
- /* build fixed tables if not already (multiple overlapped executions ok) */
- if (!fixed_built)
- {
- int k; /* temporary variable */
- unsigned *c = (unsigned *)zcalloc (0, 288, sizeof (unsigned));
- /* length list for huft_build */
- z_stream z; /* for falloc function */
- int f = FIXEDH; /* number of hufts left in fixed_mem */
- /* set up fake z_stream for memory routines */
- z.zalloc = falloc;
- z.zfree = Z_NULL;
- z.opaque = (voidp)&f;
- /* literal table */
- for (k = 0; k < 144; k++)
- c[k] = 8;
- for (; k < 256; k++)
- c[k] = 9;
- for (; k < 280; k++)
- c[k] = 7;
- for (; k < 288; k++)
- c[k] = 8;
- fixed_bl = 7;
- huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
- /* distance table */
- for (k = 0; k < 30; k++)
- #if CPU_FAMILY==MC680X0
- ((volatile unsigned *)c)[k] = 5;
- #else
- c[k] = 5;
- #endif
- fixed_bd = 5;
- huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
- /* done */
- fixed_built = 1;
- zcfree (0, c);
- }
- *bl = fixed_bl;
- *bd = fixed_bd;
- *tl = fixed_tl;
- *td = fixed_td;
- return Z_OK;
- }
- /******************************************************************************
- *
- * inflate_trees_free - frees inflate trees
- *
- * Free the malloc'ed tables built by huft_build(), which makes a linked
- * list of the tables it made, with the links in a dummy first entry of
- * each table.
- */
- static int inflate_trees_free
- (
- inflate_huft * t, /* table to free */
- z_streamp z /* for zfree function */
- )
- {
- register inflate_huft *p, *q, *r;
- /* Reverse linked list */
- p = Z_NULL;
- q = t;
- while (q != Z_NULL)
- {
- r = (q - 1)->next;
- (q - 1)->next = p;
- p = q;
- q = r;
- }
- /* Go through linked list, freeing from the malloced (t[-1]) address. */
- while (p != Z_NULL)
- {
- q = (--p)->next;
- ZFREE(z,p);
- p = q;
- }
- return Z_OK;
- }
- /******************************************************************************
- *
- * inflate_flush - flushes inflate
- *
- * copy as much as possible from the sliding window to the output area
- */
- static int inflate_flush
- (
- inflate_blocks_statef * s,
- z_streamp z,
- int r
- )
- {
- uInt n;
- Byte *p;
- Byte *q;
- /* local copies of source and destination pointers */
- p = z->next_out;
- q = s->read;
- /* compute number of bytes to copy as far as end of window */
- n = (uInt)((q <= s->write ? s->write : s->end) - q);
- if (n > z->avail_out)
- n = z->avail_out;
- if (n && r == Z_BUF_ERROR)
- r = Z_OK;
- /* update counters */
- z->avail_out -= n;
- z->total_out += n;
- /* update check information */
- if (s->checkfn != Z_NULL)
- z->adler = s->check = (*s->checkfn)(s->check, q, n);
- /* copy as far as end of window */
- memcpy(p, q, n);
- p += n;
- q += n;
- /* see if more to copy at beginning of window */
- if (q == s->end)
- {
- /* wrap pointers */
- q = s->window;
- if (s->write == s->end)
- s->write = s->window;
- /* compute bytes to copy */
- n = (uInt)(s->write - q);
- if (n > z->avail_out)
- n = z->avail_out;
- if (n && r == Z_BUF_ERROR)
- r = Z_OK;
- /* update counters */
- z->avail_out -= n;
- z->total_out += n;
- /* update check information */
- if (s->checkfn != Z_NULL)
- z->adler = s->check = (*s->checkfn)(s->check, q, n);
- /* copy */
- memcpy(p, q, n);
- p += n;
- q += n;
- }
- /* update pointers */
- z->next_out = p;
- s->read = q;
- /* done */
- return r;
- }
- /******************************************************************************
- *
- * inflate_fast - inflate fast
- *
- * Called with number of bytes left to write in window at least 258
- * (the maximum string length) and number of input bytes available
- * at least ten. The ten bytes are six bytes for the longest length/
- * distance pair plus four bytes for overloading the bit buffer.
- */
- static int inflate_fast
- (
- uInt bl,
- uInt bd,
- inflate_huft * tl,
- inflate_huft * td,
- inflate_blocks_statef * s,
- z_streamp z
- )
- {
- inflate_huft *t; /* temporary pointer */
- uInt e; /* extra bits or operation */
- uLong b; /* bit buffer */
- uInt k; /* bits in bit buffer */
- Byte *p; /* input data pointer */
- uInt n; /* bytes available there */
- Byte *q; /* output window write pointer */
- uInt m; /* bytes to end of window or read pointer */
- uInt ml; /* mask for literal/length tree */
- uInt md; /* mask for distance tree */
- uInt c; /* bytes to copy */
- uInt d; /* distance back to copy from */
- Byte *r; /* copy source pointer */
- /* load input, output, bit values */
- LOAD
- /* initialize masks */
- ml = inflate_mask[bl];
- md = inflate_mask[bd];
- /* do until not enough input or output space for fast loop */
- do { /* assume called with m >= 258 && n >= 10 */
- /* get literal/length code */
- GRABBITS(20) /* max bits for literal/length code */
- if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
- {
- DUMPBITS(t->bits)
- Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
- "inflate: * literal '%c'n" :
- "inflate: * literal 0x%02xn", t->base));
- *q++ = (Byte)t->base;
- m--;
- continue;
- }
- do {
- DUMPBITS(t->bits)
- if (e & 16)
- {
- /* get extra bits for length */
- e &= 15;
- c = t->base + ((uInt)b & inflate_mask[e]);
- DUMPBITS(e)
- Tracevv((stderr, "inflate: * length %un", c));
- /* decode distance base of block to copy */
- GRABBITS(15); /* max bits for distance code */
- e = (t = td + ((uInt)b & md))->exop;
- do {
- DUMPBITS(t->bits)
- if (e & 16)
- {
- /* get extra bits to add to distance base */
- e &= 15;
- GRABBITS(e) /* get extra bits (up to 13) */
- d = t->base + ((uInt)b & inflate_mask[e]);
- DUMPBITS(e)
- Tracevv((stderr, "inflate: * distance %un", d));
- /* do the copy */
- m -= c;
- if ((uInt)(q - s->window) >= d) /* offset before dest */
- { /* just copy */
- r = q - d;
- *q++ = *r++; c--; /* minimum count is three, */
- *q++ = *r++; c--; /* so unroll loop a little */
- }
- else /* else offset after destination */
- {
- e = d - (uInt)(q - s->window); /* bytes from offset to end */
- r = s->end - e; /* pointer to offset */
- if (c > e) /* if source crosses, */
- {
- c -= e; /* copy to end of window */
- do {
- *q++ = *r++;
- } while (--e);
- r = s->window; /* copy rest from start of window */
- }
- }
- do { /* copy all or what's left */
- *q++ = *r++;
- } while (--c);
- break;
- }
- else if ((e & 64) == 0)
- e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
- else
- {
- z->msg = (char*)"invalid distance code";
- UNGRAB
- UPDATE
- return Z_DATA_ERROR;
- }
- } while (1);
- break;
- }
- if ((e & 64) == 0)
- {
- if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
- {
- DUMPBITS(t->bits)
- Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
- "inflate: * literal '%c'n" :
- "inflate: * literal 0x%02xn", t->base));
- *q++ = (Byte)t->base;
- m--;
- break;
- }
- }
- else if (e & 32)
- {
- Tracevv((stderr, "inflate: * end of blockn"));
- UNGRAB
- UPDATE
- return Z_STREAM_END;
- }
- else
- {
- z->msg = (char*)"invalid literal/length code";
- UNGRAB
- UPDATE
- return Z_DATA_ERROR;
- }
- } while (1);
- } while (m >= 258 && n >= 10);
- /* not enough input or output--restore pointers and return */
- UNGRAB
- UPDATE
- return Z_OK;
- }
- /******************************************************************************
- *
- * inflate_codes_new - inflate codes new
- *
- * NOMANUAL
- */
- static inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
- uInt bl, bd;
- inflate_huft *tl;
- inflate_huft *td; /* need separate declaration for Borland C++ */
- z_streamp z;
- {
- inflate_codes_statef *c;
- if ((c = (inflate_codes_statef *)
- ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
- {
- c->mode = START;
- c->lbits = (Byte)bl;
- c->dbits = (Byte)bd;
- c->ltree = tl;
- c->dtree = td;
- Tracev((stderr, "inflate: codes newn"));
- }
- return c;
- }
- /******************************************************************************
- *
- * inflate_codes - inflate codes
- *
- */
- static int inflate_codes(s, z, r)
- inflate_blocks_statef *s;
- z_streamp z;
- int r;
- {
- uInt j; /* temporary storage */
- inflate_huft *t; /* temporary pointer */
- uInt e; /* extra bits or operation */
- uLong b; /* bit buffer */
- uInt k; /* bits in bit buffer */
- Byte *p; /* input data pointer */
- uInt n; /* bytes available there */
- Byte *q; /* output window write pointer */
- uInt m; /* bytes to end of window or read pointer */
- Byte *f; /* pointer to copy strings from */
- inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
- /* copy input/output information to locals (UPDATE macro restores) */
- LOAD
- /* process input and output based on current state */
- while (1) switch (c->mode)
- { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
- case START: /* x: set up for LEN */
- #ifndef SLOW
- if (m >= 258 && n >= 10)
- {
- UPDATE
- r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
- LOAD
- if (r != Z_OK)
- {
- c->mode = r == Z_STREAM_END ? WASH : BADCODE;
- break;
- }
- }
- #endif /* !SLOW */
- c->sub.code.need = c->lbits;
- c->sub.code.tree = c->ltree;
- c->mode = LEN;
- case LEN: /* i: get length/literal/eob next */
- j = c->sub.code.need;
- NEEDBITS(j)
- t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
- DUMPBITS(t->bits)
- e = (uInt)(t->exop);
- if (e == 0) /* literal */
- {
- c->sub.lit = t->base;
- Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
- "inflate: literal '%c'n" :
- "inflate: literal 0x%02xn", t->base));
- c->mode = LIT;
- break;
- }
- if (e & 16) /* length */
- {
- c->sub.copy.get = e & 15;
- c->len = t->base;
- c->mode = LENEXT;
- break;
- }
- if ((e & 64) == 0) /* next table */
- {
- c->sub.code.need = e;
- c->sub.code.tree = t->next;
- break;
- }
- if (e & 32) /* end of block */
- {
- Tracevv((stderr, "inflate: end of blockn"));
- c->mode = WASH;
- break;
- }
- c->mode = BADCODE; /* invalid code */
- z->msg = (char*)"invalid literal/length code";
- r = Z_DATA_ERROR;
- LEAVE
- case LENEXT: /* i: getting length extra (have base) */
- j = c->sub.copy.get;
- NEEDBITS(j)
- c->len += (uInt)b & inflate_mask[j];
- DUMPBITS(j)
- c->sub.code.need = c->dbits;
- c->sub.code.tree = c->dtree;
- Tracevv((stderr, "inflate: length %un", c->len));
- c->mode = DIST;
- case DIST: /* i: get distance next */
- j = c->sub.code.need;
- NEEDBITS(j)
- t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
- DUMPBITS(t->bits)
- e = (uInt)(t->exop);
- if (e & 16) /* distance */
- {
- c->sub.copy.get = e & 15;
- c->sub.copy.dist = t->base;
- c->mode = DISTEXT;
- break;
- }
- if ((e & 64) == 0) /* next table */
- {
- c->sub.code.need = e;
- c->sub.code.tree = t->next;
- break;
- }
- c->mode = BADCODE; /* invalid code */
- z->msg = (char*)"invalid distance code";
- r = Z_DATA_ERROR;
- LEAVE
- case DISTEXT: /* i: getting distance extra */
- j = c->sub.copy.get;
- NEEDBITS(j)
- c->sub.copy.dist += (uInt)b & inflate_mask[j];
- DUMPBITS(j)
- Tracevv((stderr, "inflate: distance %un", c->sub.copy.dist));
- c->mode = COPY;
- case COPY: /* o: copying bytes in window, waiting for space */
- #ifndef __TURBOC__ /* Turbo C bug for following expression */
- f = (uInt)(q - s->window) < c->sub.copy.dist ?
- s->end - (c->sub.copy.dist - (q - s->window)) :
- q - c->sub.copy.dist;
- #else
- f = q - c->sub.copy.dist;
- if ((uInt)(q - s->window) < c->sub.copy.dist)
- f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
- #endif
- while (c->len)
- {
- NEEDOUT
- OUTBYTE(*f++)
- if (f == s->end)
- f = s->window;
- c->len--;
- }
- c->mode = START;
- break;
- case LIT: /* o: got literal, waiting for output space */
- NEEDOUT
- OUTBYTE(c->sub.lit)
- c->mode = START;
- break;
- case WASH: /* o: got eob, possibly more output */
- FLUSH
- if (s->read != s->write)
- LEAVE
- c->mode = END;
- case END:
- r = Z_STREAM_END;
- LEAVE
- case BADCODE: /* x: got error */
- r = Z_DATA_ERROR;
- LEAVE
- default:
- r = Z_STREAM_ERROR;
- LEAVE
- }
- }
- /******************************************************************************
- *
- * inflate_codes_free - frees inflate codes
- *
- */
- static void inflate_codes_free
- (
- inflate_codes_statef *c,
- z_streamp z
- )
- {
- ZFREE(z, c);
- }
- /******************************************************************************
- *
- * inflate_blocks_reset - resets inflate blocks
- *
- */
- static void inflate_blocks_reset(s, z, c)
- inflate_blocks_statef *s;
- z_streamp z;
- uLong *c;
- {
- if (s->checkfn != Z_NULL)
- *c = s->check;
- if (s->mode == BTREE || s->mode == DTREE)
- ZFREE(z, s->sub.trees.blens);
- if (s->mode == CODES)
- {
- inflate_codes_free(s->sub.decode.codes, z);
- inflate_trees_free(s->sub.decode.td, z);
- inflate_trees_free(s->sub.decode.tl, z);
- }
- s->mode = TYPE;
- s->bitk = 0;
- s->bitb = 0;
- s->read = s->write = s->window;
- if (s->checkfn != Z_NULL)
- z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
- Trace((stderr, "inflate: blocks resetn"));
- }
- /******************************************************************************
- *
- * inflate_blocks_new - allocates new inflate blocks
- *
- */
- static inflate_blocks_statef *inflate_blocks_new(z, c, w)
- z_streamp z;
- check_func c;
- uInt w;
- {
- inflate_blocks_statef *s;
- if ((s = (inflate_blocks_statef *)ZALLOC
- (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
- return s;
- if ((s->window = (Byte *)ZALLOC(z, 1, w)) == Z_NULL)
- {
- ZFREE(z, s);
- return Z_NULL;
- }
- s->end = s->window + w;
- s->checkfn = c;
- s->mode = TYPE;
- Trace((stderr, "inflate: blocks allocatedn"));
- inflate_blocks_reset(s, z, &s->check);
- return s;
- }
- /******************************************************************************
- *
- * inflate_block - inflates a block
- */
- static int inflate_blocks(s, z, r)
- inflate_blocks_statef *s;
- z_streamp z;
- int r;
- {
- uInt t; /* temporary storage */
- uLong b; /* bit buffer */
- uInt k; /* bits in bit buffer */
- Byte *p; /* input data pointer */
- uInt n; /* bytes available there */
- Byte *q; /* output window write pointer */
- uInt m; /* bytes to end of window or read pointer */
- /* copy input/output information to locals (UPDATE macro restores) */
- LOAD
- /* process input based on current state */
- while (1) switch (s->mode)
- {
- case TYPE:
- NEEDBITS(3)
- t = (uInt)b & 7;
- s->last = t & 1;
- switch (t >> 1)
- {
- case 0: /* stored */
- Trace((stderr, "inflate: stored block%sn",
- s->last ? " (last)" : ""));
- DUMPBITS(3)
- t = k & 7; /* go to byte boundary */
- DUMPBITS(t)
- s->mode = LENS; /* get length of stored block */
- break;
- case 1: /* fixed */
- Trace((stderr, "inflate: fixed codes block%sn",
- s->last ? " (last)" : ""));
- {
- uInt bl, bd;
- inflate_huft *tl, *td;
- inflate_trees_fixed(&bl, &bd, &tl, &td);
- s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
- if (s->sub.decode.codes == Z_NULL)
- {
- r = Z_MEM_ERROR;
- LEAVE
- }
- s->sub.decode.tl = Z_NULL; /* don't try to free these */
- s->sub.decode.td = Z_NULL;
- }
- DUMPBITS(3)
- s->mode = CODES;
- break;
- case 2: /* dynamic */
- Trace((stderr, "inflate: dynamic codes block%sn",
- s->last ? " (last)" : ""));
- DUMPBITS(3)
- s->mode = TABLE;
- break;
- case 3: /* illegal */
- DUMPBITS(3)
- s->mode = BAD;
- z->msg = (char*)"invalid block type";
- r = Z_DATA_ERROR;
- LEAVE
- }
- break;
- case LENS:
- NEEDBITS(32)
- if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
- {
- s->mode = BAD;
- z->msg = (char*)"invalid stored block lengths";
- r = Z_DATA_ERROR;
- LEAVE
- }
- s->sub.left = (uInt)b & 0xffff;
- b = k = 0; /* dump bits */
- Tracev((stderr, "inflate: stored length %un", s->sub.left));
- s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
- break;
- case STORED:
- if (n == 0)
- LEAVE
- NEEDOUT
- t = s->sub.left;
- if (t > n) t = n;
- if (t > m) t = m;
- memcpy(q, p, t);
- p += t; n -= t;
- q += t; m -= t;
- if ((s->sub.left -= t) != 0)
- break;
- Tracev((stderr, "inflate: stored end, %lu total outn",
- z->total_out + (q >= s->read ? q - s->read :
- (s->end - s->read) + (q - s->window))));
- s->mode = s->last ? DRY : TYPE;
- break;
- case TABLE:
- NEEDBITS(14)
- s->sub.trees.table = t = (uInt)b & 0x3fff;
- if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
- {
- s->mode = BAD;
- z->msg = (char*)"too many length or distance symbols";
- r = Z_DATA_ERROR;
- LEAVE
- }
- t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
- if (t < 19)
- t = 19;
- if ((s->sub.trees.blens = (uInt*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
- {
- r = Z_MEM_ERROR;
- LEAVE
- }
- DUMPBITS(14)
- s->sub.trees.index = 0;
- Tracev((stderr, "inflate: table sizes okn"));
- s->mode = BTREE;
- case BTREE:
- while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
- {
- NEEDBITS(3)
- s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
- DUMPBITS(3)
- }
- while (s->sub.trees.index < 19)
- s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
- s->sub.trees.bb = 7;
- t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
- &s->sub.trees.tb, z);
- if (t != Z_OK)
- {
- r = t;
- if (r == Z_DATA_ERROR)
- s->mode = BAD;
- LEAVE
- }
- s->sub.trees.index = 0;
- Tracev((stderr, "inflate: bits tree okn"));
- s->mode = DTREE;
- case DTREE:
- while (t = s->sub.trees.table,
- s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
- {
- inflate_huft *h;
- uInt i, j, c;
- t = s->sub.trees.bb;
- NEEDBITS(t)
- h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
- t = h->word.what.Bits;
- c = h->more.Base;
- if (c < 16)
- {
- DUMPBITS(t)
- s->sub.trees.blens[s->sub.trees.index++] = c;
- }
- else /* c == 16..18 */
- {
- i = c == 18 ? 7 : c - 14;
- j = c == 18 ? 11 : 3;
- NEEDBITS(t + i)
- DUMPBITS(t)
- j += (uInt)b & inflate_mask[i];
- DUMPBITS(i)
- i = s->sub.trees.index;
- t = s->sub.trees.table;
- if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
- (c == 16 && i < 1))
- {
- s->mode = BAD;
- z->msg = (char*)"invalid bit length repeat";
- r = Z_DATA_ERROR;
- LEAVE
- }
- c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
- do {
- s->sub.trees.blens[i++] = c;
- } while (--j);
- s->sub.trees.index = i;
- }
- }
- inflate_trees_free(s->sub.trees.tb, z);
- s->sub.trees.tb = Z_NULL;
- {
- uInt bl, bd;
- inflate_huft *tl, *td;
- inflate_codes_statef *c;
- bl = 9; /* must be <= 9 for lookahead assumptions */
- bd = 6; /* must be <= 9 for lookahead assumptions */
- t = s->sub.trees.table;
- t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
- s->sub.trees.blens, &bl, &bd, &tl, &td, z);
- if (t != Z_OK)
- {
- if (t == (uInt)Z_DATA_ERROR)
- s->mode = BAD;
- r = t;
- LEAVE
- }
- Tracev((stderr, "inflate: trees ok, %d * %d bytes usedn",
- inflate_hufts, sizeof(inflate_huft)));
- if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
- {
- inflate_trees_free(td, z);
- inflate_trees_free(tl, z);
- r = Z_MEM_ERROR;
- LEAVE
- }
- ZFREE(z, s->sub.trees.blens);
- s->sub.decode.codes = c;
- s->sub.decode.tl = tl;
- s->sub.decode.td = td;
- }
- s->mode = CODES;
- case CODES:
- UPDATE
- if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
- return inflate_flush(s, z, r);
- r = Z_OK;
- inflate_codes_free(s->sub.decode.codes, z);
- inflate_trees_free(s->sub.decode.td, z);
- inflate_trees_free(s->sub.decode.tl, z);
- LOAD
- Tracev((stderr, "inflate: codes end, %lu total outn",
- z->total_out + (q >= s->read ? q - s->read :
- (s->end - s->read) + (q - s->window))));
- if (!s->last)
- {
- s->mode = TYPE;
- break;
- }
- if (k > 7) /* return unused byte, if any */
- {
- Assert(k < 16, "inflate_codes grabbed too many bytes")
- k -= 8;
- n++;
- p--; /* can always return one */
- }
- s->mode = DRY;
- case DRY:
- FLUSH
- if (s->read != s->write)
- LEAVE
- s->mode = DONE;
- case DONE:
- r = Z_STREAM_END;
- LEAVE
- case BAD:
- r = Z_DATA_ERROR;
- LEAVE
- default:
- r = Z_STREAM_ERROR;
- LEAVE
- }
- }
- /******************************************************************************
- *
- * inflate_blocks_free - frees inflate blocks
- */
- static int inflate_blocks_free(s, z, c)
- inflate_blocks_statef *s;
- z_streamp z;
- uLong *c;
- {
- inflate_blocks_reset(s, z, c);
- ZFREE(z, s->window);
- ZFREE(z, s);
- return Z_OK;
- }
- /******************************************************************************
- *
- * inflateReset - reset inflate
- */
- static int inflateReset(z)
- z_streamp z;
- {
- uLong c;
- if (z == Z_NULL || z->state == Z_NULL)
- return Z_STREAM_ERROR;
- z->total_in = z->total_out = 0;
- z->msg = Z_NULL;
- z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
- inflate_blocks_reset(z->state->blocks, z, &c);
- Trace((stderr, "inflate: resetn"));
- return Z_OK;
- }
- /******************************************************************************
- *
- * inflateEnd - end inflate
- */
- static int inflateEnd(z)
- z_streamp z;
- {
- uLong c;
- if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
- return Z_STREAM_ERROR;
- if (z->state->blocks != Z_NULL)
- inflate_blocks_free(z->state->blocks, z, &c);
- ZFREE(z, z->state);
- z->state = Z_NULL;
- Trace((stderr, "inflate: endn"));
- return Z_OK;
- }
- /******************************************************************************
- *
- * inflateInit - initializes inflate
- */
- static int inflateInit(z)
- z_streamp z;
- {
- int w = DEF_WBITS;
- /* initialize state */
- if (z == Z_NULL)
- return Z_STREAM_ERROR;
- z->msg = Z_NULL;
- if (z->zalloc == Z_NULL)
- {
- z->zalloc = zcalloc;
- z->opaque = (voidp)0;
- }
- if (z->zfree == Z_NULL) z->zfree = zcfree;
- if ((z->state = (struct internal_state *)
- ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
- return Z_MEM_ERROR;
- z->state->blocks = Z_NULL;
- /* handle undocumented nowrap option (no zlib header or check) */
- z->state->nowrap = 0;
- if (w < 0)
- {
- w = - w;
- z->state->nowrap = 1;
- }
- /* set window size */
- if (w < 8 || w > 15)
- {
- inflateEnd(z);
- return Z_STREAM_ERROR;
- }
- z->state->wbits = (uInt)w;
- /* create inflate_blocks state */
- if ((z->state->blocks =
- inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
- == Z_NULL)
- {
- inflateEnd(z);
- return Z_MEM_ERROR;
- }
- Trace((stderr, "inflate: allocatedn"));
- /* reset state */
- inflateReset(z);
- return Z_OK;
- }
- /* XXX */
- #undef NEEDBYTE
- #undef NEXTBYTE
- #define NEEDBYTE {if(z->avail_in==0)return r;r=Z_OK;}
- #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
- /******************************************************************************
- *
- * inflate - inflates
- */
- static int zinflate(z, f)
- z_streamp z;
- int f;
- {
- int r;
- uInt b;
- if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
- return Z_STREAM_ERROR;
- r = Z_BUF_ERROR;
- while (1) switch (z->state->mode)
- {
- case METHOD:
- NEEDBYTE
- if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
- {
- z->state->mode = INF_BAD;
- z->msg = (char*)"unknown compression method";
- break;
- }
- if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
- {
- z->state->mode = INF_BAD;
- z->msg = (char*)"invalid window size";
- break;
- }
- z->state->mode = FLAG;
- case FLAG:
- NEEDBYTE
- b = NEXTBYTE;
- if (((z->state->sub.method << 8) + b) % 31)
- {
- z->state->mode = INF_BAD;
- z->msg = (char*)"incorrect header check";
- break;
- }
- Trace((stderr, "inflate: zlib header okn"));
- if (!(b & PRESET_DICT))
- {
- z->state->mode = BLOCKS;
- break;
- }
- z->state->mode = DICT4;
- case DICT4:
- NEEDBYTE
- z->state->sub.check.need = (uLong)NEXTBYTE << 24;
- z->state->mode = DICT3;
- case DICT3:
- NEEDBYTE
- z->state->sub.check.need += (uLong)NEXTBYTE << 16;
- z->state->mode = DICT2;
- case DICT2:
- NEEDBYTE
- z->state->sub.check.need += (uLong)NEXTBYTE << 8;
- z->state->mode = DICT1;
- case DICT1:
- NEEDBYTE
- z->state->sub.check.need += (uLong)NEXTBYTE;
- z->adler = z->state->sub.check.need;
- z->state->mode = DICT0;
- return Z_NEED_DICT;
- case DICT0:
- z->state->mode = INF_BAD;
- z->msg = (char*)"need dictionary";
- return Z_STREAM_ERROR;
- case BLOCKS:
- r = inflate_blocks(z->state->blocks, z, r);
- if (r == Z_DATA_ERROR)
- {
- z->state->mode = INF_BAD;
- break;
- }
- if (r != Z_STREAM_END)
- return r;
- r = Z_OK;
- inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
- if (z->state->nowrap)
- {
- z->state->mode = INF_DONE;
- break;
- }
- z->state->mode = CHECK4;
- case CHECK4:
- NEEDBYTE
- z->state->sub.check.need = (uLong)NEXTBYTE << 24;
- z->state->mode = CHECK3;
- case CHECK3:
- NEEDBYTE
- z->state->sub.check.need += (uLong)NEXTBYTE << 16;
- z->state->mode = CHECK2;
- case CHECK2:
- NEEDBYTE
- z->state->sub.check.need += (uLong)NEXTBYTE << 8;
- z->state->mode = CHECK1;
- case CHECK1:
- NEEDBYTE
- z->state->sub.check.need += (uLong)NEXTBYTE;
- if (z->state->sub.check.was != z->state->sub.check.need)
- {
- z->state->mode = INF_BAD;
- z->msg = (char*)"incorrect data check";
- break;
- }
- Trace((stderr, "inflate: zlib check okn"));
- z->state->mode = INF_DONE;
- case INF_DONE:
- return Z_STREAM_END;
- case INF_BAD:
- return Z_DATA_ERROR;
- default:
- return Z_STREAM_ERROR;
- }
- }
- /* global variables */
- int inflateCksum = 0; /* set to TRUE to validate compressed checksum */
- /******************************************************************************
- *
- * inflate - inflate compressed code
- *
- * This routine inflates <nBytes> of data starting at address <src>.
- * The inflated code is copied starting at address <dest>.
- * Two sanity checks are performed on the data being decompressed.
- * First, we look for a magic number at the start of the data to
- * verify that it is really a compressed stream.
- * Second, the entire data is optionally checksummed to verify its
- * integrity. By default, the checksum is not verified in order to
- * speed up the booting process. To turn on checksum verification,
- * set the global variable `inflateCksum' to TRUE in the BSP.
- *
- * RETURNS: OK or ERROR.
- */
- int inflate
- (
- Byte * src,
- Byte * dest,
- int nBytes
- )
- {
- z_stream d_stream; /* decompression stream */
- int err;
- /* we must initialize BSS variables since it's not done in bootInit */
- fixed_built = 0;
- fixed_bl = 0;
- fixed_bd = 0;
- fixed_tl = 0;
- fixed_td = 0;
- bzero ((char *)fixed_mem, sizeof (fixed_mem));
- BLK_PREV(nextBlock) = 0; /* set first block's prev pointer */
- /*
- * Validate the compression stream.
- * The first byte should be Z_DEFLATED, the last two a valid checksum.
- */
- if (*src != Z_DEFLATED)
- {
- DBG_PUT ("inflate error: *src = %d. not Z_DEFLATED datan", *src);
- return (-1);
- }
- if (inflateCksum)
- {
- if (cksum (0, src, nBytes) != 0xffff)
- {
- DBG_PUT ("checksum error: 0x%x != 0xffffnn",
- cksum (0, src, nBytes));
- return (-1);
- }
- }
- src++;
- nBytes -= 3;
- /* do the decompression */
- d_stream.zalloc = (alloc_func)0;
- d_stream.zfree = (free_func)0;
- d_stream.opaque = (voidp)0;
- d_stream.next_in = src;
- d_stream.avail_in = nBytes;
- d_stream.next_out = dest;
- d_stream.avail_out = nBytes * 100;
- if (inflateInit(&d_stream) != Z_OK)
- return (-1);
- err = zinflate(&d_stream, 0);
- if (err == Z_STREAM_END)
- {
- err = inflateEnd(&d_stream);
- }
- if (err != Z_OK)
- return (-1);
- return (0);
- }