GInt.pas
上传用户:master
上传日期:2007-01-06
资源大小:17k
文件大小:85k
- {License, info, etc
- ------------------
- This implementation is made by Walied Othman, to contact me
- mail to Walied.Othman@Student.KULeuven.ac.be or
- Triade@ace.Ulyssis.Student.KULeuven.ac.be, or ICQ me on 20388046.
- If you 're going to use these implementations, at least mention my
- name or something and notify me so I may even put a link on my page.
- This implementation is freeware and according to the coderpunks'
- manifesto it should remain so, so don 't use these implementations
- in commercial applications. Encryption, as a tool to ensure privacy
- should be free and accessible for anyone.
- If any algorithm is patented in your country, you should acquire a
- license before using this software. Modified versions of this
- software must remain in the public domain and must contain an
- acknowledgement of the original author (=me).
- This implementaion is available at
- http://ace.ulyssis.student.kuleuven.ac.be/~triade/GInt/index.htm
- copyright 1999, Walied Othman
- This header may not be removed.
- Updates:
- --------
- 9/1/99: Division algorithm speeded up, 3 times faster now
- 22/1/99: Procedure Added to compute the Legendre symbol
- 26/2/99: The Procedure GIntToBinStr optimized
- 28/2/99: signtype changed
- 19/3/99: TrialDiv range expanded
- 23/3/99: BinStrToGInt optimized, 4 times faster now
- GIntMulByInt and GIntMulByIntBis procedures added
- }
- Unit GInt;
- Interface
- Uses Windows, SysUtils, Controls;
- Type
- TCompare = (Lt, St, Eq, Er);
- Tsign = (negative, positive);
- TGInt = ^cont;
- cont = Record
- sign : Tsign;
- value : longint;
- next, prev : TGInt;
- End;
- Procedure zeronetochar8(Var g : char; x : String);
- Procedure zeronetochar6(Var g : integer; x : String);
- Procedure initialize8(Var trans : Array Of String);
- Procedure initialize6(Var trans : Array Of String);
- Procedure Convert8to6bit(str8 : String; Var str6 : String);
- Procedure Convert6to8bit(str6 : String; Var str8 : String);
- Procedure Convert8to1bit(str8 : String; Var str1 : String);
- Procedure Convert6to1bit(str6 : String; Var str1 : String);
- Procedure Convert1to8bit(str1 : String; Var str8 : String);
- Procedure Convert1to6bit(str1 : String; Var str6 : String);
- Procedure decstrtogint(GIntstr : String; Var GInt : TGInt);
- Procedure ginttodecstr(Var GIntstr : String; GInt : TGInt);
- Procedure InttoGInt(Int : integer; Var GInt : TGInt);
- Procedure gintdestroy(Var GInt : TGInt);
- Procedure GIntcopy(GInt1 : TGInt; Var GInt2 : TGInt);
- Procedure GIntdivbyint(GInt : TGInt; Var res : TGInt; by : longint; Var m : longint);
- Procedure GIntmodbyint(GInt : TGInt; by : longint; Var m : longint);
- Function GIntCompareAbs(GInt1, GInt2 : TGInt) : TCompare;
- Procedure GIntchangesign(Var GInt : TGInt);
- Procedure GIntabs(Var GInt : TGInt);
- Procedure GIntadd(GInt1, GInt2 : TGInt; Var sum : TGInt);
- Procedure GIntsub(GInt1, GInt2 : TGInt; Var dif : TGInt);
- Procedure GIntmul(GInt1, GInt2 : TGInt; Var prod : TGInt);
- Procedure GIntMulByInt(GInt1 : TGInt; By : Longint; Var prod : TGInt);
- Procedure GIntMulByIntBis(Var GInt : TGInt; By : Longint);
- Procedure GIntSquare(GInt : TGInt; Var Square : TGInt);
- Procedure GInttobinstr(GInt : TGint; Var S : String);
- Procedure Binstrtogint(S : String; Var GInt : TGInt);
- Procedure GInttostr(GInt : TGInt; Var str : String);
- Procedure strtoGInt(str : String; Var GInt : TGInt);
- Procedure GIntExp(GInt, exp : TGInt; Var res : TGInt);
- Procedure GIntfac(GInt : TGInt; Var res : TGint);
- Procedure GIntdivmod(GInt1, GInt2 : TGInt; Var divres, modres : TGInt);
- Procedure GIntdiv(GInt1, GInt2 : TGInt; Var divres : TGInt);
- Procedure GIntmod(GInt1, GInt2 : TGInt; Var modres : TGInt);
- Procedure GIntSquareMod(GInt, Modb : TGInt; Var GIntSM : TGInt);
- Procedure GIntAddMod(GInt1, GInt2, base : TGInt; Var GIntres : TGInt);
- Procedure GIntMulMod(GInt1, GInt2, base : TGInt; Var GIntres : TGInt);
- Procedure GIntmodExp(GInt, exp, modb : TGInt; Var res : TGInt);
- Procedure GIntGCD(GInt1, GInt2 : TGint; Var GCD : TGInt);
- Procedure GIntLCM(GInt1, GInt2 : TGInt; Var LCM : TGInt);
- Procedure GIntTrialdiv9999(GInt : TGInt; Var ok : boolean);
- Procedure GIntRandom1(Seed : TGInt; Var RandomGInt : TGInt);
- Procedure GIntRabinMiller(GIntp : TGInt; nrtest : integer; Var ok : boolean);
- Procedure GIntBezoutBachet(GInt1, GInt2 : TGInt; Var a, b : TGInt);
- Procedure GIntModInv(GInt1, base : TGInt; Var Inverse : TGInt);
- Procedure GIntPrimetest(GIntp : TGInt; nrRMtests : integer; Var ok : boolean);
- Procedure GIntLegendreSymbol(a, p : TGInt; Var L : integer);
- Implementation
- Var
- primes : Array[1..1227] Of integer =
- (3, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
- 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
- 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389,
- 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
- 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677,
- 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
- 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009,
- 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123,
- 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279,
- 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429,
- 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553,
- 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693,
- 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847,
- 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
- 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
- 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287,
- 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417,
- 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593,
- 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719,
- 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861,
- 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037,
- 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
- 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359,
- 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527,
- 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659,
- 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821,
- 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967,
- 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129,
- 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273,
- 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
- 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637,
- 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789,
- 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957,
- 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101,
- 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281,
- 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443,
- 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623,
- 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779,
- 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903,
- 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101,
- 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269,
- 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397,
- 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599,
- 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779,
- 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947,
- 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103,
- 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283,
- 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487,
- 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607,
- 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789,
- 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951,
- 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161,
- 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311,
- 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521,
- 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681,
- 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831,
- 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007,
- 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181,
- 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343,
- 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491,
- 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679,
- 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839,
- 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973);
- chr64 : Array[1..64] Of char = ('a', 'A', 'b', 'B', 'c', 'C', 'd', 'D', 'e', 'E', 'f', 'F',
- 'g', 'G', 'h', 'H', 'i', 'I', 'j', 'J', 'k', 'K', 'l', 'L', 'm', 'M', 'n', 'N', 'o', 'O', 'p',
- 'P', 'q', 'Q', 'r', 'R', 's', 'S', 't', 'T', 'u', 'U', 'v', 'V', 'w', 'W', 'x', 'X', 'y', 'Y',
- 'z', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '=');
- {$H+}
- Procedure zeronetochar8(Var g : char; x : String);
- Begin
- If x[1] = '0' Then
- Begin
- If x[2] = '0' Then
- Begin
- If x[3] = '0' Then
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(1) Else g := chr(2);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(4) Else g := chr(3);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(5) Else g := chr(6);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(9) Else g := chr(8);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(7) Else g := chr(10);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(11) Else g := chr(13);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(14) Else g := chr(12);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(15) Else g := chr(16);
- End
- End
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(18) Else g := chr(20);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(17) Else g := chr(21);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(19) Else g := chr(25);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(24) Else g := chr(22);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(23) Else g := chr(26);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(28) Else g := chr(31);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(27) Else g := chr(29);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(30) Else g := chr(32);
- End
- End
- End
- End
- End
- Else
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(0) Else g := chr(33);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(34) Else g := chr(36);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(35) Else g := chr(37);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(38) Else g := chr(40);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(39) Else g := chr(41);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(42) Else g := chr(43);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(44) Else g := chr(45);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(46) Else g := chr(47);
- End
- End
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(48) Else g := chr(49);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(50) Else g := chr(51);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(52) Else g := chr(53);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(54) Else g := chr(55);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(56) Else g := chr(57);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(58) Else g := chr(59);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(60) Else g := chr(90);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(89) Else g := chr(88);
- End
- End
- End
- End
- End
- End
- Else
- Begin
- If x[3] = '0' Then
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(87) Else g := chr(86);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(85) Else g := chr(84);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(83) Else g := chr(82);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(81) Else g := chr(80);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(79) Else g := chr(78);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(77) Else g := chr(76);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(75) Else g := chr(74);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(73) Else g := chr(72);
- End
- End
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(71) Else g := chr(70);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(69) Else g := chr(68);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(67) Else g := chr(66);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(65) Else g := chr(64);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(63) Else g := chr(62);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(61) Else g := chr(95);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(94) Else g := chr(93);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(91) Else g := chr(92);
- End
- End
- End
- End
- End
- Else
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(96) Else g := chr(97);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(98) Else g := chr(99);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(100) Else g := chr(101);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(102) Else g := chr(105);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(103) Else g := chr(104);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(106) Else g := chr(107);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(108) Else g := chr(109);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(110) Else g := chr(111);
- End
- End
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(112) Else g := chr(113);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(114) Else g := chr(115);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(116) Else g := chr(117);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(118) Else g := chr(119);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(120) Else g := chr(121);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(125) Else g := chr(124);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(123) Else g := chr(126);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(122) Else g := chr(127);
- End
- End
- End
- End
- End
- End
- End
- Else
- Begin
- If x[2] = '0' Then
- Begin
- If x[3] = '0' Then
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(128) Else g := chr(130);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(129) Else g := chr(131);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(132) Else g := chr(133);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(134) Else g := chr(135);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(136) Else g := chr(137);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(138) Else g := chr(139);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(140) Else g := chr(141);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(142) Else g := chr(143);
- End
- End
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(144) Else g := chr(145);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(150) Else g := chr(149);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(148) Else g := chr(147);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(146) Else g := chr(151);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(152) Else g := chr(154);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(153) Else g := chr(155);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(156) Else g := chr(157);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(158) Else g := chr(159);
- End
- End
- End
- End
- End
- Else
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(160) Else g := chr(161);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(162) Else g := chr(170);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(165) Else g := chr(166);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(167) Else g := chr(168);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(169) Else g := chr(163);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(164) Else g := chr(171);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(172) Else g := chr(173);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(174) Else g := chr(175);
- End
- End
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(176) Else g := chr(177);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(178) Else g := chr(179);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(180) Else g := chr(181);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(200) Else g := chr(199);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(198) Else g := chr(197);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(196) Else g := chr(195);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(194) Else g := chr(193);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(192) Else g := chr(191);
- End
- End
- End
- End
- End
- End
- Else
- Begin
- If x[3] = '0' Then
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(190) Else g := chr(189);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(188) Else g := chr(182);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(183) Else g := chr(184);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(185) Else g := chr(186);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(187) Else g := chr(201);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(202) Else g := chr(203);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(204) Else g := chr(205);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(206) Else g := chr(207);
- End
- End
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(208) Else g := chr(209);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(210) Else g := chr(220);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(211) Else g := chr(219);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(212) Else g := chr(218);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(213) Else g := chr(217);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(214) Else g := chr(216);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(215) Else g := chr(221);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(222) Else g := chr(223);
- End
- End
- End
- End
- End
- Else
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(224) Else g := chr(225);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(226) Else g := chr(227);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(228) Else g := chr(229);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(230) Else g := chr(231);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(232) Else g := chr(233);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(234) Else g := chr(235);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(236) Else g := chr(237);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(238) Else g := chr(240);
- End
- End
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(239) Else g := chr(241);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(242) Else g := chr(243);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(244) Else g := chr(245);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(255) Else g := chr(254);
- End
- End
- End
- Else
- Begin
- If x[6] = '0' Then
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(246) Else g := chr(253);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(247) Else g := chr(252);
- End
- End
- Else
- Begin
- If x[7] = '0' Then
- Begin
- If x[8] = '0' Then g := chr(248) Else g := chr(251);
- End
- Else
- Begin
- If x[8] = '0' Then g := chr(249) Else g := chr(250);
- End
- End
- End
- End
- End
- End
- End
- End;
- Procedure zeronetochar6(Var g : integer; x : String);
- Begin
- If x[1] = '0' Then
- Begin
- If x[2] = '0' Then
- Begin
- If x[3] = '0' Then
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 1 Else g := 2;
- End
- Else
- Begin
- If x[6] = '0' Then g := 3 Else g := 4;
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 5 Else g := 6;
- End
- Else
- Begin
- If x[6] = '0' Then g := 7 Else g := 8;
- End
- End
- End
- Else
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 9 Else g := 10;
- End
- Else
- Begin
- If x[6] = '0' Then g := 11 Else g := 12;
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 13 Else g := 14;
- End
- Else
- Begin
- If x[6] = '0' Then g := 15 Else g := 16;
- End
- End
- End
- End
- Else
- Begin
- If x[3] = '0' Then
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 17 Else g := 18;
- End
- Else
- Begin
- If x[6] = '0' Then g := 19 Else g := 20;
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 21 Else g := 22;
- End
- Else
- Begin
- If x[6] = '0' Then g := 23 Else g := 24;
- End
- End
- End
- Else
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 25 Else g := 26;
- End
- Else
- Begin
- If x[6] = '0' Then g := 27 Else g := 28;
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 29 Else g := 30;
- End
- Else
- Begin
- If x[6] = '0' Then g := 31 Else g := 32;
- End
- End
- End
- End
- End
- Else
- Begin
- If x[2] = '0' Then
- Begin
- If x[3] = '0' Then
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 33 Else g := 34;
- End
- Else
- Begin
- If x[6] = '0' Then g := 35 Else g := 36;
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 37 Else g := 38;
- End
- Else
- Begin
- If x[6] = '0' Then g := 39 Else g := 40;
- End
- End
- End
- Else
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 41 Else g := 42;
- End
- Else
- Begin
- If x[6] = '0' Then g := 43 Else g := 44;
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 45 Else g := 46;
- End
- Else
- Begin
- If x[6] = '0' Then g := 47 Else g := 48;
- End
- End
- End
- End
- Else
- Begin
- If x[3] = '0' Then
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 49 Else g := 50;
- End
- Else
- Begin
- If x[6] = '0' Then g := 51 Else g := 52;
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 53 Else g := 54;
- End
- Else
- Begin
- If x[6] = '0' Then g := 55 Else g := 56;
- End
- End
- End
- Else
- Begin
- If x[4] = '0' Then
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 57 Else g := 58;
- End
- Else
- Begin
- If x[6] = '0' Then g := 59 Else g := 60;
- End
- End
- Else
- Begin
- If x[5] = '0' Then
- Begin
- If x[6] = '0' Then g := 61 Else g := 62;
- End
- Else
- Begin
- If x[6] = '0' Then g := 63 Else g := 64;
- End
- End
- End
- End
- End
- End;
- Procedure initialize8(Var trans : Array Of String);
- Var
- c1, c2, c3, c4, c5, c6, c7, c8 : integer;
- x : String;
- g : char;
- Begin
- For c1 := 0 To 1 Do
- For c2 := 0 To 1 Do
- For c3 := 0 To 1 Do
- For c4 := 0 To 1 Do
- For c5 := 0 To 1 Do
- For c6 := 0 To 1 Do
- For c7 := 0 To 1 Do
- For c8 := 0 To 1 Do
- Begin
- x := '';
- x := inttostr(c1) + inttostr(c2) + inttostr(c3) + inttostr(c4) + inttostr(c5) + inttostr(c6) + inttostr(c7) + inttostr(c8);
- zeronetochar8(g, x);
- trans[ord(g)] := x;
- End;
- End;
- Procedure initialize6(Var trans : Array Of String);
- Var
- c1, c2, c3, c4, c5, c6 : integer;
- x : String;
- g : integer;
- Begin
- For c1 := 0 To 1 Do
- For c2 := 0 To 1 Do
- For c3 := 0 To 1 Do
- For c4 := 0 To 1 Do
- For c5 := 0 To 1 Do
- For c6 := 0 To 1 Do
- Begin
- x := '';
- x := inttostr(c1) + inttostr(c2) + inttostr(c3) + inttostr(c4) + inttostr(c5) + inttostr(c6);
- zeronetochar6(g, x);
- trans[ord(chr64[g])] := x;
- End;
- End;
- // Convert 8 bit strings to 6 bit strings and visa versa
- Procedure Convert8to6bit(str8 : String; Var str6 : String);
- Var
- temp : String;
- trans : Array[0..255] Of String;
- i, len6 : longint;
- g : integer;
- Begin
- initialize8(trans);
- temp := '';
- For i := 1 To length(str8) Do temp := temp + trans[ord(str8[i])];
- While (length(temp) Mod 6) <> 0 Do temp := temp + '0';
- len6 := length(temp) Div 6;
- str6 := '';
- For i := 1 To len6 Do
- Begin
- zeronetochar6(g, copy(temp, 1, 6));
- str6 := str6 + chr64[g];
- delete(temp, 1, 6);
- End;
- End;
- Procedure Convert6to8bit(str6 : String; Var str8 : String);
- Var
- temp : String;
- trans : Array[0..255] Of String;
- i, len8 : longint;
- g : char;
- Begin
- initialize6(trans);
- temp := '';
- For i := 1 To length(str6) Do temp := temp + trans[ord(str6[i])];
- str8 := '';
- len8 := length(temp) Div 8;
- For i := 1 To len8 Do
- Begin
- zeronetochar8(g, copy(temp, 1, 8));
- str8 := str8 + g;
- delete(temp, 1, 8);
- End;
- End;
- // Convert 8 & 6 bit strings to 1 bit strings and visa versa
- Procedure Convert8to1bit(str8 : String; Var str1 : String);
- Var
- trans : Array[0..255] Of String;
- i : longint;
- Begin
- str1 := '';
- initialize8(trans);
- For i := 1 To length(str8) Do str1 := str1 + trans[ord(str8[i])];
- End;
- Procedure Convert6to1bit(str6 : String; Var str1 : String);
- Var
- trans : Array[0..255] Of String;
- i : longint;
- Begin
- str1 := '';
- initialize6(trans);
- For i := 1 To length(str6) Do str1 := str1 + trans[ord(str6[i])];
- End;
- Procedure Convert1to8bit(str1 : String; Var str8 : String);
- Var
- i, len8 : longint;
- g : char;
- Begin
- str8 := '';
- While (length(str1) Mod 8) <> 0 Do str1 := '0' + str1;
- len8 := length(str1) Div 8;
- For i := 1 To len8 Do
- Begin
- zeronetochar8(g, copy(str1, 1, 8));
- str8 := str8 + g;
- delete(str1, 1, 8);
- End;
- End;
- Procedure Convert1to6bit(str1 : String; Var str6 : String);
- Var
- i, len6 : longint;
- g : integer;
- Begin
- str6 := '';
- While (length(str1) Mod 6) <> 0 Do str1 := '0' + str1;
- len6 := length(str1) Div 6;
- For i := 1 To len6 Do
- Begin
- zeronetochar6(g, copy(str1, 1, 6));
- str6 := str6 + chr64[g];
- delete(str1, 1, 6);
- End;
- End;
- // convert a base 10 string to a GInt and visa versa
- Procedure DecStrToGInt(GIntstr : String; Var GInt : TGInt);
- Var
- temp1, temp2 : TGInt;
- p : Tsign;
- Begin
- While Not (GIntstr[1] In ['-', '0'..'9']) Do delete(GIntstr, 1, 1);
- If GIntstr[1] = '-' Then
- Begin
- delete(GIntstr, 1, 1);
- p := negative;
- End
- Else p := positive;
- While (GIntstr[1] = '0') And (length(GIntstr) > 1) Do delete(GIntstr, 1, 1);
- new(temp2);
- temp2^.next := Nil;
- If (length(GIntstr) Mod 4) = 0 Then
- Begin
- temp2^.value := strtoint(copy(GIntstr, 1, 4));
- delete(GIntstr, 1, 4);
- End
- Else
- Begin
- temp2^.value := strtoint(copy(GIntstr, 1, (length(GIntstr) Mod 4)));
- delete(GIntstr, 1, (length(GIntstr) Mod 4));
- End;
- While length(GIntstr) > 0 Do
- Begin
- new(temp1);
- temp1^.next := temp2;
- temp2^.prev := temp1;
- temp1^.value := strtoint(copy(GIntstr, 1, 4));
- delete(GIntstr, 1, 4);
- temp2 := temp1;
- End;
- temp2^.prev := Nil;
- temp2^.sign := p;
- GInt := temp2;
- End;
- Procedure GIntToDecStr(Var GIntstr : String; GInt : TGInt);
- Var
- s : String;
- p : TSign;
- Begin
- GIntstr := '';
- p := GInt^.sign;
- s := inttostr(GInt^.value);
- While length(s) < 4 Do s := '0' + s;
- GIntstr := s + GIntstr;
- While GInt^.next <> Nil Do
- Begin
- GInt := GInt^.next;
- s := inttostr(abs(GInt^.value));
- While length(s) < 4 Do s := '0' + s;
- GIntstr := s + GIntstr;
- End;
- While (GIntstr[1] = '0') And (length(GIntstr) > 1) Do delete(GIntstr, 1, 1);
- If p = negative Then GIntstr := '-' + GIntstr;
- End;
- // Convert an integer to a GInt
- Procedure IntToGInt(Int : integer; Var GInt : TGInt);
- Begin
- DecstrtoGInt(inttostr(Int), GInt);
- End;
- // Destroy a GInt, in order to free memory
- Procedure GIntDestroy(Var GInt : TGInt);
- Begin
- While GInt^.next <> Nil Do GInt := GInt^.next;
- While GInt^.prev <> Nil Do
- Begin
- GInt := GInt^.prev;
- dispose(GInt^.next);
- End;
- dispose(GInt);
- End;
- // Make a copy of a GInt
- Procedure GIntCopy(GInt1 : TGInt; Var GInt2 : TGInt);
- Var
- temp1, temp2 : TGInt;
- Begin
- new(GInt2);
- GInt2^.sign := GInt1^.sign;
- GInt2^.prev := Nil;
- GInt2^.value := GInt1^.value;
- temp1 := GInt2;
- While GInt1^.next <> Nil Do
- Begin
- GInt1 := GInt1^.next;
- new(temp2);
- temp2^.value := GInt1^.value;
- temp2^.prev := temp1;
- temp1^.next := temp2;
- temp1 := temp2;
- End;
- temp1^.next := Nil;
- End;
- // Divide a GInt by an integer, GInt = res * by + m
- Procedure GIntDivByInt(GInt : TGInt; Var res : TGInt; by : longint; Var m : longint);
- Var
- S, S1 : String;
- Begin
- If (by Div 10000) = 0 Then
- Begin
- S := '';
- While GInt^.next <> Nil Do GInt := GInt^.next;
- S := inttostr(GInt^.value Div by);
- m := (GInt^.value Mod by);
- While GInt^.prev <> Nil Do
- Begin
- m := m * 10000;
- GInt := GInt^.prev;
- S1 := inttostr((GInt^.value + m) Div by);
- While length(S1) < 4 Do S1 := '0' + S1;
- S := S + S1;
- m := ((GInt^.value + m) Mod by);
- End;
- decstrtogint(S, res);
- End;
- End;
- // GInt modulo an integer, GInt mod by = m
- Procedure GIntModByInt(GInt : TGInt; by : longint; Var m : longint);
- Begin
- If (by Div 10000) = 0 Then
- Begin
- While GInt^.next <> Nil Do GInt := GInt^.next;
- m := (GInt^.value Mod by);
- While GInt^.prev <> Nil Do
- Begin
- m := m * 10000;
- GInt := GInt^.prev;
- m := ((GInt^.value + m) Mod by);
- End;
- End;
- End;
- // Compare two GInts in absolute value, GInt1 < : St, > : Lt, = : Eq, Error : Er GInt2
- Function GIntCompareAbs(GInt1, GInt2 : TGInt) : TCompare;
- Begin
- GIntCompareAbs := Er;
- While (GInt1^.next <> Nil) And (GInt2^.next <> Nil) Do
- Begin
- GInt1 := GInt1^.next;
- GInt2 := GInt2^.next;
- End;
- If (GInt1^.next = Nil) And (GInt2^.next <> Nil) Then GIntCompareAbs := St;
- If (GInt2^.next = Nil) And (GInt1^.next <> Nil) Then GIntCompareAbs := Lt;
- If (GInt1^.next = Nil) And (GInt2^.next = Nil) Then
- Begin
- While (GInt1^.value = GInt2^.value) And (GInt1^.prev <> Nil) Do
- Begin
- GInt1 := GInt1^.prev;
- GInt2 := GInt2^.prev;
- End;
- If (GInt1^.value > GInt2^.value) Then GIntCompareAbs := Lt
- Else If (GInt1^.value < GInt2^.value) Then GIntCompareAbs := St Else GIntCompareAbs := Eq;
- End
- End;
- // Change the sign of a GInt
- Procedure GIntChangeSign(Var GInt : TGInt);
- Begin
- If GInt^.sign = negative Then GInt^.sign := positive Else GInt^.sign := negative;
- End;
- // Returns the GInt in its absolute value
- Procedure GIntAbs(Var GInt : TGInt);
- Begin
- GInt^.sign := positive;
- End;
- // Add 2 GInts, GInt1 + GInt2 = sum
- Procedure GIntAdd(GInt1, GInt2 : TGInt; Var sum : TGInt);
- Var
- temp1, temp2 : TGInt;
- rest : integer;
- Tres : Longint;
- Begin
- If (GInt1^.sign = GInt2^.sign) Then
- Begin
- new(temp2);
- temp2^.prev := Nil;
- Tres := GInt1^.value + GInt2^.value;
- temp2^.value := Tres Mod 10000;
- temp2^.sign := GInt1^.sign;
- If Tres >= 10000 Then rest := 1 Else rest := 0;
- While (GInt1^.next <> Nil) And (GInt2^.next <> Nil) Do
- Begin
- GInt1 := GInt1^.next;
- GInt2 := GInt2^.next;
- new(temp1);
- Tres := GInt1^.value + GInt2^.value + rest;
- temp1^.value := Tres Mod 10000;
- If Tres >= 10000 Then rest := 1 Else rest := 0;
- temp1^.prev := temp2;
- temp2^.next := temp1;
- temp2 := temp1;
- End;
- While (GInt1^.next) <> Nil Do
- Begin
- GInt1 := GInt1^.next;
- new(temp1);
- Tres := GInt1^.value + rest;
- temp1^.value := Tres Mod 10000;
- If Tres >= 10000 Then rest := 1 Else rest := 0;
- temp1^.prev := temp2;
- temp2^.next := temp1;
- temp2 := temp1;
- End;
- While (GInt2^.next) <> Nil Do
- Begin
- GInt2 := GInt2^.next;
- new(temp1);
- Tres := GInt2^.value + rest;
- temp1^.value := Tres Mod 10000;
- If Tres >= 10000 Then rest := 1 Else rest := 0;
- temp1^.prev := temp2;
- temp2^.next := temp1;
- temp2 := temp1;
- End;
- If rest <> 0 Then
- Begin
- new(temp1);
- temp1^.value := (rest) Mod 10000;
- temp1^.prev := temp2;
- temp2^.next := temp1;
- temp2 := temp1;
- End;
- temp2^.next := Nil;
- sum := temp2;
- While sum^.prev <> Nil Do sum := sum^.prev;
- End
- Else
- Begin
- If (GIntCompareAbs(GInt1, GInt2) = Lt) Or (GIntCompareAbs(GInt1, GInt2) = Eq) Then
- Begin
- new(temp2);
- temp2^.prev := Nil;
- temp2^.sign := GInt1^.sign;
- Tres := 10000 + GInt1^.value - GInt2^.value;
- temp2^.value := Tres Mod 10000;
- If (GInt1^.value - GInt2^.value) < 0 Then rest := -1 Else rest := 0;
- While (GInt1^.next <> Nil) And (GInt2^.next <> Nil) Do
- Begin
- GInt1 := GInt1^.next;
- GInt2 := GInt2^.next;
- new(temp1);
- Tres := GInt1^.value - GInt2^.value + rest;
- temp1^.value := (10000 + Tres) Mod 10000;
- If Tres < 0 Then rest := -1 Else rest := 0;
- temp1^.prev := temp2;
- temp2^.next := temp1;
- temp2 := temp1;
- End;
- While (GInt1^.next) <> Nil Do
- Begin
- GInt1 := GInt1^.next;
- new(temp1);
- Tres := GInt1^.value + rest;
- temp1^.value := (10000 + Tres) Mod 10000;
- If Tres < 0 Then rest := -1 Else rest := 0;
- temp1^.prev := temp2;
- temp2^.next := temp1;
- temp2 := temp1;
- End;
- If rest <> 0 Then
- Begin
- new(temp1);
- temp1^.value := (10000 + rest) Mod 10000;
- temp1^.prev := temp2;
- temp2^.next := temp1;
- temp2 := temp1;
- End;
- While (temp2^.value = 0) And (temp2^.prev <> Nil) Do
- Begin
- temp2 := temp2^.prev;
- dispose(temp2^.next);
- temp2^.next := Nil;
- End;
- temp2^.next := Nil;
- sum := temp2;
- While sum^.prev <> Nil Do sum := sum^.prev;
- End
- Else
- GIntadd(GInt2, GInt1, sum);
- End
- End;
- // Subtract 2 GInts, GInt1 - GInt2 = dif
- Procedure GIntSub(GInt1, GInt2 : TGInt; Var dif : TGInt);
- Begin
- GIntchangesign(GInt2);
- GIntadd(GInt1, GInt2, dif);
- GIntchangesign(GInt2);
- End;
- // Multiply 2 GInts, GInt1 * GInt2 = prod
- Procedure GIntMul(GInt1, GInt2 : TGInt; Var prod : TGInt);
- Var
- zero, temp1, temp2, temp : TGInt;
- sign : Tsign;
- rest, Trest : longint;
- Begin
- decstrtogint('0', zero);
- If Not ((GIntcompareabs(zero, GInt1) = Eq) Or (GIntcompareabs(zero, GInt2) = Eq)) Then
- Begin
- If GInt1^.sign = GInt2^.sign Then sign := positive Else sign := negative;
- temp1 := GInt1;
- new(temp2);
- temp2^.sign := sign;
- temp2^.prev := Nil;
- temp2^.value := (GInt2^.value * temp1^.value) Mod 10000;
- rest := (GInt2^.value * temp1^.value) Div 10000;
- temp2^.next := Nil;
- prod := temp2;
- While temp1^.next <> Nil Do
- Begin
- temp1 := temp1^.next;
- new(temp);
- temp^.value := (GInt2^.value * temp1^.value + rest) Mod 10000;
- rest := (GInt2^.value * temp1^.value + rest) Div 10000;
- temp^.next := Nil;
- temp2^.next := temp;
- temp^.prev := temp2;
- temp2 := temp2^.next;
- End;
- If rest <> 0 Then
- Begin
- new(temp);
- temp^.value := rest;
- temp^.next := Nil;
- temp^.prev := temp2;
- temp2^.next := temp;
- End;
- While GInt2^.next <> Nil Do
- Begin
- If prod^.next = Nil Then
- Begin
- new(temp2);
- temp2^.value := 0;
- temp2^.prev := prod;
- prod^.next := temp2;
- temp2^.next := Nil;
- End;
- prod := prod^.next;
- GInt2 := GInt2^.next;
- temp1 := GInt1;
- temp2 := prod;
- rest := (GInt2^.value * temp1^.value + temp2^.value) Div 10000;
- temp2^.value := (GInt2^.value * temp1^.value + temp2^.value) Mod 10000;
- While temp1^.next <> Nil Do
- Begin
- temp1 := temp1^.next;
- If temp2^.next = Nil Then
- Begin
- new(temp);
- temp^.value := 0;
- temp^.next := Nil;
- End
- Else temp := temp2^.next;
- trest := (GInt2^.value * temp1^.value + rest + temp^.value) Div 10000;
- temp^.value := (GInt2^.value * temp1^.value + rest + temp^.value) Mod 10000;
- rest := trest;
- temp2^.next := temp;
- temp^.prev := temp2;
- temp2 := temp2^.next;
- End;
- If rest <> 0 Then
- Begin
- If temp2^.next = Nil Then
- Begin
- new(temp);
- temp^.value := 0;
- temp^.next := Nil;
- End
- Else temp := temp2^.next;
- temp^.value := temp^.value + rest;
- temp^.next := Nil;
- temp^.prev := temp2;
- temp2^.next := temp;
- End;
- End;
- While prod^.prev <> Nil Do prod := prod^.prev;
- End
- Else decstrtogint('0', prod);
- GIntdestroy(zero);
- End;
- // Prod = GInt1 * By, By < 10000
- Procedure GIntMulByInt(GInt1 : TGInt; By : Longint; Var prod : TGInt);
- Var
- temp2, temp : TGInt;
- sign : Tsign;
- rest : longint;
- Begin
- If By < 0 Then sign := negative Else sign := positive;
- If GInt1^.sign = sign Then sign := positive Else sign := negative;
- by := abs(by);
- new(temp2);
- temp2^.sign := sign;
- temp2^.prev := Nil;
- temp2^.value := (GInt1^.value * by) Mod 10000;
- rest := (GInt1^.value * by) Div 10000;
- temp2^.next := Nil;
- prod := temp2;
- While GInt1^.next <> Nil Do
- Begin
- GInt1 := GInt1^.next;
- new(temp);
- temp^.value := (GInt1^.value * By + rest) Mod 10000;
- rest := (GInt1^.value * By + rest) Div 10000;
- temp^.next := Nil;
- temp2^.next := temp;
- temp^.prev := temp2;
- temp2 := temp2^.next;
- End;
- If rest <> 0 Then
- Begin
- new(temp);
- temp^.value := rest;
- temp^.next := Nil;
- temp^.prev := temp2;
- temp2^.next := temp;
- End;
- While prod^.prev <> Nil Do prod := prod^.prev;
- End;
- // GInt = GInt * By, By < 10000
- Procedure GIntMulByIntBis(Var GInt : TGInt; By : Longint);
- Var
- temp1, temp : TGInt;
- sign : Tsign;
- rest, TRest : longint;
- Begin
- If By < 0 Then sign := negative Else sign := positive;
- If GInt^.sign = sign Then sign := positive Else sign := negative;
- by := abs(by);
- GInt^.sign := sign;
- Trest := GInt^.value * By;
- GInt^.value := Trest Mod 10000;
- rest := Trest Div 10000;
- temp1 := GInt;
- While GInt^.next <> Nil Do
- Begin
- GInt := GInt^.next;
- Trest := GInt^.value * By + rest;
- GInt^.value := Trest Mod 10000;
- rest := Trest Div 10000;
- End;
- If rest <> 0 Then
- Begin
- new(temp);
- temp^.value := rest;
- temp^.next := Nil;
- temp^.prev := GInt;
- GInt^.next := temp;
- End;
- GInt := temp1;
- End;
- // Square a GInt, GInt^2 = Square
- Procedure GIntSquare(GInt : TGInt; Var Square : TGInt);
- Begin
- GIntMul(GInt, GInt, square);
- End;
- // Convert a GInt to a binary string (base 2) & visa versa
- Procedure GIntToBinStr(GInt : TGint; Var S : String);
- Var
- zero, temp, temp1 : TGInt;
- i : integer;
- Begin
- DecStrToGInt('0', zero);
- GIntCopy(GInt, temp);
- S := '';
- While GIntCompareAbs(zero, temp) <> Eq Do
- Begin
- GIntDivByInt(temp, temp1, 2, i);
- S := inttostr(i) + S;
- GIntDestroy(temp);
- temp := temp1;
- End;
- If S = '' Then S := '0';
- GIntDestroy(temp);
- GIntDestroy(zero);
- End;
- Procedure BinStrToGInt(S : String; Var GInt : TGInt);
- Var
- temp, temp2 : TGInt;
- i : longint;
- Begin
- While copy(S, 1, 1) = '0' Do delete(S, 1, 1);
- decstrtogint('0', GInt);
- decstrtogint('1', temp);
- For i := length(S) Downto 1 Do
- Begin
- If S[i] = '1' Then
- Begin
- GIntadd(GInt, temp, temp2);
- GIntdestroy(GInt);
- GInt := temp2;
- End;
- GIntmulByIntBis(temp, 2);
- End;
- GIntdestroy(temp);
- End;
- // Convert a GInt to an 8 bit string & visa versa
- Procedure GIntToStr(GInt : TGInt; Var str : String);
- Var
- temp1 : String;
- i, len8 : longint;
- g : char;
- Begin
- GInttobinstr(GInt, temp1);
- While (length(temp1) Mod 8) <> 0 Do temp1 := '0' + temp1;
- len8 := length(temp1) Div 8;
- str := '';
- For i := 1 To len8 Do
- Begin
- zeronetochar8(g, copy(temp1, 1, 8));
- str := str + g;
- delete(temp1, 1, 8);
- End;
- End;
- Procedure StrToGInt(str : String; Var GInt : TGInt);
- Var
- temp1 : String;
- i : longint;
- trans : Array[0..255] Of String;
- Begin
- temp1 := '';
- initialize8(trans);
- For i := 1 To length(str) Do temp1 := temp1 + trans[ord(str[i])];
- While temp1[1] = '0' Do delete(temp1, 1, 1);
- binstrtoGInt(temp1, GInt);
- End;
- // Exponentiate a GInt, GInt^exp = res
- Procedure GIntExp(GInt, exp : TGInt; Var res : TGInt);
- Var
- temp2, temp3 : TGInt;
- S : String;
- i : longint;
- Begin
- GInttobinstr(exp, S);
- If S[length(S)] = '0' Then decstrtogint('1', res) Else GIntcopy(GInt, res);
- GIntcopy(GInt, temp2);
- If length(S) > 1 Then
- For i := (length(S) - 1) Downto 1 Do
- Begin
- GIntSquare(temp2, temp3);
- GIntdestroy(temp2);
- temp2 := temp3;
- If S[i] = '1' Then
- Begin
- GIntmul(res, temp2, temp3);
- GIntdestroy(res);
- res := temp3;
- End;
- End;
- End;
- // Compute GInt! = GInt * (GInt - 1) * (GInt - 2) * ... * 3 * 2 * 1
- Procedure GIntFac(GInt : TGInt; Var res : TGint);
- Var
- one, temp, temp1 : TGInt;
- Begin
- GIntcopy(GInt, temp);
- decstrtogint('1', res);
- decstrtogint('1', one);
- While Not ((temp^.next = Nil) And (temp^.value = 1)) Do
- Begin
- GIntmul(temp, res, temp1);
- GIntdestroy(res);
- res := temp1;
- GIntsub(temp, one, temp1);
- GIntdestroy(temp);
- temp := temp1;
- End;
- GIntdestroy(one);
- GIntdestroy(temp);
- End;
- // Divide 2 GInts, GInt1 = GInt2 * divres + modres, modres is always positive
- Procedure GIntDivMod(GInt1, GInt2 : TGInt; Var divres, modres : TGInt);
- Var
- s1, s2 : TSign;
- Tempstr1, tempstr2, tempstr, QStr : String;
- lend, k, i : longint;
- temp1, temp2, one, zero, temp : TGInt;
- QCnt : integer;
- Begin
- s1 := GInt1^.sign;
- s2 := GInt2^.sign;
- GIntabs(GInt1);
- GIntabs(GInt2);
- GInttodecstr(tempstr1, GInt1);
- GInttodecstr(tempstr2, GInt2);
- lend := length(tempstr2);
- QStr := '0';
- decstrtogint('0', zero);
- If Not ((GInt1^.value = 0) And (GInt1^.next = Nil)) Then
- Begin
- GIntcopy(GInt1, temp);
- tempstr := tempstr1;
- k := lend;
- While (GIntcompareabs(temp, GInt2) <> St) Do
- Begin
- GIntDestroy(temp);
- tempstr := copy(tempstr1, 1, k);
- delete(tempstr1, 1, k);
- While (length(tempstr) < lend) And (length(tempstr1) > 0) Do
- Begin
- tempstr := tempstr + copy(tempstr1, 1, 1);
- delete(tempstr1, 1, 1);
- QStr := QStr + '0';
- End;
- decstrtoGInt(tempstr, temp1);
- QCnt := 0;
- While GIntcompareabs(temp1, GInt2) <> St Do
- Begin
- GIntSub(temp1, GInt2, temp2);
- GIntdestroy(temp1);
- temp1 := temp2;
- QCnt := QCnt + 1;
- End;
- QStr := QStr + inttostr(QCnt);
- GInttodecstr(tempstr, temp1);
- k := length(tempstr) + 1;
- tempstr1 := tempstr + tempstr1;
- GIntdestroy(temp1);
- DecStrToGInt(tempstr1, temp);
- End;
- If (GIntcompareabs(temp, GInt2) = St) And ((k - 1) <> length(tempstr1)) Then
- For i := 1 To (length(tempstr1) - k + 1) Do QStr := QStr + '0';
- GIntDestroy(temp);
- DecstrtoGInt(tempstr1, modres);
- DecstrtoGInt(QStr, divres);
- decstrtogint('1', one);
- If s1 = negative Then
- Begin
- If GIntcompareabs(modres, zero) <> Eq Then
- Begin
- GIntadd(divres, one, temp1);
- GIntdestroy(divres);
- divres := temp1;
- GIntAbs(GInt2);
- GIntsub(GInt2, modres, temp1);
- GIntdestroy(modres);
- GInt2^.sign := s2;
- modres := temp1;
- End;
- If s2 = positive Then divres^.sign := negative;
- End
- Else divres^.sign := s2;
- GIntdestroy(one);
- End
- Else
- Begin
- GIntcopy(zero, divres);
- GIntcopy(zero, modres);
- End;
- GIntdestroy(zero);
- GInt1^.sign := s1;
- GInt2^.sign := s2;
- End;
- // Same as above but doesn't compute modres
- Procedure GIntDiv(GInt1, GInt2 : TGInt; Var divres : TGInt);
- Var
- s1, s2 : TSign;
- Tempstr1, tempstr2, tempstr, QStr : String;
- lend, k, i : longint;
- temp1, temp2, one, zero, temp, modres : TGInt;
- QCnt : integer;
- Begin
- s1 := GInt1^.sign;
- s2 := GInt2^.sign;
- GIntabs(GInt1);
- GIntabs(GInt2);
- GInttodecstr(tempstr1, GInt1);
- GInttodecstr(tempstr2, GInt2);
- lend := length(tempstr2);
- QStr := '0';
- decstrtogint('0', zero);
- If Not ((GInt1^.value = 0) And (GInt1^.next = Nil)) Then
- Begin
- GIntcopy(GInt1, temp);
- tempstr := tempstr1;
- k := lend;
- While (GIntcompareabs(temp, GInt2) <> St) Do
- Begin
- GIntDestroy(temp);
- tempstr := copy(tempstr1, 1, k);
- delete(tempstr1, 1, k);
- While (length(tempstr) < lend) And (length(tempstr1) > 0) Do
- Begin
- tempstr := tempstr + copy(tempstr1, 1, 1);
- delete(tempstr1, 1, 1);
- QStr := QStr + '0';
- End;
- decstrtoGInt(tempstr, temp1);
- QCnt := 0;
- While GIntcompareabs(temp1, GInt2) <> St Do
- Begin
- GIntSub(temp1, GInt2, temp2);
- GIntdestroy(temp1);
- temp1 := temp2;
- QCnt := QCnt + 1;
- End;
- QStr := QStr + inttostr(QCnt);
- GInttodecstr(tempstr, temp1);
- k := length(tempstr) + 1;
- tempstr1 := tempstr + tempstr1;
- GIntdestroy(temp1);
- DecStrToGInt(tempstr1, temp);
- End;
- If (GIntcompareabs(temp, GInt2) = St) And ((k - 1) <> length(tempstr1)) Then
- For i := 1 To (length(tempstr1) - k + 1) Do QStr := QStr + '0';
- GIntDestroy(temp);
- DecstrtoGInt(tempstr1, modres);
- DecstrtoGInt(QStr, divres);
- decstrtogint('1', one);
- If s1 = negative Then
- Begin
- If GIntcompareabs(modres, zero) <> Eq Then
- Begin
- GIntadd(divres, one, temp1);
- GIntdestroy(divres);
- divres := temp1;
- GIntAbs(GInt2);
- GIntsub(GInt2, modres, temp1);
- GIntdestroy(modres);
- GInt2^.sign := s2;
- modres := temp1;
- End;
- If s2 = positive Then divres^.sign := negative;
- End
- Else divres^.sign := s2;
- GIntdestroy(one);
- End
- Else
- Begin
- GIntcopy(zero, divres);
- GIntcopy(zero, modres);
- End;
- GIntdestroy(zero);
- GInt1^.sign := s1;
- GInt2^.sign := s2;
- GIntDestroy(modres);
- End;
- // Same as above but computes modres and not divres
- Procedure GIntMod(GInt1, GInt2 : TGInt; Var modres : TGInt);
- Var
- s1, s2 : TSign;
- Tempstr1, tempstr2, tempstr, QStr : String;
- lend, k : longint;
- temp1, temp2, zero, temp : TGInt;
- Begin
- s1 := GInt1^.sign;
- s2 := GInt2^.sign;
- GIntabs(GInt1);
- GIntabs(GInt2);
- GInttodecstr(tempstr1, GInt1);
- GInttodecstr(tempstr2, GInt2);
- lend := length(tempstr2);
- QStr := '0';
- decstrtogint('0', zero);
- If Not ((GInt1^.value = 0) And (GInt1^.next = Nil)) Then
- Begin
- GIntcopy(GInt1, temp);
- tempstr := tempstr1;
- k := lend;
- While (GIntcompareabs(temp, GInt2) <> St) Do
- Begin
- GIntDestroy(temp);
- tempstr := copy(tempstr1, 1, k);
- delete(tempstr1, 1, k);
- While (length(tempstr) < lend) And (length(tempstr1) > 0) Do
- Begin
- tempstr := tempstr + copy(tempstr1, 1, 1);
- delete(tempstr1, 1, 1);
- End;
- decstrtoGInt(tempstr, temp1);
- While GIntcompareabs(temp1, GInt2) <> St Do
- Begin
- GIntSub(temp1, GInt2, temp2);
- GIntdestroy(temp1);
- temp1 := temp2;
- End;
- GInttodecstr(tempstr, temp1);
- k := length(tempstr) + 1;
- tempstr1 := tempstr + tempstr1;
- GIntdestroy(temp1);
- DecStrToGInt(tempstr1, temp);
- End;
- GIntDestroy(temp);
- DecstrtoGInt(tempstr1, modres);
- If s1 = negative Then
- Begin
- If GIntcompareabs(modres, zero) <> Eq Then
- Begin
- GIntAbs(GInt2);
- GIntsub(GInt2, modres, temp1);
- GIntdestroy(modres);
- GInt2^.sign := s2;
- modres := temp1;
- End;
- End;
- End
- Else
- Begin
- GIntcopy(zero, modres);
- End;
- GIntdestroy(zero);
- GInt1^.sign := s1;
- GInt2^.sign := s2;
- End;
- // Square a GInt modulo Modb, GInt^2 mod Modb = GIntSM
- Procedure GIntSquareMod(GInt, Modb : TGInt; Var GIntSM : TGInt);
- Var
- temp : TGInt;
- Begin
- GIntSquare(GInt, temp);
- GIntMod(temp, Modb, GIntSM);
- GIntDestroy(temp);
- End;
- // Add 2 GInts modulo base, (GInt1 + GInt2) mod base = GIntres
- Procedure GIntAddMod(GInt1, GInt2, base : TGInt; Var GIntres : TGInt);
- Var
- temp : TGInt;
- Begin
- GIntadd(GInt1, GInt2, temp);
- GIntMod(temp, base, GIntres);
- GIntdestroy(temp);
- End;
- // Multiply 2 GInts modulo base, (GInt1 * GInt2) mod base = GIntres
- Procedure GIntMulMod(GInt1, GInt2, base : TGInt; Var GIntres : TGInt);
- Var
- temp : TGInt;
- Begin
- GIntMul(GInt1, GInt2, temp);
- GIntMod(temp, base, GIntres);
- GIntdestroy(temp);
- End;
- // Exponentiate 2 GInts modulo base, (GInt1 ^ GInt2) mod modb = res
- Procedure GIntModExp(GInt, exp, modb : TGInt; Var res : TGInt);
- Var
- temp2, temp3 : TGInt;
- S : String;
- i : longint;
- Begin
- GInttobinstr(exp, S);
- If S[length(S)] = '0' Then decstrtogint('1', res) Else GIntcopy(GInt, res);
- GIntcopy(GInt, temp2);
- If length(S) > 1 Then
- For i := (length(S) - 1) Downto 1 Do
- Begin
- GIntSquareMod(temp2, Modb, temp3);
- GIntdestroy(temp2);
- temp2 := temp3;
- If S[i] = '1' Then
- Begin
- GIntmulMod(res, temp2, modb, temp3);
- GIntdestroy(res);
- res := temp3;
- End;
- End;
- End;
- // Compute the Greatest Common Divisor of 2 GInts
- Procedure GIntGCD(GInt1, GInt2 : TGint; Var GCD : TGInt);
- Var
- k : TCompare;
- zero, temp1, temp2, temp3 : TGInt;
- Begin
- k := GIntcompareabs(GInt1, GInt2);
- If (k = Eq) Then GIntCopy(GInt1, GCD) Else
- If (k = St) Then GIntGCD(GInt2, GInt1, GCD) Else
- Begin
- decstrtogint('0', zero);
- GIntCopy(GInt1, temp1);
- GIntCopy(GInt2, temp2);
- While GIntcompareabs(temp2, zero) <> Eq Do
- Begin
- GIntmod(temp1, temp2, temp3);
- GIntdestroy(temp1);
- temp1 := temp2;
- temp2 := temp3;
- End;
- GCD := temp1;
- GIntdestroy(temp2);
- GIntdestroy(zero);
- End;
- End;
- // Compute the Least Common Multiple of 2 GInts
- Procedure GIntLCM(GInt1, GInt2 : TGInt; Var LCM : TGInt);
- Var
- temp1, temp2 : TGInt;
- Begin
- GIntGCD(GInt1, GInt2, temp1);
- GIntmul(GInt1, GInt2, temp2);
- GIntdiv(temp2, temp1, LCM);
- GIntDestroy(temp1);
- GIntDestroy(temp2);
- End;
- // Trialdivision of a GInt upto 8192 and stopping when a divisor is found, returning ok=false
- Procedure GIntTrialDiv9999(GInt : TGInt; Var ok : boolean);
- Var
- i, j : integer;
- Begin
- If ((GInt^.value Mod 2) = 0) Or ((GInt^.value Mod 5) = 0) Then ok := false
- Else
- Begin
- i := 0;
- ok := true;
- While ok And (i < 1227) Do
- Begin
- i := i + 1;
- GIntmodbyint(GInt, primes[i], j);
- If j = 0 Then ok := false;
- End;
- End;
- End;
- // A prng
- Procedure GIntRandom1(Seed : TGInt; Var RandomGInt : TGInt);
- Var
- temp, base : TGInt;
- Begin
- decstrtoGInt('281474976710656', base);
- decstrtoGInt('44485709377909', temp);
- GIntMulMod(seed, temp, base, RandomGInt);
- GIntdestroy(temp);
- GIntdestroy(base);
- End;
- // Perform a Rabin Miller Primality Test nrtest times on GIntp, returns ok=true when GIntp passes the test
- Procedure GIntRabinMiller(GIntp : TGInt; nrtest : integer; Var ok : boolean);
- Var
- j, b, i : longint;
- m, z, temp1, temp2, temp3, zero, one, two, pmin1 : TGInt;
- ok1, ok2 : boolean;
- Begin
- randomize;
- j := 0;
- b := 0;
- decstrtogint('0', zero);
- decstrtogint('1', one);
- decstrtogint('2', two);
- GIntsub(GIntp, one, temp1);
- GIntsub(GIntp, one, pmin1);
- While (temp1^.value Mod 2) = 0 Do
- Begin
- b := b + 1;
- GIntdivbyint(temp1, temp2, 2, i);
- GIntdestroy(temp1);
- temp1 := temp2;
- End;
- m := temp1;
- i := 0;
- ok := true;
- Randomize;
- While (i < nrtest) And ok Do
- Begin
- i := i + 1;
- DecStrToGInt(inttostr(Primes[Random(1227) + 1]), temp2);
- GIntmodexp(temp2, m, GIntp, z);
- GIntdestroy(temp2);
- ok1 := (GIntcompareabs(z, one) = Eq);
- ok2 := (GIntcompareabs(z, pmin1) = Eq);
- If Not (ok1 Or ok2) Then
- Begin
- While (ok And (j < b)) Do
- Begin
- If (j > 0) And ok1 Then ok := false
- Else
- Begin
- j := j + 1;
- If (j < b) And (Not ok2) Then
- Begin
- GIntSquaremod(z, GIntp, temp3);
- GIntdestroy(z);
- z := temp3;
- ok1 := (GIntcompareabs(z, one) = Eq);
- ok2 := (GIntcompareabs(z, pmin1) = Eq);
- If ok2 Then j := b;
- End
- Else If (Not ok2) And (j >= b) Then ok := false;
- End;
- End;
- End
- End;
- GIntdestroy(zero);
- GIntdestroy(one);
- GIntdestroy(two);
- GIntdestroy(m);
- GIntdestroy(z);
- GIntdestroy(pmin1);
- End;
- // Compute the coefficients from the Bezout Bachet theorem, GInt1 * a + GInt2 * b = GCD(GInt1, GInt2)
- Procedure GIntBezoutBachet(GInt1, GInt2 : TGInt; Var a, b : TGInt);
- Var
- zero, r1, r2, r3, ta, gcd, temp, temp1, temp2 : TGInt;
- Begin
- If GIntcompareabs(GInt1, GInt2) <> St Then
- Begin
- GIntcopy(GInt1, r1);
- GIntcopy(GInt2, r2);
- decstrtogint('0', zero);
- decstrtogint('1', a);
- decstrtogint('0', ta);
- Repeat
- GIntdivmod(r1, r2, temp, r3);
- GIntdestroy(r1);
- r1 := r2;
- r2 := r3;
- GIntmul(ta, temp, temp1);
- GIntsub(a, temp1, temp2);
- GIntdestroy(a);
- GIntdestroy(temp1);
- a := ta;
- ta := temp2;
- GIntdestroy(temp);
- Until GIntcompareabs(r3, zero) = Eq;
- GIntGCD(GInt1, GInt2, gcd);
- GIntmul(a, GInt1, temp1);
- GIntsub(gcd, temp1, temp2);
- GIntDestroy(temp1);
- GIntdiv(temp2, GInt2, b);
- GIntDestroy(temp2);
- GIntdestroy(ta);
- GIntdestroy(r1);
- GIntdestroy(r2);
- GIntdestroy(gcd);
- End
- Else GIntBezoutBachet(GInt2, GInt1, b, a);
- End;
- // Find the (multiplicative) Modular inverse of a GInt in a finite ring of additive order base
- Procedure GIntModInv(GInt1, base : TGInt; Var Inverse : TGInt);
- Var
- zero, one, r1, r2, r3, tb, gcd, temp, temp1, temp2 : TGInt;
- Begin
- decstrtogint('1', one);
- GIntGCD(GInt1, base, gcd);
- If GIntcompareabs(one, gcd) = Eq Then
- Begin
- GIntcopy(base, r1);
- GIntcopy(GInt1, r2);
- decstrtogint('0', zero);
- decstrtogint('0', inverse);
- decstrtogint('1', tb);
- Repeat
- GIntdivmod(r1, r2, temp, r3);
- GIntdestroy(r1);
- r1 := r2;
- r2 := r3;
- GIntmul(tb, temp, temp1);
- GIntsub(inverse, temp1, temp2);
- GIntdestroy(inverse);
- GIntdestroy(temp1);
- inverse := tb;
- tb := temp2;
- GIntdestroy(temp);
- Until GIntcompareabs(r3, zero) = Eq;
- If inverse^.sign = negative Then
- Begin
- GIntadd(base, inverse, temp);
- GIntdestroy(inverse);
- inverse := temp;
- End;
- GIntdestroy(tb);
- GIntdestroy(r1);
- GIntdestroy(r2);
- End;
- GIntdestroy(gcd);
- GIntdestroy(one);
- End;
- // Perform a (combined) primality test on GIntp consisting of a trialdivision upto 8192,
- // if the GInt passes perform nrRMtests Rabin Miller primality tests, returns ok when a
- // GInt is probably prime
- Procedure GIntPrimetest(GIntp : TGInt; nrRMtests : integer; Var ok : boolean);
- Begin
- GIntTrialdiv9999(GIntp, ok);
- If ok Then GIntRabinMiller(GIntp, nrRMtests, ok);
- End;
- // Computes the Legendre symbol for a any number and
- // p a prime, returns 0 if p divides a, 1 if a is a
- // quadratic residu mod p, -1 if a is a quadratic
- // nonresidu mod p
- Procedure GIntLegendreSymbol(a, p : TGInt; Var L : integer);
- Var
- temp1, temp2, temp3, temp4, temp5, zero, one : TGInt;
- i : integer;
- ok1, ok2 : boolean;
- Begin
- DecStrToGInt('0', zero);
- DecStrToGInt('1', one);
- GIntMod(a, p, temp1);
- If GIntCompareabs(zero, temp1) = Eq Then
- Begin
- GIntDestroy(temp1);
- L := 0;
- End
- Else
- Begin
- GIntDestroy(temp1);
- GIntCopy(p, temp1);
- GIntCopy(a, temp2);
- L := 1;
- While GIntCompareAbs(temp2, one) <> Eq Do
- Begin
- If (temp2^.value Mod 2) = 0 Then
- Begin
- GIntSquare(temp1, temp3);
- GIntSub(temp3, one, temp4);
- GIntDestroy(temp3);
- GIntDivByInt(temp4, temp3, 8, i);
- If (temp3^.value Mod 2) = 0 Then ok1 := false Else ok1 := true;
- GIntDestroy(temp3);
- GIntDestroy(temp4);
- If ok1 = true Then L := L * (-1);
- GIntDivByInt(temp2, temp3, 2, i);
- GIntDestroy(temp2);
- temp2 := temp3;
- End
- Else
- Begin
- GIntSub(temp1, one, temp3);
- GIntSub(temp2, one, temp4);
- GIntMul(temp3, temp4, temp5);
- GIntDestroy(temp3);
- GIntDestroy(temp4);
- GIntDivByInt(temp5, temp3, 4, i);
- If (temp3^.value Mod 2) = 0 Then ok2 := false Else ok2 := true;
- GIntDestroy(temp5);
- GIntDestroy(temp3);
- If ok2 = true Then L := L * (-1);
- GIntMod(temp1, temp2, temp3);
- GIntDestroy(temp1);
- temp1 := temp2;
- temp2 := temp3;
- End;
- End;
- GIntDestroy(temp1);
- GIntDestroy(temp2);
- End;
- GIntDestroy(zero);
- GIntDestroy(one);
- End;
- End.