CBZip2OutputStream.java
上传用户:quxuerui
上传日期:2018-01-08
资源大小:41811k
文件大小:56k
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- */
- /*
- * This package is based on the work done by Keiron Liddle, Aftex Software
- * <keiron@aftexsw.com> to whom the Ant project is very grateful for his
- * great code.
- */
- package org.apache.hadoop.io.compress.bzip2;
- import java.io.OutputStream;
- import java.io.IOException;
- /**
- * An output stream that compresses into the BZip2 format (without the file
- * header chars) into another stream.
- *
- * <p>
- * The compression requires large amounts of memory. Thus you should call the
- * {@link #close() close()} method as soon as possible, to force
- * <tt>CBZip2OutputStream</tt> to release the allocated memory.
- * </p>
- *
- * <p>
- * You can shrink the amount of allocated memory and maybe raise the compression
- * speed by choosing a lower blocksize, which in turn may cause a lower
- * compression ratio. You can avoid unnecessary memory allocation by avoiding
- * using a blocksize which is bigger than the size of the input.
- * </p>
- *
- * <p>
- * You can compute the memory usage for compressing by the following formula:
- * </p>
- *
- * <pre>
- * <code>400k + (9 * blocksize)</code>.
- * </pre>
- *
- * <p>
- * To get the memory required for decompression by {@link CBZip2InputStream
- * CBZip2InputStream} use
- * </p>
- *
- * <pre>
- * <code>65k + (5 * blocksize)</code>.
- * </pre>
- *
- * <table width="100%" border="1">
- * <colgroup> <col width="33%" /> <col width="33%" /> <col width="33%" />
- * </colgroup>
- * <tr>
- * <th colspan="3">Memory usage by blocksize</th>
- * </tr>
- * <tr>
- * <th align="right">Blocksize</th> <th align="right">Compression<br>
- * memory usage</th> <th align="right">Decompression<br>
- * memory usage</th>
- * </tr>
- * <tr>
- * <td align="right">100k</td>
- * <td align="right">1300k</td>
- * <td align="right">565k</td>
- * </tr>
- * <tr>
- * <td align="right">200k</td>
- * <td align="right">2200k</td>
- * <td align="right">1065k</td>
- * </tr>
- * <tr>
- * <td align="right">300k</td>
- * <td align="right">3100k</td>
- * <td align="right">1565k</td>
- * </tr>
- * <tr>
- * <td align="right">400k</td>
- * <td align="right">4000k</td>
- * <td align="right">2065k</td>
- * </tr>
- * <tr>
- * <td align="right">500k</td>
- * <td align="right">4900k</td>
- * <td align="right">2565k</td>
- * </tr>
- * <tr>
- * <td align="right">600k</td>
- * <td align="right">5800k</td>
- * <td align="right">3065k</td>
- * </tr>
- * <tr>
- * <td align="right">700k</td>
- * <td align="right">6700k</td>
- * <td align="right">3565k</td>
- * </tr>
- * <tr>
- * <td align="right">800k</td>
- * <td align="right">7600k</td>
- * <td align="right">4065k</td>
- * </tr>
- * <tr>
- * <td align="right">900k</td>
- * <td align="right">8500k</td>
- * <td align="right">4565k</td>
- * </tr>
- * </table>
- *
- * <p>
- * For decompression <tt>CBZip2InputStream</tt> allocates less memory if the
- * bzipped input is smaller than one block.
- * </p>
- *
- * <p>
- * Instances of this class are not threadsafe.
- * </p>
- *
- * <p>
- * TODO: Update to BZip2 1.0.1
- * </p>
- *
- */
- public class CBZip2OutputStream extends OutputStream implements BZip2Constants {
- /**
- * The minimum supported blocksize <tt> == 1</tt>.
- */
- public static final int MIN_BLOCKSIZE = 1;
- /**
- * The maximum supported blocksize <tt> == 9</tt>.
- */
- public static final int MAX_BLOCKSIZE = 9;
- /**
- * This constant is accessible by subclasses for historical purposes. If you
- * don't know what it means then you don't need it.
- */
- protected static final int SETMASK = (1 << 21);
- /**
- * This constant is accessible by subclasses for historical purposes. If you
- * don't know what it means then you don't need it.
- */
- protected static final int CLEARMASK = (~SETMASK);
- /**
- * This constant is accessible by subclasses for historical purposes. If you
- * don't know what it means then you don't need it.
- */
- protected static final int GREATER_ICOST = 15;
- /**
- * This constant is accessible by subclasses for historical purposes. If you
- * don't know what it means then you don't need it.
- */
- protected static final int LESSER_ICOST = 0;
- /**
- * This constant is accessible by subclasses for historical purposes. If you
- * don't know what it means then you don't need it.
- */
- protected static final int SMALL_THRESH = 20;
- /**
- * This constant is accessible by subclasses for historical purposes. If you
- * don't know what it means then you don't need it.
- */
- protected static final int DEPTH_THRESH = 10;
- /**
- * This constant is accessible by subclasses for historical purposes. If you
- * don't know what it means then you don't need it.
- */
- protected static final int WORK_FACTOR = 30;
- /**
- * This constant is accessible by subclasses for historical purposes. If you
- * don't know what it means then you don't need it.
- * <p>
- * If you are ever unlucky/improbable enough to get a stack overflow whilst
- * sorting, increase the following constant and try again. In practice I
- * have never seen the stack go above 27 elems, so the following limit seems
- * very generous.
- * </p>
- */
- protected static final int QSORT_STACK_SIZE = 1000;
- /**
- * Knuth's increments seem to work better than Incerpi-Sedgewick here.
- * Possibly because the number of elems to sort is usually small, typically
- * <= 20.
- */
- private static final int[] INCS = { 1, 4, 13, 40, 121, 364, 1093, 3280,
- 9841, 29524, 88573, 265720, 797161, 2391484 };
- /**
- * This method is accessible by subclasses for historical purposes. If you
- * don't know what it does then you don't need it.
- */
- protected static void hbMakeCodeLengths(char[] len, int[] freq,
- int alphaSize, int maxLen) {
- /*
- * Nodes and heap entries run from 1. Entry 0 for both the heap and
- * nodes is a sentinel.
- */
- final int[] heap = new int[MAX_ALPHA_SIZE * 2];
- final int[] weight = new int[MAX_ALPHA_SIZE * 2];
- final int[] parent = new int[MAX_ALPHA_SIZE * 2];
- for (int i = alphaSize; --i >= 0;) {
- weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
- }
- for (boolean tooLong = true; tooLong;) {
- tooLong = false;
- int nNodes = alphaSize;
- int nHeap = 0;
- heap[0] = 0;
- weight[0] = 0;
- parent[0] = -2;
- for (int i = 1; i <= alphaSize; i++) {
- parent[i] = -1;
- nHeap++;
- heap[nHeap] = i;
- int zz = nHeap;
- int tmp = heap[zz];
- while (weight[tmp] < weight[heap[zz >> 1]]) {
- heap[zz] = heap[zz >> 1];
- zz >>= 1;
- }
- heap[zz] = tmp;
- }
- // assert (nHeap < (MAX_ALPHA_SIZE + 2)) : nHeap;
- while (nHeap > 1) {
- int n1 = heap[1];
- heap[1] = heap[nHeap];
- nHeap--;
- int yy = 0;
- int zz = 1;
- int tmp = heap[1];
- while (true) {
- yy = zz << 1;
- if (yy > nHeap) {
- break;
- }
- if ((yy < nHeap)
- && (weight[heap[yy + 1]] < weight[heap[yy]])) {
- yy++;
- }
- if (weight[tmp] < weight[heap[yy]]) {
- break;
- }
- heap[zz] = heap[yy];
- zz = yy;
- }
- heap[zz] = tmp;
- int n2 = heap[1];
- heap[1] = heap[nHeap];
- nHeap--;
- yy = 0;
- zz = 1;
- tmp = heap[1];
- while (true) {
- yy = zz << 1;
- if (yy > nHeap) {
- break;
- }
- if ((yy < nHeap)
- && (weight[heap[yy + 1]] < weight[heap[yy]])) {
- yy++;
- }
- if (weight[tmp] < weight[heap[yy]]) {
- break;
- }
- heap[zz] = heap[yy];
- zz = yy;
- }
- heap[zz] = tmp;
- nNodes++;
- parent[n1] = parent[n2] = nNodes;
- final int weight_n1 = weight[n1];
- final int weight_n2 = weight[n2];
- weight[nNodes] = (((weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00)) | (1 + (((weight_n1 & 0x000000ff) > (weight_n2 & 0x000000ff)) ? (weight_n1 & 0x000000ff)
- : (weight_n2 & 0x000000ff))));
- parent[nNodes] = -1;
- nHeap++;
- heap[nHeap] = nNodes;
- tmp = 0;
- zz = nHeap;
- tmp = heap[zz];
- final int weight_tmp = weight[tmp];
- while (weight_tmp < weight[heap[zz >> 1]]) {
- heap[zz] = heap[zz >> 1];
- zz >>= 1;
- }
- heap[zz] = tmp;
- }
- // assert (nNodes < (MAX_ALPHA_SIZE * 2)) : nNodes;
- for (int i = 1; i <= alphaSize; i++) {
- int j = 0;
- int k = i;
- for (int parent_k; (parent_k = parent[k]) >= 0;) {
- k = parent_k;
- j++;
- }
- len[i - 1] = (char) j;
- if (j > maxLen) {
- tooLong = true;
- }
- }
- if (tooLong) {
- for (int i = 1; i < alphaSize; i++) {
- int j = weight[i] >> 8;
- j = 1 + (j >> 1);
- weight[i] = j << 8;
- }
- }
- }
- }
- private static void hbMakeCodeLengths(final byte[] len, final int[] freq,
- final Data dat, final int alphaSize, final int maxLen) {
- /*
- * Nodes and heap entries run from 1. Entry 0 for both the heap and
- * nodes is a sentinel.
- */
- final int[] heap = dat.heap;
- final int[] weight = dat.weight;
- final int[] parent = dat.parent;
- for (int i = alphaSize; --i >= 0;) {
- weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
- }
- for (boolean tooLong = true; tooLong;) {
- tooLong = false;
- int nNodes = alphaSize;
- int nHeap = 0;
- heap[0] = 0;
- weight[0] = 0;
- parent[0] = -2;
- for (int i = 1; i <= alphaSize; i++) {
- parent[i] = -1;
- nHeap++;
- heap[nHeap] = i;
- int zz = nHeap;
- int tmp = heap[zz];
- while (weight[tmp] < weight[heap[zz >> 1]]) {
- heap[zz] = heap[zz >> 1];
- zz >>= 1;
- }
- heap[zz] = tmp;
- }
- while (nHeap > 1) {
- int n1 = heap[1];
- heap[1] = heap[nHeap];
- nHeap--;
- int yy = 0;
- int zz = 1;
- int tmp = heap[1];
- while (true) {
- yy = zz << 1;
- if (yy > nHeap) {
- break;
- }
- if ((yy < nHeap)
- && (weight[heap[yy + 1]] < weight[heap[yy]])) {
- yy++;
- }
- if (weight[tmp] < weight[heap[yy]]) {
- break;
- }
- heap[zz] = heap[yy];
- zz = yy;
- }
- heap[zz] = tmp;
- int n2 = heap[1];
- heap[1] = heap[nHeap];
- nHeap--;
- yy = 0;
- zz = 1;
- tmp = heap[1];
- while (true) {
- yy = zz << 1;
- if (yy > nHeap) {
- break;
- }
- if ((yy < nHeap)
- && (weight[heap[yy + 1]] < weight[heap[yy]])) {
- yy++;
- }
- if (weight[tmp] < weight[heap[yy]]) {
- break;
- }
- heap[zz] = heap[yy];
- zz = yy;
- }
- heap[zz] = tmp;
- nNodes++;
- parent[n1] = parent[n2] = nNodes;
- final int weight_n1 = weight[n1];
- final int weight_n2 = weight[n2];
- weight[nNodes] = ((weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00))
- | (1 + (((weight_n1 & 0x000000ff) > (weight_n2 & 0x000000ff)) ? (weight_n1 & 0x000000ff)
- : (weight_n2 & 0x000000ff)));
- parent[nNodes] = -1;
- nHeap++;
- heap[nHeap] = nNodes;
- tmp = 0;
- zz = nHeap;
- tmp = heap[zz];
- final int weight_tmp = weight[tmp];
- while (weight_tmp < weight[heap[zz >> 1]]) {
- heap[zz] = heap[zz >> 1];
- zz >>= 1;
- }
- heap[zz] = tmp;
- }
- for (int i = 1; i <= alphaSize; i++) {
- int j = 0;
- int k = i;
- for (int parent_k; (parent_k = parent[k]) >= 0;) {
- k = parent_k;
- j++;
- }
- len[i - 1] = (byte) j;
- if (j > maxLen) {
- tooLong = true;
- }
- }
- if (tooLong) {
- for (int i = 1; i < alphaSize; i++) {
- int j = weight[i] >> 8;
- j = 1 + (j >> 1);
- weight[i] = j << 8;
- }
- }
- }
- }
- /**
- * Index of the last char in the block, so the block size == last + 1.
- */
- private int last;
- /**
- * Index in fmap[] of original string after sorting.
- */
- private int origPtr;
- /**
- * Always: in the range 0 .. 9. The current block size is 100000 * this
- * number.
- */
- private final int blockSize100k;
- private boolean blockRandomised;
- private int bsBuff;
- private int bsLive;
- private final CRC crc = new CRC();
- private int nInUse;
- private int nMTF;
- /*
- * Used when sorting. If too many long comparisons happen, we stop sorting,
- * randomise the block slightly, and try again.
- */
- private int workDone;
- private int workLimit;
- private boolean firstAttempt;
- private int currentChar = -1;
- private int runLength = 0;
- private int blockCRC;
- private int combinedCRC;
- private int allowableBlockSize;
- /**
- * All memory intensive stuff.
- */
- private CBZip2OutputStream.Data data;
- private OutputStream out;
- /**
- * Chooses a blocksize based on the given length of the data to compress.
- *
- * @return The blocksize, between {@link #MIN_BLOCKSIZE} and
- * {@link #MAX_BLOCKSIZE} both inclusive. For a negative
- * <tt>inputLength</tt> this method returns <tt>MAX_BLOCKSIZE</tt>
- * always.
- *
- * @param inputLength
- * The length of the data which will be compressed by
- * <tt>CBZip2OutputStream</tt>.
- */
- public static int chooseBlockSize(long inputLength) {
- return (inputLength > 0) ? (int) Math
- .min((inputLength / 132000) + 1, 9) : MAX_BLOCKSIZE;
- }
- /**
- * Constructs a new <tt>CBZip2OutputStream</tt> with a blocksize of 900k.
- *
- * <p>
- * <b>Attention: </b>The caller is resonsible to write the two BZip2 magic
- * bytes <tt>"BZ"</tt> to the specified stream prior to calling this
- * constructor.
- * </p>
- *
- * @param out *
- * the destination stream.
- *
- * @throws IOException
- * if an I/O error occurs in the specified stream.
- * @throws NullPointerException
- * if <code>out == null</code>.
- */
- public CBZip2OutputStream(final OutputStream out) throws IOException {
- this(out, MAX_BLOCKSIZE);
- }
- /**
- * Constructs a new <tt>CBZip2OutputStream</tt> with specified blocksize.
- *
- * <p>
- * <b>Attention: </b>The caller is resonsible to write the two BZip2 magic
- * bytes <tt>"BZ"</tt> to the specified stream prior to calling this
- * constructor.
- * </p>
- *
- *
- * @param out
- * the destination stream.
- * @param blockSize
- * the blockSize as 100k units.
- *
- * @throws IOException
- * if an I/O error occurs in the specified stream.
- * @throws IllegalArgumentException
- * if <code>(blockSize < 1) || (blockSize > 9)</code>.
- * @throws NullPointerException
- * if <code>out == null</code>.
- *
- * @see #MIN_BLOCKSIZE
- * @see #MAX_BLOCKSIZE
- */
- public CBZip2OutputStream(final OutputStream out, final int blockSize)
- throws IOException {
- super();
- if (blockSize < 1) {
- throw new IllegalArgumentException("blockSize(" + blockSize
- + ") < 1");
- }
- if (blockSize > 9) {
- throw new IllegalArgumentException("blockSize(" + blockSize
- + ") > 9");
- }
- this.blockSize100k = blockSize;
- this.out = out;
- init();
- }
- public void write(final int b) throws IOException {
- if (this.out != null) {
- write0(b);
- } else {
- throw new IOException("closed");
- }
- }
- private void writeRun() throws IOException {
- final int lastShadow = this.last;
- if (lastShadow < this.allowableBlockSize) {
- final int currentCharShadow = this.currentChar;
- final Data dataShadow = this.data;
- dataShadow.inUse[currentCharShadow] = true;
- final byte ch = (byte) currentCharShadow;
- int runLengthShadow = this.runLength;
- this.crc.updateCRC(currentCharShadow, runLengthShadow);
- switch (runLengthShadow) {
- case 1:
- dataShadow.block[lastShadow + 2] = ch;
- this.last = lastShadow + 1;
- break;
- case 2:
- dataShadow.block[lastShadow + 2] = ch;
- dataShadow.block[lastShadow + 3] = ch;
- this.last = lastShadow + 2;
- break;
- case 3: {
- final byte[] block = dataShadow.block;
- block[lastShadow + 2] = ch;
- block[lastShadow + 3] = ch;
- block[lastShadow + 4] = ch;
- this.last = lastShadow + 3;
- }
- break;
- default: {
- runLengthShadow -= 4;
- dataShadow.inUse[runLengthShadow] = true;
- final byte[] block = dataShadow.block;
- block[lastShadow + 2] = ch;
- block[lastShadow + 3] = ch;
- block[lastShadow + 4] = ch;
- block[lastShadow + 5] = ch;
- block[lastShadow + 6] = (byte) runLengthShadow;
- this.last = lastShadow + 5;
- }
- break;
- }
- } else {
- endBlock();
- initBlock();
- writeRun();
- }
- }
- /**
- * Overriden to close the stream.
- */
- protected void finalize() throws Throwable {
- finish();
- super.finalize();
- }
-
- public void finish() throws IOException {
- if (out != null) {
- try {
- if (this.runLength > 0) {
- writeRun();
- }
- this.currentChar = -1;
- endBlock();
- endCompression();
- } finally {
- this.out = null;
- this.data = null;
- }
- }
- }
- public void close() throws IOException {
- if (out != null) {
- OutputStream outShadow = this.out;
- finish();
- outShadow.close();
- }
- }
-
- public void flush() throws IOException {
- OutputStream outShadow = this.out;
- if (outShadow != null) {
- outShadow.flush();
- }
- }
- private void init() throws IOException {
- // write magic: done by caller who created this stream
- // this.out.write('B');
- // this.out.write('Z');
- this.data = new Data(this.blockSize100k);
- /*
- * Write `magic' bytes h indicating file-format == huffmanised, followed
- * by a digit indicating blockSize100k.
- */
- bsPutUByte('h');
- bsPutUByte('0' + this.blockSize100k);
- this.combinedCRC = 0;
- initBlock();
- }
- private void initBlock() {
- // blockNo++;
- this.crc.initialiseCRC();
- this.last = -1;
- // ch = 0;
- boolean[] inUse = this.data.inUse;
- for (int i = 256; --i >= 0;) {
- inUse[i] = false;
- }
- /* 20 is just a paranoia constant */
- this.allowableBlockSize = (this.blockSize100k * BZip2Constants.baseBlockSize) - 20;
- }
- private void endBlock() throws IOException {
- this.blockCRC = this.crc.getFinalCRC();
- this.combinedCRC = (this.combinedCRC << 1) | (this.combinedCRC >>> 31);
- this.combinedCRC ^= this.blockCRC;
- // empty block at end of file
- if (this.last == -1) {
- return;
- }
- /* sort the block and establish posn of original string */
- blockSort();
- /*
- * A 6-byte block header, the value chosen arbitrarily as 0x314159265359
- * :-). A 32 bit value does not really give a strong enough guarantee
- * that the value will not appear by chance in the compressed
- * datastream. Worst-case probability of this event, for a 900k block,
- * is about 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48
- * bits. For a compressed file of size 100Gb -- about 100000 blocks --
- * only a 48-bit marker will do. NB: normal compression/ decompression
- * donot rely on these statistical properties. They are only important
- * when trying to recover blocks from damaged files.
- */
- bsPutUByte(0x31);
- bsPutUByte(0x41);
- bsPutUByte(0x59);
- bsPutUByte(0x26);
- bsPutUByte(0x53);
- bsPutUByte(0x59);
- /* Now the block's CRC, so it is in a known place. */
- bsPutInt(this.blockCRC);
- /* Now a single bit indicating randomisation. */
- if (this.blockRandomised) {
- bsW(1, 1);
- } else {
- bsW(1, 0);
- }
- /* Finally, block's contents proper. */
- moveToFrontCodeAndSend();
- }
- private void endCompression() throws IOException {
- /*
- * Now another magic 48-bit number, 0x177245385090, to indicate the end
- * of the last block. (sqrt(pi), if you want to know. I did want to use
- * e, but it contains too much repetition -- 27 18 28 18 28 46 -- for me
- * to feel statistically comfortable. Call me paranoid.)
- */
- bsPutUByte(0x17);
- bsPutUByte(0x72);
- bsPutUByte(0x45);
- bsPutUByte(0x38);
- bsPutUByte(0x50);
- bsPutUByte(0x90);
- bsPutInt(this.combinedCRC);
- bsFinishedWithStream();
- }
- /**
- * Returns the blocksize parameter specified at construction time.
- */
- public final int getBlockSize() {
- return this.blockSize100k;
- }
- public void write(final byte[] buf, int offs, final int len)
- throws IOException {
- if (offs < 0) {
- throw new IndexOutOfBoundsException("offs(" + offs + ") < 0.");
- }
- if (len < 0) {
- throw new IndexOutOfBoundsException("len(" + len + ") < 0.");
- }
- if (offs + len > buf.length) {
- throw new IndexOutOfBoundsException("offs(" + offs + ") + len("
- + len + ") > buf.length(" + buf.length + ").");
- }
- if (this.out == null) {
- throw new IOException("stream closed");
- }
- for (int hi = offs + len; offs < hi;) {
- write0(buf[offs++]);
- }
- }
- private void write0(int b) throws IOException {
- if (this.currentChar != -1) {
- b &= 0xff;
- if (this.currentChar == b) {
- if (++this.runLength > 254) {
- writeRun();
- this.currentChar = -1;
- this.runLength = 0;
- }
- // else nothing to do
- } else {
- writeRun();
- this.runLength = 1;
- this.currentChar = b;
- }
- } else {
- this.currentChar = b & 0xff;
- this.runLength++;
- }
- }
- private static void hbAssignCodes(final int[] code, final byte[] length,
- final int minLen, final int maxLen, final int alphaSize) {
- int vec = 0;
- for (int n = minLen; n <= maxLen; n++) {
- for (int i = 0; i < alphaSize; i++) {
- if ((length[i] & 0xff) == n) {
- code[i] = vec;
- vec++;
- }
- }
- vec <<= 1;
- }
- }
- private void bsFinishedWithStream() throws IOException {
- while (this.bsLive > 0) {
- int ch = this.bsBuff >> 24;
- this.out.write(ch); // write 8-bit
- this.bsBuff <<= 8;
- this.bsLive -= 8;
- }
- }
- private void bsW(final int n, final int v) throws IOException {
- final OutputStream outShadow = this.out;
- int bsLiveShadow = this.bsLive;
- int bsBuffShadow = this.bsBuff;
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24); // write 8-bit
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- this.bsBuff = bsBuffShadow | (v << (32 - bsLiveShadow - n));
- this.bsLive = bsLiveShadow + n;
- }
- private void bsPutUByte(final int c) throws IOException {
- bsW(8, c);
- }
- private void bsPutInt(final int u) throws IOException {
- bsW(8, (u >> 24) & 0xff);
- bsW(8, (u >> 16) & 0xff);
- bsW(8, (u >> 8) & 0xff);
- bsW(8, u & 0xff);
- }
- private void sendMTFValues() throws IOException {
- final byte[][] len = this.data.sendMTFValues_len;
- final int alphaSize = this.nInUse + 2;
- for (int t = N_GROUPS; --t >= 0;) {
- byte[] len_t = len[t];
- for (int v = alphaSize; --v >= 0;) {
- len_t[v] = GREATER_ICOST;
- }
- }
- /* Decide how many coding tables to use */
- // assert (this.nMTF > 0) : this.nMTF;
- final int nGroups = (this.nMTF < 200) ? 2 : (this.nMTF < 600) ? 3
- : (this.nMTF < 1200) ? 4 : (this.nMTF < 2400) ? 5 : 6;
- /* Generate an initial set of coding tables */
- sendMTFValues0(nGroups, alphaSize);
- /*
- * Iterate up to N_ITERS times to improve the tables.
- */
- final int nSelectors = sendMTFValues1(nGroups, alphaSize);
- /* Compute MTF values for the selectors. */
- sendMTFValues2(nGroups, nSelectors);
- /* Assign actual codes for the tables. */
- sendMTFValues3(nGroups, alphaSize);
- /* Transmit the mapping table. */
- sendMTFValues4();
- /* Now the selectors. */
- sendMTFValues5(nGroups, nSelectors);
- /* Now the coding tables. */
- sendMTFValues6(nGroups, alphaSize);
- /* And finally, the block data proper */
- sendMTFValues7(nSelectors);
- }
- private void sendMTFValues0(final int nGroups, final int alphaSize) {
- final byte[][] len = this.data.sendMTFValues_len;
- final int[] mtfFreq = this.data.mtfFreq;
- int remF = this.nMTF;
- int gs = 0;
- for (int nPart = nGroups; nPart > 0; nPart--) {
- final int tFreq = remF / nPart;
- int ge = gs - 1;
- int aFreq = 0;
- for (final int a = alphaSize - 1; (aFreq < tFreq) && (ge < a);) {
- aFreq += mtfFreq[++ge];
- }
- if ((ge > gs) && (nPart != nGroups) && (nPart != 1)
- && (((nGroups - nPart) & 1) != 0)) {
- aFreq -= mtfFreq[ge--];
- }
- final byte[] len_np = len[nPart - 1];
- for (int v = alphaSize; --v >= 0;) {
- if ((v >= gs) && (v <= ge)) {
- len_np[v] = LESSER_ICOST;
- } else {
- len_np[v] = GREATER_ICOST;
- }
- }
- gs = ge + 1;
- remF -= aFreq;
- }
- }
- private int sendMTFValues1(final int nGroups, final int alphaSize) {
- final Data dataShadow = this.data;
- final int[][] rfreq = dataShadow.sendMTFValues_rfreq;
- final int[] fave = dataShadow.sendMTFValues_fave;
- final short[] cost = dataShadow.sendMTFValues_cost;
- final char[] sfmap = dataShadow.sfmap;
- final byte[] selector = dataShadow.selector;
- final byte[][] len = dataShadow.sendMTFValues_len;
- final byte[] len_0 = len[0];
- final byte[] len_1 = len[1];
- final byte[] len_2 = len[2];
- final byte[] len_3 = len[3];
- final byte[] len_4 = len[4];
- final byte[] len_5 = len[5];
- final int nMTFShadow = this.nMTF;
- int nSelectors = 0;
- for (int iter = 0; iter < N_ITERS; iter++) {
- for (int t = nGroups; --t >= 0;) {
- fave[t] = 0;
- int[] rfreqt = rfreq[t];
- for (int i = alphaSize; --i >= 0;) {
- rfreqt[i] = 0;
- }
- }
- nSelectors = 0;
- for (int gs = 0; gs < this.nMTF;) {
- /* Set group start & end marks. */
- /*
- * Calculate the cost of this group as coded by each of the
- * coding tables.
- */
- final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1);
- if (nGroups == N_GROUPS) {
- // unrolled version of the else-block
- short cost0 = 0;
- short cost1 = 0;
- short cost2 = 0;
- short cost3 = 0;
- short cost4 = 0;
- short cost5 = 0;
- for (int i = gs; i <= ge; i++) {
- final int icv = sfmap[i];
- cost0 += len_0[icv] & 0xff;
- cost1 += len_1[icv] & 0xff;
- cost2 += len_2[icv] & 0xff;
- cost3 += len_3[icv] & 0xff;
- cost4 += len_4[icv] & 0xff;
- cost5 += len_5[icv] & 0xff;
- }
- cost[0] = cost0;
- cost[1] = cost1;
- cost[2] = cost2;
- cost[3] = cost3;
- cost[4] = cost4;
- cost[5] = cost5;
- } else {
- for (int t = nGroups; --t >= 0;) {
- cost[t] = 0;
- }
- for (int i = gs; i <= ge; i++) {
- final int icv = sfmap[i];
- for (int t = nGroups; --t >= 0;) {
- cost[t] += len[t][icv] & 0xff;
- }
- }
- }
- /*
- * Find the coding table which is best for this group, and
- * record its identity in the selector table.
- */
- int bt = -1;
- for (int t = nGroups, bc = 999999999; --t >= 0;) {
- final int cost_t = cost[t];
- if (cost_t < bc) {
- bc = cost_t;
- bt = t;
- }
- }
- fave[bt]++;
- selector[nSelectors] = (byte) bt;
- nSelectors++;
- /*
- * Increment the symbol frequencies for the selected table.
- */
- final int[] rfreq_bt = rfreq[bt];
- for (int i = gs; i <= ge; i++) {
- rfreq_bt[sfmap[i]]++;
- }
- gs = ge + 1;
- }
- /*
- * Recompute the tables based on the accumulated frequencies.
- */
- for (int t = 0; t < nGroups; t++) {
- hbMakeCodeLengths(len[t], rfreq[t], this.data, alphaSize, 20);
- }
- }
- return nSelectors;
- }
- private void sendMTFValues2(final int nGroups, final int nSelectors) {
- // assert (nGroups < 8) : nGroups;
- final Data dataShadow = this.data;
- byte[] pos = dataShadow.sendMTFValues2_pos;
- for (int i = nGroups; --i >= 0;) {
- pos[i] = (byte) i;
- }
- for (int i = 0; i < nSelectors; i++) {
- final byte ll_i = dataShadow.selector[i];
- byte tmp = pos[0];
- int j = 0;
- while (ll_i != tmp) {
- j++;
- byte tmp2 = tmp;
- tmp = pos[j];
- pos[j] = tmp2;
- }
- pos[0] = tmp;
- dataShadow.selectorMtf[i] = (byte) j;
- }
- }
- private void sendMTFValues3(final int nGroups, final int alphaSize) {
- int[][] code = this.data.sendMTFValues_code;
- byte[][] len = this.data.sendMTFValues_len;
- for (int t = 0; t < nGroups; t++) {
- int minLen = 32;
- int maxLen = 0;
- final byte[] len_t = len[t];
- for (int i = alphaSize; --i >= 0;) {
- final int l = len_t[i] & 0xff;
- if (l > maxLen) {
- maxLen = l;
- }
- if (l < minLen) {
- minLen = l;
- }
- }
- // assert (maxLen <= 20) : maxLen;
- // assert (minLen >= 1) : minLen;
- hbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize);
- }
- }
- private void sendMTFValues4() throws IOException {
- final boolean[] inUse = this.data.inUse;
- final boolean[] inUse16 = this.data.sentMTFValues4_inUse16;
- for (int i = 16; --i >= 0;) {
- inUse16[i] = false;
- final int i16 = i * 16;
- for (int j = 16; --j >= 0;) {
- if (inUse[i16 + j]) {
- inUse16[i] = true;
- }
- }
- }
- for (int i = 0; i < 16; i++) {
- bsW(1, inUse16[i] ? 1 : 0);
- }
- final OutputStream outShadow = this.out;
- int bsLiveShadow = this.bsLive;
- int bsBuffShadow = this.bsBuff;
- for (int i = 0; i < 16; i++) {
- if (inUse16[i]) {
- final int i16 = i * 16;
- for (int j = 0; j < 16; j++) {
- // inlined: bsW(1, inUse[i16 + j] ? 1 : 0);
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24); // write 8-bit
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- if (inUse[i16 + j]) {
- bsBuffShadow |= 1 << (32 - bsLiveShadow - 1);
- }
- bsLiveShadow++;
- }
- }
- }
- this.bsBuff = bsBuffShadow;
- this.bsLive = bsLiveShadow;
- }
- private void sendMTFValues5(final int nGroups, final int nSelectors)
- throws IOException {
- bsW(3, nGroups);
- bsW(15, nSelectors);
- final OutputStream outShadow = this.out;
- final byte[] selectorMtf = this.data.selectorMtf;
- int bsLiveShadow = this.bsLive;
- int bsBuffShadow = this.bsBuff;
- for (int i = 0; i < nSelectors; i++) {
- for (int j = 0, hj = selectorMtf[i] & 0xff; j < hj; j++) {
- // inlined: bsW(1, 1);
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24);
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- bsBuffShadow |= 1 << (32 - bsLiveShadow - 1);
- bsLiveShadow++;
- }
- // inlined: bsW(1, 0);
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24);
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1);
- bsLiveShadow++;
- }
- this.bsBuff = bsBuffShadow;
- this.bsLive = bsLiveShadow;
- }
- private void sendMTFValues6(final int nGroups, final int alphaSize)
- throws IOException {
- final byte[][] len = this.data.sendMTFValues_len;
- final OutputStream outShadow = this.out;
- int bsLiveShadow = this.bsLive;
- int bsBuffShadow = this.bsBuff;
- for (int t = 0; t < nGroups; t++) {
- byte[] len_t = len[t];
- int curr = len_t[0] & 0xff;
- // inlined: bsW(5, curr);
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24); // write 8-bit
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- bsBuffShadow |= curr << (32 - bsLiveShadow - 5);
- bsLiveShadow += 5;
- for (int i = 0; i < alphaSize; i++) {
- int lti = len_t[i] & 0xff;
- while (curr < lti) {
- // inlined: bsW(2, 2);
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24); // write 8-bit
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- bsBuffShadow |= 2 << (32 - bsLiveShadow - 2);
- bsLiveShadow += 2;
- curr++; /* 10 */
- }
- while (curr > lti) {
- // inlined: bsW(2, 3);
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24); // write 8-bit
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- bsBuffShadow |= 3 << (32 - bsLiveShadow - 2);
- bsLiveShadow += 2;
- curr--; /* 11 */
- }
- // inlined: bsW(1, 0);
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24); // write 8-bit
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1);
- bsLiveShadow++;
- }
- }
- this.bsBuff = bsBuffShadow;
- this.bsLive = bsLiveShadow;
- }
- private void sendMTFValues7(final int nSelectors) throws IOException {
- final Data dataShadow = this.data;
- final byte[][] len = dataShadow.sendMTFValues_len;
- final int[][] code = dataShadow.sendMTFValues_code;
- final OutputStream outShadow = this.out;
- final byte[] selector = dataShadow.selector;
- final char[] sfmap = dataShadow.sfmap;
- final int nMTFShadow = this.nMTF;
- int selCtr = 0;
- int bsLiveShadow = this.bsLive;
- int bsBuffShadow = this.bsBuff;
- for (int gs = 0; gs < nMTFShadow;) {
- final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1);
- final int selector_selCtr = selector[selCtr] & 0xff;
- final int[] code_selCtr = code[selector_selCtr];
- final byte[] len_selCtr = len[selector_selCtr];
- while (gs <= ge) {
- final int sfmap_i = sfmap[gs];
- //
- // inlined: bsW(len_selCtr[sfmap_i] & 0xff,
- // code_selCtr[sfmap_i]);
- //
- while (bsLiveShadow >= 8) {
- outShadow.write(bsBuffShadow >> 24);
- bsBuffShadow <<= 8;
- bsLiveShadow -= 8;
- }
- final int n = len_selCtr[sfmap_i] & 0xFF;
- bsBuffShadow |= code_selCtr[sfmap_i] << (32 - bsLiveShadow - n);
- bsLiveShadow += n;
- gs++;
- }
- gs = ge + 1;
- selCtr++;
- }
- this.bsBuff = bsBuffShadow;
- this.bsLive = bsLiveShadow;
- }
- private void moveToFrontCodeAndSend() throws IOException {
- bsW(24, this.origPtr);
- generateMTFValues();
- sendMTFValues();
- }
- /**
- * This is the most hammered method of this class.
- *
- * <p>
- * This is the version using unrolled loops. Normally I never use such ones
- * in Java code. The unrolling has shown a noticable performance improvement
- * on JRE 1.4.2 (Linux i586 / HotSpot Client). Of course it depends on the
- * JIT compiler of the vm.
- * </p>
- */
- private boolean mainSimpleSort(final Data dataShadow, final int lo,
- final int hi, final int d) {
- final int bigN = hi - lo + 1;
- if (bigN < 2) {
- return this.firstAttempt && (this.workDone > this.workLimit);
- }
- int hp = 0;
- while (INCS[hp] < bigN) {
- hp++;
- }
- final int[] fmap = dataShadow.fmap;
- final char[] quadrant = dataShadow.quadrant;
- final byte[] block = dataShadow.block;
- final int lastShadow = this.last;
- final int lastPlus1 = lastShadow + 1;
- final boolean firstAttemptShadow = this.firstAttempt;
- final int workLimitShadow = this.workLimit;
- int workDoneShadow = this.workDone;
- // Following block contains unrolled code which could be shortened by
- // coding it in additional loops.
- HP: while (--hp >= 0) {
- final int h = INCS[hp];
- final int mj = lo + h - 1;
- for (int i = lo + h; i <= hi;) {
- // copy
- for (int k = 3; (i <= hi) && (--k >= 0); i++) {
- final int v = fmap[i];
- final int vd = v + d;
- int j = i;
- // for (int a;
- // (j > mj) && mainGtU((a = fmap[j - h]) + d, vd,
- // block, quadrant, lastShadow);
- // j -= h) {
- // fmap[j] = a;
- // }
- //
- // unrolled version:
- // start inline mainGTU
- boolean onceRunned = false;
- int a = 0;
- HAMMER: while (true) {
- if (onceRunned) {
- fmap[j] = a;
- if ((j -= h) <= mj) {
- break HAMMER;
- }
- } else {
- onceRunned = true;
- }
- a = fmap[j - h];
- int i1 = a + d;
- int i2 = vd;
- // following could be done in a loop, but
- // unrolled it for performance:
- if (block[i1 + 1] == block[i2 + 1]) {
- if (block[i1 + 2] == block[i2 + 2]) {
- if (block[i1 + 3] == block[i2 + 3]) {
- if (block[i1 + 4] == block[i2 + 4]) {
- if (block[i1 + 5] == block[i2 + 5]) {
- if (block[(i1 += 6)] == block[(i2 += 6)]) {
- int x = lastShadow;
- X: while (x > 0) {
- x -= 4;
- if (block[i1 + 1] == block[i2 + 1]) {
- if (quadrant[i1] == quadrant[i2]) {
- if (block[i1 + 2] == block[i2 + 2]) {
- if (quadrant[i1 + 1] == quadrant[i2 + 1]) {
- if (block[i1 + 3] == block[i2 + 3]) {
- if (quadrant[i1 + 2] == quadrant[i2 + 2]) {
- if (block[i1 + 4] == block[i2 + 4]) {
- if (quadrant[i1 + 3] == quadrant[i2 + 3]) {
- if ((i1 += 4) >= lastPlus1) {
- i1 -= lastPlus1;
- }
- if ((i2 += 4) >= lastPlus1) {
- i2 -= lastPlus1;
- }
- workDoneShadow++;
- continue X;
- } else if ((quadrant[i1 + 3] > quadrant[i2 + 3])) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((quadrant[i1 + 2] > quadrant[i2 + 2])) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((quadrant[i1 + 1] > quadrant[i2 + 1])) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((quadrant[i1] > quadrant[i2])) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- }
- break HAMMER;
- } // while x > 0
- else {
- if ((block[i1] & 0xff) > (block[i2] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- }
- } else if ((block[i1 + 5] & 0xff) > (block[i2 + 5] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
- continue HAMMER;
- } else {
- break HAMMER;
- }
- } // HAMMER
- // end inline mainGTU
- fmap[j] = v;
- }
- if (firstAttemptShadow && (i <= hi)
- && (workDoneShadow > workLimitShadow)) {
- break HP;
- }
- }
- }
- this.workDone = workDoneShadow;
- return firstAttemptShadow && (workDoneShadow > workLimitShadow);
- }
- private static void vswap(int[] fmap, int p1, int p2, int n) {
- n += p1;
- while (p1 < n) {
- int t = fmap[p1];
- fmap[p1++] = fmap[p2];
- fmap[p2++] = t;
- }
- }
- private static byte med3(byte a, byte b, byte c) {
- return (a < b) ? (b < c ? b : a < c ? c : a) : (b > c ? b : a > c ? c
- : a);
- }
- private void blockSort() {
- this.workLimit = WORK_FACTOR * this.last;
- this.workDone = 0;
- this.blockRandomised = false;
- this.firstAttempt = true;
- mainSort();
- if (this.firstAttempt && (this.workDone > this.workLimit)) {
- randomiseBlock();
- this.workLimit = this.workDone = 0;
- this.firstAttempt = false;
- mainSort();
- }
- int[] fmap = this.data.fmap;
- this.origPtr = -1;
- for (int i = 0, lastShadow = this.last; i <= lastShadow; i++) {
- if (fmap[i] == 0) {
- this.origPtr = i;
- break;
- }
- }
- // assert (this.origPtr != -1) : this.origPtr;
- }
- /**
- * Method "mainQSort3", file "blocksort.c", BZip2 1.0.2
- */
- private void mainQSort3(final Data dataShadow, final int loSt,
- final int hiSt, final int dSt) {
- final int[] stack_ll = dataShadow.stack_ll;
- final int[] stack_hh = dataShadow.stack_hh;
- final int[] stack_dd = dataShadow.stack_dd;
- final int[] fmap = dataShadow.fmap;
- final byte[] block = dataShadow.block;
- stack_ll[0] = loSt;
- stack_hh[0] = hiSt;
- stack_dd[0] = dSt;
- for (int sp = 1; --sp >= 0;) {
- final int lo = stack_ll[sp];
- final int hi = stack_hh[sp];
- final int d = stack_dd[sp];
- if ((hi - lo < SMALL_THRESH) || (d > DEPTH_THRESH)) {
- if (mainSimpleSort(dataShadow, lo, hi, d)) {
- return;
- }
- } else {
- final int d1 = d + 1;
- final int med = med3(block[fmap[lo] + d1],
- block[fmap[hi] + d1], block[fmap[(lo + hi) >>> 1] + d1]) & 0xff;
- int unLo = lo;
- int unHi = hi;
- int ltLo = lo;
- int gtHi = hi;
- while (true) {
- while (unLo <= unHi) {
- final int n = ((int) block[fmap[unLo] + d1] & 0xff)
- - med;
- if (n == 0) {
- final int temp = fmap[unLo];
- fmap[unLo++] = fmap[ltLo];
- fmap[ltLo++] = temp;
- } else if (n < 0) {
- unLo++;
- } else {
- break;
- }
- }
- while (unLo <= unHi) {
- final int n = ((int) block[fmap[unHi] + d1] & 0xff)
- - med;
- if (n == 0) {
- final int temp = fmap[unHi];
- fmap[unHi--] = fmap[gtHi];
- fmap[gtHi--] = temp;
- } else if (n > 0) {
- unHi--;
- } else {
- break;
- }
- }
- if (unLo <= unHi) {
- final int temp = fmap[unLo];
- fmap[unLo++] = fmap[unHi];
- fmap[unHi--] = temp;
- } else {
- break;
- }
- }
- if (gtHi < ltLo) {
- stack_ll[sp] = lo;
- stack_hh[sp] = hi;
- stack_dd[sp] = d1;
- sp++;
- } else {
- int n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo)
- : (unLo - ltLo);
- vswap(fmap, lo, unLo - n, n);
- int m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi)
- : (gtHi - unHi);
- vswap(fmap, unLo, hi - m + 1, m);
- n = lo + unLo - ltLo - 1;
- m = hi - (gtHi - unHi) + 1;
- stack_ll[sp] = lo;
- stack_hh[sp] = n;
- stack_dd[sp] = d;
- sp++;
- stack_ll[sp] = n + 1;
- stack_hh[sp] = m - 1;
- stack_dd[sp] = d1;
- sp++;
- stack_ll[sp] = m;
- stack_hh[sp] = hi;
- stack_dd[sp] = d;
- sp++;
- }
- }
- }
- }
- private void mainSort() {
- final Data dataShadow = this.data;
- final int[] runningOrder = dataShadow.mainSort_runningOrder;
- final int[] copy = dataShadow.mainSort_copy;
- final boolean[] bigDone = dataShadow.mainSort_bigDone;
- final int[] ftab = dataShadow.ftab;
- final byte[] block = dataShadow.block;
- final int[] fmap = dataShadow.fmap;
- final char[] quadrant = dataShadow.quadrant;
- final int lastShadow = this.last;
- final int workLimitShadow = this.workLimit;
- final boolean firstAttemptShadow = this.firstAttempt;
- // Set up the 2-byte frequency table
- for (int i = 65537; --i >= 0;) {
- ftab[i] = 0;
- }
- /*
- * In the various block-sized structures, live data runs from 0 to
- * last+NUM_OVERSHOOT_BYTES inclusive. First, set up the overshoot area
- * for block.
- */
- for (int i = 0; i < NUM_OVERSHOOT_BYTES; i++) {
- block[lastShadow + i + 2] = block[(i % (lastShadow + 1)) + 1];
- }
- for (int i = lastShadow + NUM_OVERSHOOT_BYTES +1; --i >= 0;) {
- quadrant[i] = 0;
- }
- block[0] = block[lastShadow + 1];
- // Complete the initial radix sort:
- int c1 = block[0] & 0xff;
- for (int i = 0; i <= lastShadow; i++) {
- final int c2 = block[i + 1] & 0xff;
- ftab[(c1 << 8) + c2]++;
- c1 = c2;
- }
- for (int i = 1; i <= 65536; i++)
- ftab[i] += ftab[i - 1];
- c1 = block[1] & 0xff;
- for (int i = 0; i < lastShadow; i++) {
- final int c2 = block[i + 2] & 0xff;
- fmap[--ftab[(c1 << 8) + c2]] = i;
- c1 = c2;
- }
- fmap[--ftab[((block[lastShadow + 1] & 0xff) << 8) + (block[1] & 0xff)]] = lastShadow;
- /*
- * Now ftab contains the first loc of every small bucket. Calculate the
- * running order, from smallest to largest big bucket.
- */
- for (int i = 256; --i >= 0;) {
- bigDone[i] = false;
- runningOrder[i] = i;
- }
- for (int h = 364; h != 1;) {
- h /= 3;
- for (int i = h; i <= 255; i++) {
- final int vv = runningOrder[i];
- final int a = ftab[(vv + 1) << 8] - ftab[vv << 8];
- final int b = h - 1;
- int j = i;
- for (int ro = runningOrder[j - h]; (ftab[(ro + 1) << 8] - ftab[ro << 8]) > a; ro = runningOrder[j
- - h]) {
- runningOrder[j] = ro;
- j -= h;
- if (j <= b) {
- break;
- }
- }
- runningOrder[j] = vv;
- }
- }
- /*
- * The main sorting loop.
- */
- for (int i = 0; i <= 255; i++) {
- /*
- * Process big buckets, starting with the least full.
- */
- final int ss = runningOrder[i];
- // Step 1:
- /*
- * Complete the big bucket [ss] by quicksorting any unsorted small
- * buckets [ss, j]. Hopefully previous pointer-scanning phases have
- * already completed many of the small buckets [ss, j], so we don't
- * have to sort them at all.
- */
- for (int j = 0; j <= 255; j++) {
- final int sb = (ss << 8) + j;
- final int ftab_sb = ftab[sb];
- if ((ftab_sb & SETMASK) != SETMASK) {
- final int lo = ftab_sb & CLEARMASK;
- final int hi = (ftab[sb + 1] & CLEARMASK) - 1;
- if (hi > lo) {
- mainQSort3(dataShadow, lo, hi, 2);
- if (firstAttemptShadow
- && (this.workDone > workLimitShadow)) {
- return;
- }
- }
- ftab[sb] = ftab_sb | SETMASK;
- }
- }
- // Step 2:
- // Now scan this big bucket so as to synthesise the
- // sorted order for small buckets [t, ss] for all t != ss.
- for (int j = 0; j <= 255; j++) {
- copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
- }
- for (int j = ftab[ss << 8] & CLEARMASK, hj = (ftab[(ss + 1) << 8] & CLEARMASK); j < hj; j++) {
- final int fmap_j = fmap[j];
- c1 = block[fmap_j] & 0xff;
- if (!bigDone[c1]) {
- fmap[copy[c1]] = (fmap_j == 0) ? lastShadow : (fmap_j - 1);
- copy[c1]++;
- }
- }
- for (int j = 256; --j >= 0;)
- ftab[(j << 8) + ss] |= SETMASK;
- // Step 3:
- /*
- * The ss big bucket is now done. Record this fact, and update the
- * quadrant descriptors. Remember to update quadrants in the
- * overshoot area too, if necessary. The "if (i < 255)" test merely
- * skips this updating for the last bucket processed, since updating
- * for the last bucket is pointless.
- */
- bigDone[ss] = true;
- if (i < 255) {
- final int bbStart = ftab[ss << 8] & CLEARMASK;
- final int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart;
- int shifts = 0;
- while ((bbSize >> shifts) > 65534) {
- shifts++;
- }
- for (int j = 0; j < bbSize; j++) {
- final int a2update = fmap[bbStart + j];
- final char qVal = (char) (j >> shifts);
- quadrant[a2update] = qVal;
- if (a2update < NUM_OVERSHOOT_BYTES) {
- quadrant[a2update + lastShadow + 1] = qVal;
- }
- }
- }
- }
- }
- private void randomiseBlock() {
- final boolean[] inUse = this.data.inUse;
- final byte[] block = this.data.block;
- final int lastShadow = this.last;
- for (int i = 256; --i >= 0;)
- inUse[i] = false;
- int rNToGo = 0;
- int rTPos = 0;
- for (int i = 0, j = 1; i <= lastShadow; i = j, j++) {
- if (rNToGo == 0) {
- rNToGo = (char) BZip2Constants.rNums[rTPos];
- if (++rTPos == 512) {
- rTPos = 0;
- }
- }
- rNToGo--;
- block[j] ^= ((rNToGo == 1) ? 1 : 0);
- // handle 16 bit signed numbers
- inUse[block[j] & 0xff] = true;
- }
- this.blockRandomised = true;
- }
- private void generateMTFValues() {
- final int lastShadow = this.last;
- final Data dataShadow = this.data;
- final boolean[] inUse = dataShadow.inUse;
- final byte[] block = dataShadow.block;
- final int[] fmap = dataShadow.fmap;
- final char[] sfmap = dataShadow.sfmap;
- final int[] mtfFreq = dataShadow.mtfFreq;
- final byte[] unseqToSeq = dataShadow.unseqToSeq;
- final byte[] yy = dataShadow.generateMTFValues_yy;
- // make maps
- int nInUseShadow = 0;
- for (int i = 0; i < 256; i++) {
- if (inUse[i]) {
- unseqToSeq[i] = (byte) nInUseShadow;
- nInUseShadow++;
- }
- }
- this.nInUse = nInUseShadow;
- final int eob = nInUseShadow + 1;
- for (int i = eob; i >= 0; i--) {
- mtfFreq[i] = 0;
- }
- for (int i = nInUseShadow; --i >= 0;) {
- yy[i] = (byte) i;
- }
- int wr = 0;
- int zPend = 0;
- for (int i = 0; i <= lastShadow; i++) {
- final byte ll_i = unseqToSeq[block[fmap[i]] & 0xff];
- byte tmp = yy[0];
- int j = 0;
- while (ll_i != tmp) {
- j++;
- byte tmp2 = tmp;
- tmp = yy[j];
- yy[j] = tmp2;
- }
- yy[0] = tmp;
- if (j == 0) {
- zPend++;
- } else {
- if (zPend > 0) {
- zPend--;
- while (true) {
- if ((zPend & 1) == 0) {
- sfmap[wr] = RUNA;
- wr++;
- mtfFreq[RUNA]++;
- } else {
- sfmap[wr] = RUNB;
- wr++;
- mtfFreq[RUNB]++;
- }
- if (zPend >= 2) {
- zPend = (zPend - 2) >> 1;
- } else {
- break;
- }
- }
- zPend = 0;
- }
- sfmap[wr] = (char) (j + 1);
- wr++;
- mtfFreq[j + 1]++;
- }
- }
- if (zPend > 0) {
- zPend--;
- while (true) {
- if ((zPend & 1) == 0) {
- sfmap[wr] = RUNA;
- wr++;
- mtfFreq[RUNA]++;
- } else {
- sfmap[wr] = RUNB;
- wr++;
- mtfFreq[RUNB]++;
- }
- if (zPend >= 2) {
- zPend = (zPend - 2) >> 1;
- } else {
- break;
- }
- }
- }
- sfmap[wr] = (char) eob;
- mtfFreq[eob]++;
- this.nMTF = wr + 1;
- }
- private static final class Data extends Object {
- // with blockSize 900k
- final boolean[] inUse = new boolean[256]; // 256 byte
- final byte[] unseqToSeq = new byte[256]; // 256 byte
- final int[] mtfFreq = new int[MAX_ALPHA_SIZE]; // 1032 byte
- final byte[] selector = new byte[MAX_SELECTORS]; // 18002 byte
- final byte[] selectorMtf = new byte[MAX_SELECTORS]; // 18002 byte
- final byte[] generateMTFValues_yy = new byte[256]; // 256 byte
- final byte[][] sendMTFValues_len = new byte[N_GROUPS][MAX_ALPHA_SIZE]; // 1548
- // byte
- final int[][] sendMTFValues_rfreq = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192
- // byte
- final int[] sendMTFValues_fave = new int[N_GROUPS]; // 24 byte
- final short[] sendMTFValues_cost = new short[N_GROUPS]; // 12 byte
- final int[][] sendMTFValues_code = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192
- // byte
- final byte[] sendMTFValues2_pos = new byte[N_GROUPS]; // 6 byte
- final boolean[] sentMTFValues4_inUse16 = new boolean[16]; // 16 byte
- final int[] stack_ll = new int[QSORT_STACK_SIZE]; // 4000 byte
- final int[] stack_hh = new int[QSORT_STACK_SIZE]; // 4000 byte
- final int[] stack_dd = new int[QSORT_STACK_SIZE]; // 4000 byte
- final int[] mainSort_runningOrder = new int[256]; // 1024 byte
- final int[] mainSort_copy = new int[256]; // 1024 byte
- final boolean[] mainSort_bigDone = new boolean[256]; // 256 byte
- final int[] heap = new int[MAX_ALPHA_SIZE + 2]; // 1040 byte
- final int[] weight = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
- final int[] parent = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
- final int[] ftab = new int[65537]; // 262148 byte
- // ------------
- // 333408 byte
- final byte[] block; // 900021 byte
- final int[] fmap; // 3600000 byte
- final char[] sfmap; // 3600000 byte
- // ------------
- // 8433529 byte
- // ============
- /**
- * Array instance identical to sfmap, both are used only temporarily and
- * indepently, so we do not need to allocate additional memory.
- */
- final char[] quadrant;
- Data(int blockSize100k) {
- super();
- final int n = blockSize100k * BZip2Constants.baseBlockSize;
- this.block = new byte[(n + 1 + NUM_OVERSHOOT_BYTES)];
- this.fmap = new int[n];
- this.sfmap = new char[2 * n];
- this.quadrant = this.sfmap;
- }
- }
- }