lopcodes.h
上传用户:dzyhzl
上传日期:2019-04-29
资源大小:56270k
文件大小:5k
- /*
- ** $Id: lopcodes.h,v 1.68 2000/10/24 16:05:59 roberto Exp $
- ** Opcodes for Lua virtual machine
- ** See Copyright Notice in lua.h
- */
- #ifndef lopcodes_h
- #define lopcodes_h
- #include "llimits.h"
- /*===========================================================================
- We assume that instructions are unsigned numbers.
- All instructions have an opcode in the first 6 bits. Moreover,
- an instruction can have 0, 1, or 2 arguments. Instructions can
- have the following types:
- type 0: no arguments
- type 1: 1 unsigned argument in the higher bits (called `U')
- type 2: 1 signed argument in the higher bits (`S')
- type 3: 1st unsigned argument in the higher bits (`A')
- 2nd unsigned argument in the middle bits (`B')
- A signed argument is represented in excess K; that is, the number
- value is the unsigned value minus K. K is exactly the maximum value
- for that argument (so that -max is represented by 0, and +max is
- represented by 2*max), which is half the maximum for the corresponding
- unsigned argument.
- The size of each argument is defined in `llimits.h'. The usual is an
- instruction with 32 bits, U arguments with 26 bits (32-6), B arguments
- with 9 bits, and A arguments with 17 bits (32-6-9). For small
- installations, the instruction size can be 16, so U has 10 bits,
- and A and B have 5 bits each.
- ===========================================================================*/
- /* creates a mask with `n' 1 bits at position `p' */
- #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
- /* creates a mask with `n' 0 bits at position `p' */
- #define MASK0(n,p) (~MASK1(n,p))
- /*
- ** the following macros help to manipulate instructions
- */
- #define CREATE_0(o) ((Instruction)(o))
- #define GET_OPCODE(i) ((OpCode)((i)&MASK1(SIZE_OP,0)))
- #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,0)) | (Instruction)(o)))
- #define CREATE_U(o,u) ((Instruction)(o) | ((Instruction)(u)<<POS_U))
- #define GETARG_U(i) ((int)((i)>>POS_U))
- #define SETARG_U(i,u) ((i) = (((i)&MASK0(SIZE_U,POS_U)) |
- ((Instruction)(u)<<POS_U)))
- #define CREATE_S(o,s) CREATE_U((o),(s)+MAXARG_S)
- #define GETARG_S(i) (GETARG_U(i)-MAXARG_S)
- #define SETARG_S(i,s) SETARG_U((i),(s)+MAXARG_S)
- #define CREATE_AB(o,a,b) ((Instruction)(o) | ((Instruction)(a)<<POS_A)
- | ((Instruction)(b)<<POS_B))
- #define GETARG_A(i) ((int)((i)>>POS_A))
- #define SETARG_A(i,a) ((i) = (((i)&MASK0(SIZE_A,POS_A)) |
- ((Instruction)(a)<<POS_A)))
- #define GETARG_B(i) ((int)(((i)>>POS_B) & MASK1(SIZE_B,0)))
- #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) |
- ((Instruction)(b)<<POS_B)))
- /*
- ** K = U argument used as index to `kstr'
- ** J = S argument used as jump offset (relative to pc of next instruction)
- ** L = unsigned argument used as index of local variable
- ** N = U argument used as index to `knum'
- */
- typedef enum {
- /*----------------------------------------------------------------------
- name args stack before stack after side effects
- ------------------------------------------------------------------------*/
- OP_END,/* - - (return) no results */
- OP_RETURN,/* U v_n-v_x(at u) (return) returns v_x-v_n */
- OP_CALL,/* A B v_n-v_1 f(at a) r_b-r_1 f(v1,...,v_n) */
- OP_TAILCALL,/* A B v_n-v_1 f(at a) (return) f(v1,...,v_n) */
- OP_PUSHNIL,/* U - nil_1-nil_u */
- OP_POP,/* U a_u-a_1 - */
- OP_PUSHINT,/* S - (Number)s */
- OP_PUSHSTRING,/* K - KSTR[k] */
- OP_PUSHNUM,/* N - KNUM[n] */
- OP_PUSHNEGNUM,/* N - -KNUM[n] */
- OP_PUSHUPVALUE,/* U - Closure[u] */
- OP_GETLOCAL,/* L - LOC[l] */
- OP_GETGLOBAL,/* K - VAR[KSTR[k]] */
- OP_GETTABLE,/* - i t t[i] */
- OP_GETDOTTED,/* K t t[KSTR[k]] */
- OP_GETINDEXED,/* L t t[LOC[l]] */
- OP_PUSHSELF,/* K t t t[KSTR[k]] */
- OP_CREATETABLE,/* U - newarray(size = u) */
- OP_SETLOCAL,/* L x - LOC[l]=x */
- OP_SETGLOBAL,/* K x - VAR[KSTR[k]]=x */
- OP_SETTABLE,/* A B v a_a-a_1 i t (pops b values) t[i]=v */
- OP_SETLIST,/* A B v_b-v_1 t t t[i+a*FPF]=v_i */
- OP_SETMAP,/* U v_u k_u - v_1 k_1 t t t[k_i]=v_i */
- OP_ADD,/* - y x x+y */
- OP_ADDI,/* S x x+s */
- OP_SUB,/* - y x x-y */
- OP_MULT,/* - y x x*y */
- OP_DIV,/* - y x x/y */
- OP_POW,/* - y x x^y */
- OP_CONCAT,/* U v_u-v_1 v1..-..v_u */
- OP_MINUS,/* - x -x */
- OP_NOT,/* - x (x==nil)? 1 : nil */
- OP_JMPNE,/* J y x - (x~=y)? PC+=s */
- OP_JMPEQ,/* J y x - (x==y)? PC+=s */
- OP_JMPLT,/* J y x - (x<y)? PC+=s */
- OP_JMPLE,/* J y x - (x<y)? PC+=s */
- OP_JMPGT,/* J y x - (x>y)? PC+=s */
- OP_JMPGE,/* J y x - (x>=y)? PC+=s */
- OP_JMPT,/* J x - (x~=nil)? PC+=s */
- OP_JMPF,/* J x - (x==nil)? PC+=s */
- OP_JMPONT,/* J x (x~=nil)? x : - (x~=nil)? PC+=s */
- OP_JMPONF,/* J x (x==nil)? x : - (x==nil)? PC+=s */
- OP_JMP,/* J - - PC+=s */
- OP_PUSHNILJMP,/* - - nil PC++; */
- OP_FORPREP,/* J */
- OP_FORLOOP,/* J */
- OP_LFORPREP,/* J */
- OP_LFORLOOP,/* J */
- OP_CLOSURE/* A B v_b-v_1 closure(KPROTO[a], v_1-v_b) */
- } OpCode;
- #define NUM_OPCODES ((int)OP_CLOSURE+1)
- #define ISJUMP(o) (OP_JMPNE <= (o) && (o) <= OP_JMP)
- /* special code to fit a LUA_MULTRET inside an argB */
- #define MULT_RET 255 /* (<=MAXARG_B) */
- #if MULT_RET>MAXARG_B
- #undef MULT_RET
- #define MULT_RET MAXARG_B
- #endif
- #endif