ALGORITH.DOC
资源名称:Cimage.zip [点击查看]
上传用户:wep9318
上传日期:2007-01-07
资源大小:893k
文件大小:5k
源码类别:
图片显示
开发平台:
Visual C++
- 1. Compression algorithm (deflate)
- The deflation algorithm used by zlib (also zip and gzip) is a variation of
- LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
- the input data. The second occurrence of a string is replaced by a
- pointer to the previous string, in the form of a pair (distance,
- length). Distances are limited to 32K bytes, and lengths are limited
- to 258 bytes. When a string does not occur anywhere in the previous
- 32K bytes, it is emitted as a sequence of literal bytes. (In this
- description, `string' must be taken as an arbitrary sequence of bytes,
- and is not restricted to printable characters.)
- Literals or match lengths are compressed with one Huffman tree, and
- match distances are compressed with another tree. The trees are stored
- in a compact form at the start of each block. The blocks can have any
- size (except that the compressed data for one block must fit in
- available memory). A block is terminated when deflate() determines that
- it would be useful to start another block with fresh trees. (This is
- somewhat similar to the behavior of LZW-based _compress_.)
- Duplicated strings are found using a hash table. All input strings of
- length 3 are inserted in the hash table. A hash index is computed for
- the next 3 bytes. If the hash chain for this index is not empty, all
- strings in the chain are compared with the current input string, and
- the longest match is selected.
- The hash chains are searched starting with the most recent strings, to
- favor small distances and thus take advantage of the Huffman encoding.
- The hash chains are singly linked. There are no deletions from the
- hash chains, the algorithm simply discards matches that are too old.
- To avoid a worst-case situation, very long hash chains are arbitrarily
- truncated at a certain length, determined by a runtime option (level
- parameter of deflateInit). So deflate() does not always find the longest
- possible match but generally finds a match which is long enough.
- deflate() also defers the selection of matches with a lazy evaluation
- mechanism. After a match of length N has been found, deflate() searches for a
- longer match at the next input byte. If a longer match is found, the
- previous match is truncated to a length of one (thus producing a single
- literal byte) and the longer match is emitted afterwards. Otherwise,
- the original match is kept, and the next match search is attempted only
- N steps later.
- The lazy match evaluation is also subject to a runtime parameter. If
- the current match is long enough, deflate() reduces the search for a longer
- match, thus speeding up the whole process. If compression ratio is more
- important than speed, deflate() attempts a complete second search even if
- the first match is already long enough.
- The lazy match evaluation is not performed for the fastest compression
- modes (level parameter 1 to 3). For these fast modes, new strings
- are inserted in the hash table only when no match was found, or
- when the match is not too long. This degrades the compression ratio
- but saves time since there are both fewer insertions and fewer searches.
- 2. Decompression algorithm (inflate)
- The real question is, given a Huffman tree, how to decode fast. The most
- important realization is that shorter codes are much more common than
- longer codes, so pay attention to decoding the short codes fast, and let
- the long codes take longer to decode.
- inflate() sets up a first level table that covers some number of bits of
- input less than the length of longest code. It gets that many bits from the
- stream, and looks it up in the table. The table will tell if the next
- code is that many bits or less and how many, and if it is, it will tell
- the value, else it will point to the next level table for which inflate()
- grabs more bits and tries to decode a longer code.
- How many bits to make the first lookup is a tradeoff between the time it
- takes to decode and the time it takes to build the table. If building the
- table took no time (and if you had infinite memory), then there would only
- be a first level table to cover all the way to the longest code. However,
- building the table ends up taking a lot longer for more bits since short
- codes are replicated many times in such a table. What inflate() does is
- simply to make the number of bits in the first table a variable, and set it
- for the maximum speed.
- inflate() sends new trees relatively often, so it is possibly set for a
- smaller first level table than an application that has only one tree for
- all the data. For inflate, which has 286 possible codes for the
- literal/length tree, the size of the first table is nine bits. Also the
- distance trees have 30 possible values, and the size of the first table is
- six bits. Note that for each of those cases, the table ended up one bit
- longer than the ``average'' code length, i.e. the code length of an
- approximately flat code which would be a little more than eight bits for
- 286 symbols and a little less than five bits for 30 symbols. It would be
- interesting to see if optimizing the first level table for other
- applications gave values within a bit or two of the flat code size.
- Jean-loup Gailly Mark Adler
- gzip@prep.ai.mit.edu madler@alumni.caltech.edu
- References:
- [LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
- Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
- pp. 337-343.
- ``DEFLATE Compressed Data Format Specification'' available in
- ftp://ds.internic.net/rfc/rfc1951.txt