JDCT.H
上传用户:wep9318
上传日期:2007-01-07
资源大小:893k
文件大小:7k
源码类别:

图片显示

开发平台:

Visual C++

  1. /*
  2.  * jdct.h
  3.  *
  4.  * Copyright (C) 1994, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This include file contains common declarations for the forward and
  9.  * inverse DCT modules.  These declarations are private to the DCT managers
  10.  * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
  11.  * The individual DCT algorithms are kept in separate files to ease 
  12.  * machine-dependent tuning (e.g., assembly coding).
  13.  */
  14. /*
  15.  * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
  16.  * the DCT is to be performed in-place in that buffer.  Type DCTELEM is int
  17.  * for 8-bit samples, INT32 for 12-bit samples.  (NOTE: Floating-point DCT
  18.  * implementations use an array of type FAST_FLOAT, instead.)
  19.  * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
  20.  * The DCT outputs are returned scaled up by a factor of 8; they therefore
  21.  * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This
  22.  * convention improves accuracy in integer implementations and saves some
  23.  * work in floating-point ones.
  24.  * Quantization of the output coefficients is done by jcdctmgr.c.
  25.  */
  26. #if BITS_IN_JSAMPLE == 8
  27. typedef int DCTELEM; /* 16 or 32 bits is fine */
  28. #else
  29. typedef INT32 DCTELEM; /* must have 32 bits */
  30. #endif
  31. typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
  32. typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
  33. /*
  34.  * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
  35.  * to an output sample array.  The routine must dequantize the input data as
  36.  * well as perform the IDCT; for dequantization, it uses the multiplier table
  37.  * pointed to by compptr->dct_table.  The output data is to be placed into the
  38.  * sample array starting at a specified column.  (Any row offset needed will
  39.  * be applied to the array pointer before it is passed to the IDCT code.)
  40.  * Note that the number of samples emitted by the IDCT routine is
  41.  * DCT_scaled_size * DCT_scaled_size.
  42.  */
  43. /* typedef inverse_DCT_method_ptr is declared in jpegint.h */
  44. /*
  45.  * Each IDCT routine has its own ideas about the best dct_table element type.
  46.  */
  47. typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
  48. #if BITS_IN_JSAMPLE == 8
  49. typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
  50. #define IFAST_SCALE_BITS  2 /* fractional bits in scale factors */
  51. #else
  52. typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
  53. #define IFAST_SCALE_BITS  13 /* fractional bits in scale factors */
  54. #endif
  55. typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
  56. /*
  57.  * Each IDCT routine is responsible for range-limiting its results and
  58.  * converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
  59.  * be quite far out of range if the input data is corrupt, so a bulletproof
  60.  * range-limiting step is required.  We use a mask-and-table-lookup method
  61.  * to do the combined operations quickly.  See the comments with
  62.  * prepare_range_limit_table (in jdmaster.c) for more info.
  63.  */
  64. #define IDCT_range_limit(cinfo)  ((cinfo)->sample_range_limit + CENTERJSAMPLE)
  65. #define RANGE_MASK  (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
  66. /* Short forms of external names for systems with brain-damaged linkers. */
  67. #ifdef NEED_SHORT_EXTERNAL_NAMES
  68. #define jpeg_fdct_islow jFDislow
  69. #define jpeg_fdct_ifast jFDifast
  70. #define jpeg_fdct_float jFDfloat
  71. #define jpeg_idct_islow jRDislow
  72. #define jpeg_idct_ifast jRDifast
  73. #define jpeg_idct_float jRDfloat
  74. #define jpeg_idct_4x4 jRD4x4
  75. #define jpeg_idct_2x2 jRD2x2
  76. #define jpeg_idct_1x1 jRD1x1
  77. #endif /* NEED_SHORT_EXTERNAL_NAMES */
  78. /* Extern declarations for the forward and inverse DCT routines. */
  79. EXTERN void jpeg_fdct_islow JPP((DCTELEM * data));
  80. EXTERN void jpeg_fdct_ifast JPP((DCTELEM * data));
  81. EXTERN void jpeg_fdct_float JPP((FAST_FLOAT * data));
  82. EXTERN void jpeg_idct_islow
  83.     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  84.  JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  85. EXTERN void jpeg_idct_ifast
  86.     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  87.  JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  88. EXTERN void jpeg_idct_float
  89.     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  90.  JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  91. EXTERN void jpeg_idct_4x4
  92.     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  93.  JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  94. EXTERN void jpeg_idct_2x2
  95.     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  96.  JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  97. EXTERN void jpeg_idct_1x1
  98.     JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
  99.  JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
  100. /*
  101.  * Macros for handling fixed-point arithmetic; these are used by many
  102.  * but not all of the DCT/IDCT modules.
  103.  *
  104.  * All values are expected to be of type INT32.
  105.  * Fractional constants are scaled left by CONST_BITS bits.
  106.  * CONST_BITS is defined within each module using these macros,
  107.  * and may differ from one module to the next.
  108.  */
  109. #define ONE ((INT32) 1)
  110. #define CONST_SCALE (ONE << CONST_BITS)
  111. /* Convert a positive real constant to an integer scaled by CONST_SCALE.
  112.  * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
  113.  * thus causing a lot of useless floating-point operations at run time.
  114.  */
  115. #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
  116. /* Descale and correctly round an INT32 value that's scaled by N bits.
  117.  * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
  118.  * the fudge factor is correct for either sign of X.
  119.  */
  120. #define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
  121. /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
  122.  * This macro is used only when the two inputs will actually be no more than
  123.  * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
  124.  * full 32x32 multiply.  This provides a useful speedup on many machines.
  125.  * Unfortunately there is no way to specify a 16x16->32 multiply portably
  126.  * in C, but some C compilers will do the right thing if you provide the
  127.  * correct combination of casts.
  128.  */
  129. #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
  130. #define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT16) (const)))
  131. #endif
  132. #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
  133. #define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT32) (const)))
  134. #endif
  135. #ifndef MULTIPLY16C16 /* default definition */
  136. #define MULTIPLY16C16(var,const)  ((var) * (const))
  137. #endif
  138. /* Same except both inputs are variables. */
  139. #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
  140. #define MULTIPLY16V16(var1,var2)  (((INT16) (var1)) * ((INT16) (var2)))
  141. #endif
  142. #ifndef MULTIPLY16V16 /* default definition */
  143. #define MULTIPLY16V16(var1,var2)  ((var1) * (var2))
  144. #endif