JMEMMGR.C
资源名称:Cimage.zip [点击查看]
上传用户:wep9318
上传日期:2007-01-07
资源大小:893k
文件大小:39k
源码类别:
图片显示
开发平台:
Visual C++
- /*
- * jmemmgr.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the JPEG system-independent memory management
- * routines. This code is usable across a wide variety of machines; most
- * of the system dependencies have been isolated in a separate file.
- * The major functions provided here are:
- * * pool-based allocation and freeing of memory;
- * * policy decisions about how to divide available memory among the
- * virtual arrays;
- * * control logic for swapping virtual arrays between main memory and
- * backing storage.
- * The separate system-dependent file provides the actual backing-storage
- * access code, and it contains the policy decision about how much total
- * main memory to use.
- * This file is system-dependent in the sense that some of its functions
- * are unnecessary in some systems. For example, if there is enough virtual
- * memory so that backing storage will never be used, much of the virtual
- * array control logic could be removed. (Of course, if you have that much
- * memory then you shouldn't care about a little bit of unused code...)
- */
- #define JPEG_INTERNALS
- #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jmemsys.h" /* import the system-dependent declarations */
- #ifndef NO_GETENV
- #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
- extern char * getenv JPP((const char * name));
- #endif
- #endif
- /*
- * Some important notes:
- * The allocation routines provided here must never return NULL.
- * They should exit to error_exit if unsuccessful.
- *
- * It's not a good idea to try to merge the sarray and barray routines,
- * even though they are textually almost the same, because samples are
- * usually stored as bytes while coefficients are shorts or ints. Thus,
- * in machines where byte pointers have a different representation from
- * word pointers, the resulting machine code could not be the same.
- */
- /*
- * Many machines require storage alignment: longs must start on 4-byte
- * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
- * always returns pointers that are multiples of the worst-case alignment
- * requirement, and we had better do so too.
- * There isn't any really portable way to determine the worst-case alignment
- * requirement. This module assumes that the alignment requirement is
- * multiples of sizeof(ALIGN_TYPE).
- * By default, we define ALIGN_TYPE as double. This is necessary on some
- * workstations (where doubles really do need 8-byte alignment) and will work
- * fine on nearly everything. If your machine has lesser alignment needs,
- * you can save a few bytes by making ALIGN_TYPE smaller.
- * The only place I know of where this will NOT work is certain Macintosh
- * 680x0 compilers that define double as a 10-byte IEEE extended float.
- * Doing 10-byte alignment is counterproductive because longwords won't be
- * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
- * such a compiler.
- */
- #ifndef ALIGN_TYPE /* so can override from jconfig.h */
- #define ALIGN_TYPE double
- #endif
- /*
- * We allocate objects from "pools", where each pool is gotten with a single
- * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
- * overhead within a pool, except for alignment padding. Each pool has a
- * header with a link to the next pool of the same class.
- * Small and large pool headers are identical except that the latter's
- * link pointer must be FAR on 80x86 machines.
- * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
- * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
- * of the alignment requirement of ALIGN_TYPE.
- */
- typedef union small_pool_struct * small_pool_ptr;
- typedef union small_pool_struct {
- struct {
- small_pool_ptr next; /* next in list of pools */
- size_t bytes_used; /* how many bytes already used within pool */
- size_t bytes_left; /* bytes still available in this pool */
- } hdr;
- ALIGN_TYPE dummy; /* included in union to ensure alignment */
- } small_pool_hdr;
- typedef union large_pool_struct FAR * large_pool_ptr;
- typedef union large_pool_struct {
- struct {
- large_pool_ptr next; /* next in list of pools */
- size_t bytes_used; /* how many bytes already used within pool */
- size_t bytes_left; /* bytes still available in this pool */
- } hdr;
- ALIGN_TYPE dummy; /* included in union to ensure alignment */
- } large_pool_hdr;
- /*
- * Here is the full definition of a memory manager object.
- */
- typedef struct {
- struct jpeg_memory_mgr pub; /* public fields */
- /* Each pool identifier (lifetime class) names a linked list of pools. */
- small_pool_ptr small_list[JPOOL_NUMPOOLS];
- large_pool_ptr large_list[JPOOL_NUMPOOLS];
- /* Since we only have one lifetime class of virtual arrays, only one
- * linked list is necessary (for each datatype). Note that the virtual
- * array control blocks being linked together are actually stored somewhere
- * in the small-pool list.
- */
- jvirt_sarray_ptr virt_sarray_list;
- jvirt_barray_ptr virt_barray_list;
- /* This counts total space obtained from jpeg_get_small/large */
- long total_space_allocated;
- /* alloc_sarray and alloc_barray set this value for use by virtual
- * array routines.
- */
- JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
- } my_memory_mgr;
- typedef my_memory_mgr * my_mem_ptr;
- /*
- * The control blocks for virtual arrays.
- * Note that these blocks are allocated in the "small" pool area.
- * System-dependent info for the associated backing store (if any) is hidden
- * inside the backing_store_info struct.
- */
- struct jvirt_sarray_control {
- JSAMPARRAY mem_buffer; /* => the in-memory buffer */
- JDIMENSION rows_in_array; /* total virtual array height */
- JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
- JDIMENSION unitheight; /* # of rows accessed by access_virt_sarray */
- JDIMENSION rows_in_mem; /* height of memory buffer */
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
- JDIMENSION cur_start_row; /* first logical row # in the buffer */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- jvirt_sarray_ptr next; /* link to next virtual sarray control block */
- backing_store_info b_s_info; /* System-dependent control info */
- };
- struct jvirt_barray_control {
- JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
- JDIMENSION rows_in_array; /* total virtual array height */
- JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
- JDIMENSION unitheight; /* # of rows accessed by access_virt_barray */
- JDIMENSION rows_in_mem; /* height of memory buffer */
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
- JDIMENSION cur_start_row; /* first logical row # in the buffer */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- jvirt_barray_ptr next; /* link to next virtual barray control block */
- backing_store_info b_s_info; /* System-dependent control info */
- };
- #ifdef MEM_STATS /* optional extra stuff for statistics */
- LOCAL void
- print_mem_stats (j_common_ptr cinfo, int pool_id)
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr shdr_ptr;
- large_pool_ptr lhdr_ptr;
- /* Since this is only a debugging stub, we can cheat a little by using
- * fprintf directly rather than going through the trace message code.
- * This is helpful because message parm array can't handle longs.
- */
- fprintf(stderr, "Freeing pool %d, total space = %ldn",
- pool_id, mem->total_space_allocated);
- for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
- lhdr_ptr = lhdr_ptr->hdr.next) {
- fprintf(stderr, " Large chunk used %ldn",
- (long) lhdr_ptr->hdr.bytes_used);
- }
- for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
- shdr_ptr = shdr_ptr->hdr.next) {
- fprintf(stderr, " Small chunk used %ld free %ldn",
- (long) shdr_ptr->hdr.bytes_used,
- (long) shdr_ptr->hdr.bytes_left);
- }
- }
- #endif /* MEM_STATS */
- LOCAL void
- out_of_memory (j_common_ptr cinfo, int which)
- /* Report an out-of-memory error and stop execution */
- /* If we compiled MEM_STATS support, report alloc requests before dying */
- {
- #ifdef MEM_STATS
- cinfo->err->trace_level = 2; /* force self_destruct to report stats */
- #endif
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
- }
- /*
- * Allocation of "small" objects.
- *
- * For these, we use pooled storage. When a new pool must be created,
- * we try to get enough space for the current request plus a "slop" factor,
- * where the slop will be the amount of leftover space in the new pool.
- * The speed vs. space tradeoff is largely determined by the slop values.
- * A different slop value is provided for each pool class (lifetime),
- * and we also distinguish the first pool of a class from later ones.
- * NOTE: the values given work fairly well on both 16- and 32-bit-int
- * machines, but may be too small if longs are 64 bits or more.
- */
- static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
- {
- 1600, /* first PERMANENT pool */
- 16000 /* first IMAGE pool */
- };
- static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
- {
- 0, /* additional PERMANENT pools */
- 5000 /* additional IMAGE pools */
- };
- #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
- METHODDEF void *
- alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
- /* Allocate a "small" object */
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr hdr_ptr, prev_hdr_ptr;
- char * data_ptr;
- size_t odd_bytes, min_request, slop;
- /* Check for unsatisfiable request (do now to ensure no overflow below) */
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
- out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
- if (odd_bytes > 0)
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
- /* See if space is available in any existing pool */
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
- prev_hdr_ptr = NULL;
- hdr_ptr = mem->small_list[pool_id];
- while (hdr_ptr != NULL) {
- if (hdr_ptr->hdr.bytes_left >= sizeofobject)
- break; /* found pool with enough space */
- prev_hdr_ptr = hdr_ptr;
- hdr_ptr = hdr_ptr->hdr.next;
- }
- /* Time to make a new pool? */
- if (hdr_ptr == NULL) {
- /* min_request is what we need now, slop is what will be leftover */
- min_request = sizeofobject + SIZEOF(small_pool_hdr);
- if (prev_hdr_ptr == NULL) /* first pool in class? */
- slop = first_pool_slop[pool_id];
- else
- slop = extra_pool_slop[pool_id];
- /* Don't ask for more than MAX_ALLOC_CHUNK */
- if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
- slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
- /* Try to get space, if fail reduce slop and try again */
- for (;;) {
- hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
- if (hdr_ptr != NULL)
- break;
- slop /= 2;
- if (slop < MIN_SLOP) /* give up when it gets real small */
- out_of_memory(cinfo, 2); /* jpeg_get_small failed */
- }
- mem->total_space_allocated += min_request + slop;
- /* Success, initialize the new pool header and add to end of list */
- hdr_ptr->hdr.next = NULL;
- hdr_ptr->hdr.bytes_used = 0;
- hdr_ptr->hdr.bytes_left = sizeofobject + slop;
- if (prev_hdr_ptr == NULL) /* first pool in class? */
- mem->small_list[pool_id] = hdr_ptr;
- else
- prev_hdr_ptr->hdr.next = hdr_ptr;
- }
- /* OK, allocate the object from the current pool */
- data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
- data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
- hdr_ptr->hdr.bytes_used += sizeofobject;
- hdr_ptr->hdr.bytes_left -= sizeofobject;
- return (void *) data_ptr;
- }
- /*
- * Allocation of "large" objects.
- *
- * The external semantics of these are the same as "small" objects,
- * except that FAR pointers are used on 80x86. However the pool
- * management heuristics are quite different. We assume that each
- * request is large enough that it may as well be passed directly to
- * jpeg_get_large; the pool management just links everything together
- * so that we can free it all on demand.
- * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
- * structures. The routines that create these structures (see below)
- * deliberately bunch rows together to ensure a large request size.
- */
- METHODDEF void FAR *
- alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
- /* Allocate a "large" object */
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- large_pool_ptr hdr_ptr;
- size_t odd_bytes;
- /* Check for unsatisfiable request (do now to ensure no overflow below) */
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
- out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
- if (odd_bytes > 0)
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
- /* Always make a new pool */
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
- hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
- SIZEOF(large_pool_hdr));
- if (hdr_ptr == NULL)
- out_of_memory(cinfo, 4); /* jpeg_get_large failed */
- mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
- /* Success, initialize the new pool header and add to list */
- hdr_ptr->hdr.next = mem->large_list[pool_id];
- /* We maintain space counts in each pool header for statistical purposes,
- * even though they are not needed for allocation.
- */
- hdr_ptr->hdr.bytes_used = sizeofobject;
- hdr_ptr->hdr.bytes_left = 0;
- mem->large_list[pool_id] = hdr_ptr;
- return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
- }
- /*
- * Creation of 2-D sample arrays.
- * The pointers are in near heap, the samples themselves in FAR heap.
- *
- * To minimize allocation overhead and to allow I/O of large contiguous
- * blocks, we allocate the sample rows in groups of as many rows as possible
- * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
- * NB: the virtual array control routines, later in this file, know about
- * this chunking of rows. The rowsperchunk value is left in the mem manager
- * object so that it can be saved away if this sarray is the workspace for
- * a virtual array.
- */
- METHODDEF JSAMPARRAY
- alloc_sarray (j_common_ptr cinfo, int pool_id,
- JDIMENSION samplesperrow, JDIMENSION numrows)
- /* Allocate a 2-D sample array */
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- JSAMPARRAY result;
- JSAMPROW workspace;
- JDIMENSION rowsperchunk, currow, i;
- long ltemp;
- /* Calculate max # of rows allowed in one allocation chunk */
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
- ((long) samplesperrow * SIZEOF(JSAMPLE));
- if (ltemp <= 0)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
- if (ltemp < (long) numrows)
- rowsperchunk = (JDIMENSION) ltemp;
- else
- rowsperchunk = numrows;
- mem->last_rowsperchunk = rowsperchunk;
- /* Get space for row pointers (small object) */
- result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
- (size_t) (numrows * SIZEOF(JSAMPROW)));
- /* Get the rows themselves (large objects) */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
- (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
- * SIZEOF(JSAMPLE)));
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += samplesperrow;
- }
- }
- return result;
- }
- /*
- * Creation of 2-D coefficient-block arrays.
- * This is essentially the same as the code for sample arrays, above.
- */
- METHODDEF JBLOCKARRAY
- alloc_barray (j_common_ptr cinfo, int pool_id,
- JDIMENSION blocksperrow, JDIMENSION numrows)
- /* Allocate a 2-D coefficient-block array */
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- JBLOCKARRAY result;
- JBLOCKROW workspace;
- JDIMENSION rowsperchunk, currow, i;
- long ltemp;
- /* Calculate max # of rows allowed in one allocation chunk */
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
- ((long) blocksperrow * SIZEOF(JBLOCK));
- if (ltemp <= 0)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
- if (ltemp < (long) numrows)
- rowsperchunk = (JDIMENSION) ltemp;
- else
- rowsperchunk = numrows;
- mem->last_rowsperchunk = rowsperchunk;
- /* Get space for row pointers (small object) */
- result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
- (size_t) (numrows * SIZEOF(JBLOCKROW)));
- /* Get the rows themselves (large objects) */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
- (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
- * SIZEOF(JBLOCK)));
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += blocksperrow;
- }
- }
- return result;
- }
- /*
- * About virtual array management:
- *
- * To allow machines with limited memory to handle large images, all
- * processing in the JPEG system is done a few pixel or block rows at a time.
- * The above "normal" array routines are only used to allocate strip buffers
- * (as wide as the image, but just a few rows high).
- * In some cases multiple passes must be made over the data. In these
- * cases the virtual array routines are used. The array is still accessed
- * a strip at a time, but the memory manager must save the whole array
- * for repeated accesses. The intended implementation is that there is
- * a strip buffer in memory (as high as is possible given the desired memory
- * limit), plus a backing file that holds the rest of the array.
- *
- * The request_virt_array routines are told the total size of the image and
- * the unit height, which is the number of rows that will be accessed at once;
- * the in-memory buffer should be made a multiple of this height for best
- * efficiency.
- *
- * The request routines create control blocks but not the in-memory buffers.
- * That is postponed until realize_virt_arrays is called. At that time the
- * total amount of space needed is known (approximately, anyway), so free
- * memory can be divided up fairly.
- *
- * The access_virt_array routines are responsible for making a specific strip
- * area accessible (after reading or writing the backing file, if necessary).
- * Note that the access routines are told whether the caller intends to modify
- * the accessed strip; during a read-only pass this saves having to rewrite
- * data to disk.
- *
- * The typical access pattern is one top-to-bottom pass to write the data,
- * followed by one or more read-only top-to-bottom passes. However, other
- * access patterns may occur while reading. For example, translation of image
- * formats that use bottom-to-top scan order will require bottom-to-top read
- * passes. The memory manager need not support multiple write passes nor
- * funny write orders (meaning that rearranging rows must be handled while
- * reading data out of the virtual array, not while putting it in). THIS WILL
- * PROBABLY NEED TO CHANGE ... will need multiple write passes for progressive
- * JPEG decoding.
- *
- * In current usage, the access requests are always for nonoverlapping strips;
- * that is, successive access start_row numbers always differ by exactly the
- * unitheight. This allows fairly simple buffer dump/reload logic if the
- * in-memory buffer is made a multiple of the unitheight. The code below
- * would work with overlapping access requests, but not very efficiently.
- */
- METHODDEF jvirt_sarray_ptr
- request_virt_sarray (j_common_ptr cinfo, int pool_id,
- JDIMENSION samplesperrow, JDIMENSION numrows,
- JDIMENSION unitheight)
- /* Request a virtual 2-D sample array */
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- jvirt_sarray_ptr result;
- /* Only IMAGE-lifetime virtual arrays are currently supported */
- if (pool_id != JPOOL_IMAGE)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
- /* Round array size up to a multiple of unitheight */
- numrows = (JDIMENSION) jround_up((long) numrows, (long) unitheight);
- /* get control block */
- result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
- SIZEOF(struct jvirt_sarray_control));
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->rows_in_array = numrows;
- result->samplesperrow = samplesperrow;
- result->unitheight = unitheight;
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
- mem->virt_sarray_list = result;
- return result;
- }
- METHODDEF jvirt_barray_ptr
- request_virt_barray (j_common_ptr cinfo, int pool_id,
- JDIMENSION blocksperrow, JDIMENSION numrows,
- JDIMENSION unitheight)
- /* Request a virtual 2-D coefficient-block array */
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- jvirt_barray_ptr result;
- /* Only IMAGE-lifetime virtual arrays are currently supported */
- if (pool_id != JPOOL_IMAGE)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
- /* Round array size up to a multiple of unitheight */
- numrows = (JDIMENSION) jround_up((long) numrows, (long) unitheight);
- /* get control block */
- result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
- SIZEOF(struct jvirt_barray_control));
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->rows_in_array = numrows;
- result->blocksperrow = blocksperrow;
- result->unitheight = unitheight;
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = mem->virt_barray_list; /* add to list of virtual arrays */
- mem->virt_barray_list = result;
- return result;
- }
- METHODDEF void
- realize_virt_arrays (j_common_ptr cinfo)
- /* Allocate the in-memory buffers for any unrealized virtual arrays */
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- long space_per_unitheight, maximum_space, avail_mem;
- long unitheights, max_unitheights;
- jvirt_sarray_ptr sptr;
- jvirt_barray_ptr bptr;
- /* Compute the minimum space needed (unitheight rows in each buffer)
- * and the maximum space needed (full image height in each buffer).
- * These may be of use to the system-dependent jpeg_mem_available routine.
- */
- space_per_unitheight = 0;
- maximum_space = 0;
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_unitheight += (long) sptr->unitheight *
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
- maximum_space += (long) sptr->rows_in_array *
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
- }
- }
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_unitheight += (long) bptr->unitheight *
- (long) bptr->blocksperrow * SIZEOF(JBLOCK);
- maximum_space += (long) bptr->rows_in_array *
- (long) bptr->blocksperrow * SIZEOF(JBLOCK);
- }
- }
- if (space_per_unitheight <= 0)
- return; /* no unrealized arrays, no work */
- /* Determine amount of memory to actually use; this is system-dependent. */
- avail_mem = jpeg_mem_available(cinfo, space_per_unitheight, maximum_space,
- mem->total_space_allocated);
- /* If the maximum space needed is available, make all the buffers full
- * height; otherwise parcel it out with the same number of unitheights
- * in each buffer.
- */
- if (avail_mem >= maximum_space)
- max_unitheights = 1000000000L;
- else {
- max_unitheights = avail_mem / space_per_unitheight;
- /* If there doesn't seem to be enough space, try to get the minimum
- * anyway. This allows a "stub" implementation of jpeg_mem_available().
- */
- if (max_unitheights <= 0)
- max_unitheights = 1;
- }
- /* Allocate the in-memory buffers and initialize backing store as needed. */
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- unitheights = ((long) sptr->rows_in_array - 1L) / sptr->unitheight + 1L;
- if (unitheights <= max_unitheights) {
- /* This buffer fits in memory */
- sptr->rows_in_mem = sptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- sptr->rows_in_mem = (JDIMENSION) (max_unitheights * sptr->unitheight);
- jpeg_open_backing_store(cinfo, & sptr->b_s_info,
- (long) sptr->rows_in_array *
- (long) sptr->samplesperrow *
- (long) SIZEOF(JSAMPLE));
- sptr->b_s_open = TRUE;
- }
- sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
- sptr->samplesperrow, sptr->rows_in_mem);
- sptr->rowsperchunk = mem->last_rowsperchunk;
- sptr->cur_start_row = 0;
- sptr->dirty = FALSE;
- }
- }
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- unitheights = ((long) bptr->rows_in_array - 1L) / bptr->unitheight + 1L;
- if (unitheights <= max_unitheights) {
- /* This buffer fits in memory */
- bptr->rows_in_mem = bptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- bptr->rows_in_mem = (JDIMENSION) (max_unitheights * bptr->unitheight);
- jpeg_open_backing_store(cinfo, & bptr->b_s_info,
- (long) bptr->rows_in_array *
- (long) bptr->blocksperrow *
- (long) SIZEOF(JBLOCK));
- bptr->b_s_open = TRUE;
- }
- bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
- bptr->blocksperrow, bptr->rows_in_mem);
- bptr->rowsperchunk = mem->last_rowsperchunk;
- bptr->cur_start_row = 0;
- bptr->dirty = FALSE;
- }
- }
- }
- LOCAL void
- do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
- /* Do backing store read or write of a virtual sample array */
- {
- long bytesperrow, file_offset, byte_count, rows, i;
- bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
- /* Transfer no more than fits in file */
- rows = MIN(rows, (long) ptr->rows_in_array -
- ((long) ptr->cur_start_row + i));
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
- }
- LOCAL void
- do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
- /* Do backing store read or write of a virtual coefficient-block array */
- {
- long bytesperrow, file_offset, byte_count, rows, i;
- bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
- /* Transfer no more than fits in file */
- rows = MIN(rows, (long) ptr->rows_in_array -
- ((long) ptr->cur_start_row + i));
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
- }
- METHODDEF JSAMPARRAY
- access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
- JDIMENSION start_row, boolean writable)
- /* Access the part of a virtual sample array starting at start_row */
- /* and extending for ptr->unitheight rows. writable is true if */
- /* caller intends to modify the accessed area. */
- {
- /* debugging check */
- if (start_row >= ptr->rows_in_array || ptr->mem_buffer == NULL)
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- start_row+ptr->unitheight > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(cinfo, JERR_VIRTUAL_BUG);
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_sarray_io(cinfo, ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target area is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- /* use long arithmetic here to avoid overflow & unsigned problems */
- long ltemp;
- ltemp = (long) start_row + (long) ptr->unitheight -
- (long) ptr->rows_in_mem;
- if (ltemp < 0)
- ltemp = 0; /* don't fall off front end of file */
- ptr->cur_start_row = (JDIMENSION) ltemp;
- }
- /* If reading, read in the selected part of the array.
- * If we are writing, we need not pre-read the selected portion,
- * since the access sequence constraints ensure it would be garbage.
- */
- if (! writable) {
- do_sarray_io(cinfo, ptr, FALSE);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
- }
- METHODDEF JBLOCKARRAY
- access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
- JDIMENSION start_row, boolean writable)
- /* Access the part of a virtual block array starting at start_row */
- /* and extending for ptr->unitheight rows. writable is true if */
- /* caller intends to modify the accessed area. */
- {
- /* debugging check */
- if (start_row >= ptr->rows_in_array || ptr->mem_buffer == NULL)
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- start_row+ptr->unitheight > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(cinfo, JERR_VIRTUAL_BUG);
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_barray_io(cinfo, ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target area is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- /* use long arithmetic here to avoid overflow & unsigned problems */
- long ltemp;
- ltemp = (long) start_row + (long) ptr->unitheight -
- (long) ptr->rows_in_mem;
- if (ltemp < 0)
- ltemp = 0; /* don't fall off front end of file */
- ptr->cur_start_row = (JDIMENSION) ltemp;
- }
- /* If reading, read in the selected part of the array.
- * If we are writing, we need not pre-read the selected portion,
- * since the access sequence constraints ensure it would be garbage.
- */
- if (! writable) {
- do_barray_io(cinfo, ptr, FALSE);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
- }
- /*
- * Release all objects belonging to a specified pool.
- */
- METHODDEF void
- free_pool (j_common_ptr cinfo, int pool_id)
- {
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr shdr_ptr;
- large_pool_ptr lhdr_ptr;
- size_t space_freed;
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
- #ifdef MEM_STATS
- if (cinfo->err->trace_level > 1)
- print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
- #endif
- /* If freeing IMAGE pool, close any virtual arrays first */
- if (pool_id == JPOOL_IMAGE) {
- jvirt_sarray_ptr sptr;
- jvirt_barray_ptr bptr;
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->b_s_open) { /* there may be no backing store */
- sptr->b_s_open = FALSE; /* prevent recursive close if error */
- (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
- }
- }
- mem->virt_sarray_list = NULL;
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->b_s_open) { /* there may be no backing store */
- bptr->b_s_open = FALSE; /* prevent recursive close if error */
- (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
- }
- }
- mem->virt_barray_list = NULL;
- }
- /* Release large objects */
- lhdr_ptr = mem->large_list[pool_id];
- mem->large_list[pool_id] = NULL;
- while (lhdr_ptr != NULL) {
- large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
- space_freed = lhdr_ptr->hdr.bytes_used +
- lhdr_ptr->hdr.bytes_left +
- SIZEOF(large_pool_hdr);
- jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
- mem->total_space_allocated -= space_freed;
- lhdr_ptr = next_lhdr_ptr;
- }
- /* Release small objects */
- shdr_ptr = mem->small_list[pool_id];
- mem->small_list[pool_id] = NULL;
- while (shdr_ptr != NULL) {
- small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
- space_freed = shdr_ptr->hdr.bytes_used +
- shdr_ptr->hdr.bytes_left +
- SIZEOF(small_pool_hdr);
- jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
- mem->total_space_allocated -= space_freed;
- shdr_ptr = next_shdr_ptr;
- }
- }
- /*
- * Close up shop entirely.
- * Note that this cannot be called unless cinfo->mem is non-NULL.
- */
- METHODDEF void
- self_destruct (j_common_ptr cinfo)
- {
- int pool;
- /* Close all backing store, release all memory.
- * Releasing pools in reverse order might help avoid fragmentation
- * with some (brain-damaged) malloc libraries.
- */
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
- free_pool(cinfo, pool);
- }
- /* Release the memory manager control block too. */
- jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
- cinfo->mem = NULL; /* ensures I will be called only once */
- jpeg_mem_term(cinfo); /* system-dependent cleanup */
- }
- /*
- * Memory manager initialization.
- * When this is called, only the error manager pointer is valid in cinfo!
- */
- GLOBAL void
- jinit_memory_mgr (j_common_ptr cinfo)
- {
- my_mem_ptr mem;
- long max_to_use;
- int pool;
- size_t test_mac;
- cinfo->mem = NULL; /* for safety if init fails */
- /* Check for configuration errors.
- * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
- * doesn't reflect any real hardware alignment requirement.
- * The test is a little tricky: for X>0, X and X-1 have no one-bits
- * in common if and only if X is a power of 2, ie has only one one-bit.
- * Some compilers may give an "unreachable code" warning here; ignore it.
- */
- if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
- ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
- /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
- * a multiple of SIZEOF(ALIGN_TYPE).
- * Again, an "unreachable code" warning may be ignored here.
- * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
- */
- test_mac = (size_t) MAX_ALLOC_CHUNK;
- if ((long) test_mac != MAX_ALLOC_CHUNK ||
- (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
- ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
- max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
- /* Attempt to allocate memory manager's control block */
- mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
- if (mem == NULL) {
- jpeg_mem_term(cinfo); /* system-dependent cleanup */
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
- }
- /* OK, fill in the method pointers */
- mem->pub.alloc_small = alloc_small;
- mem->pub.alloc_large = alloc_large;
- mem->pub.alloc_sarray = alloc_sarray;
- mem->pub.alloc_barray = alloc_barray;
- mem->pub.request_virt_sarray = request_virt_sarray;
- mem->pub.request_virt_barray = request_virt_barray;
- mem->pub.realize_virt_arrays = realize_virt_arrays;
- mem->pub.access_virt_sarray = access_virt_sarray;
- mem->pub.access_virt_barray = access_virt_barray;
- mem->pub.free_pool = free_pool;
- mem->pub.self_destruct = self_destruct;
- /* Initialize working state */
- mem->pub.max_memory_to_use = max_to_use;
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
- mem->small_list[pool] = NULL;
- mem->large_list[pool] = NULL;
- }
- mem->virt_sarray_list = NULL;
- mem->virt_barray_list = NULL;
- mem->total_space_allocated = SIZEOF(my_memory_mgr);
- /* Declare ourselves open for business */
- cinfo->mem = & mem->pub;
- /* Check for an environment variable JPEGMEM; if found, override the
- * default max_memory setting from jpeg_mem_init. Note that the
- * surrounding application may again override this value.
- * If your system doesn't support getenv(), define NO_GETENV to disable
- * this feature.
- */
- #ifndef NO_GETENV
- { char * memenv;
- if ((memenv = getenv("JPEGMEM")) != NULL) {
- char ch = 'x';
- if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
- if (ch == 'm' || ch == 'M')
- max_to_use *= 1000L;
- mem->pub.max_memory_to_use = max_to_use * 1000L;
- }
- }
- }
- #endif
- }