JDHUFF.C
资源名称:Cimage.zip [点击查看]
上传用户:wep9318
上传日期:2007-01-07
资源大小:893k
文件大小:22k
源码类别:
图片显示
开发平台:
Visual C++
- /*
- * jdhuff.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy decoding routines.
- *
- * Much of the complexity here has to do with supporting input suspension.
- * If the data source module demands suspension, we want to be able to back
- * up to the start of the current MCU. To do this, we copy state variables
- * into local working storage, and update them back to the permanent JPEG
- * objects only upon successful completion of an MCU.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- /* Derived data constructed for each Huffman table */
- #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
- typedef struct {
- /* Basic tables: (element [0] of each array is unused) */
- INT32 mincode[17]; /* smallest code of length k */
- INT32 maxcode[18]; /* largest code of length k (-1 if none) */
- /* (maxcode[17] is a sentinel to ensure huff_DECODE terminates) */
- int valptr[17]; /* huffval[] index of 1st symbol of length k */
- /* Back link to public Huffman table (needed only in slow_DECODE) */
- JHUFF_TBL *pub;
- /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
- * the input data stream. If the next Huffman code is no more
- * than HUFF_LOOKAHEAD bits long, we can obtain its length and
- * the corresponding symbol directly from these tables.
- */
- int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
- UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
- } D_DERIVED_TBL;
- /* Expanded entropy decoder object for Huffman decoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
- typedef struct {
- INT32 get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
- } savable_state;
- /* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
- #ifndef NO_STRUCT_ASSIGN
- #define ASSIGN_STATE(dest,src) ((dest) = (src))
- #else
- #if MAX_COMPS_IN_SCAN == 4
- #define ASSIGN_STATE(dest,src)
- ((dest).get_buffer = (src).get_buffer,
- (dest).bits_left = (src).bits_left,
- (dest).last_dc_val[0] = (src).last_dc_val[0],
- (dest).last_dc_val[1] = (src).last_dc_val[1],
- (dest).last_dc_val[2] = (src).last_dc_val[2],
- (dest).last_dc_val[3] = (src).last_dc_val[3])
- #endif
- #endif
- typedef struct {
- struct jpeg_entropy_decoder pub; /* public fields */
- savable_state saved; /* Bit buffer & DC state at start of MCU */
- /* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
- boolean printed_eod; /* flag to suppress extra end-of-data msgs */
- /* Pointers to derived tables (these workspaces have image lifespan) */
- D_DERIVED_TBL * dc_derived_tbls[NUM_HUFF_TBLS];
- D_DERIVED_TBL * ac_derived_tbls[NUM_HUFF_TBLS];
- } huff_entropy_decoder;
- typedef huff_entropy_decoder * huff_entropy_ptr;
- /* Working state while scanning an MCU.
- * This struct contains all the fields that are needed by subroutines.
- */
- typedef struct {
- int unread_marker; /* nonzero if we have hit a marker */
- const JOCTET * next_input_byte; /* => next byte to read from source */
- size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
- savable_state cur; /* Current bit buffer & DC state */
- j_decompress_ptr cinfo; /* fill_bit_buffer needs access to this */
- } working_state;
- /* Forward declarations */
- LOCAL void fix_huff_tbl JPP((j_decompress_ptr cinfo, JHUFF_TBL * htbl,
- D_DERIVED_TBL ** pdtbl));
- /*
- * Initialize for a Huffman-compressed scan.
- */
- METHODDEF void
- start_pass_huff_decoder (j_decompress_ptr cinfo)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, dctbl, actbl;
- jpeg_component_info * compptr;
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- dctbl = compptr->dc_tbl_no;
- actbl = compptr->ac_tbl_no;
- /* Make sure requested tables are present */
- if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS ||
- cinfo->dc_huff_tbl_ptrs[dctbl] == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
- if (actbl < 0 || actbl >= NUM_HUFF_TBLS ||
- cinfo->ac_huff_tbl_ptrs[actbl] == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- fix_huff_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
- & entropy->dc_derived_tbls[dctbl]);
- fix_huff_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
- & entropy->ac_derived_tbls[actbl]);
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
- /* Initialize private state variables */
- entropy->saved.bits_left = 0;
- entropy->printed_eod = FALSE;
- /* Initialize restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
- }
- LOCAL void
- fix_huff_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl, D_DERIVED_TBL ** pdtbl)
- /* Compute the derived values for a Huffman table */
- {
- D_DERIVED_TBL *dtbl;
- int p, i, l, si;
- int lookbits, ctr;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (D_DERIVED_TBL *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(D_DERIVED_TBL));
- dtbl = *pdtbl;
- dtbl->pub = htbl; /* fill in back link */
- /* Figure C.1: make table of Huffman code length for each symbol */
- /* Note that this is in code-length order. */
- p = 0;
- for (l = 1; l <= 16; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- /* Figure C.2: generate the codes themselves */
- /* Note that this is in code-length order. */
- code = 0;
- si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == si) {
- huffcode[p++] = code;
- code++;
- }
- code <<= 1;
- si++;
- }
- /* Figure F.15: generate decoding tables for bit-sequential decoding */
- p = 0;
- for (l = 1; l <= 16; l++) {
- if (htbl->bits[l]) {
- dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */
- dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */
- p += htbl->bits[l];
- dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
- } else {
- dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
- }
- }
- dtbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */
- /* Compute lookahead tables to speed up decoding.
- * First we set all the table entries to 0, indicating "too long";
- * then we iterate through the Huffman codes that are short enough and
- * fill in all the entries that correspond to bit sequences starting
- * with that code.
- */
- MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
- p = 0;
- for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
- /* l = current code's length, p = its index in huffcode[] & huffval[]. */
- /* Generate left-justified code followed by all possible bit sequences */
- lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
- for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
- dtbl->look_nbits[lookbits] = l;
- dtbl->look_sym[lookbits] = htbl->huffval[p];
- lookbits++;
- }
- }
- }
- }
- /*
- * Code for extracting the next N bits from the input stream.
- * (N never exceeds 15 for JPEG data.)
- * This needs to go as fast as possible!
- *
- * We read source bytes into get_buffer and dole out bits as needed.
- * If get_buffer already contains enough bits, they are fetched in-line
- * by the macros check_bit_buffer and get_bits. When there aren't enough
- * bits, fill_bit_buffer is called; it will attempt to fill get_buffer to
- * the "high water mark" (not just to the number of bits needed; this reduces
- * the function-call overhead cost of entering fill_bit_buffer).
- * Note that fill_bit_buffer may return FALSE to indicate suspension.
- * On TRUE return, fill_bit_buffer guarantees that get_buffer contains
- * at least the requested number of bits --- dummy zeroes are inserted if
- * necessary.
- *
- * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
- * of get_buffer to be used. (On machines with wider words, an even larger
- * buffer could be used.) However, on some machines 32-bit shifts are
- * quite slow and take time proportional to the number of places shifted.
- * (This is true with most PC compilers, for instance.) In this case it may
- * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
- * average shift distance at the cost of more calls to fill_bit_buffer.
- */
- #ifdef SLOW_SHIFT_32
- #define MIN_GET_BITS 15 /* minimum allowable value */
- #else
- #define MIN_GET_BITS 25 /* max value for 32-bit get_buffer */
- #endif
- LOCAL boolean
- fill_bit_buffer (working_state * state, int nbits)
- /* Load up the bit buffer to a depth of at least nbits */
- {
- /* Copy heavily used state fields into locals (hopefully registers) */
- register const JOCTET * next_input_byte = state->next_input_byte;
- register size_t bytes_in_buffer = state->bytes_in_buffer;
- register INT32 get_buffer = state->cur.get_buffer;
- register int bits_left = state->cur.bits_left;
- register int c;
- /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
- /* (It is assumed that no request will be for more than that many bits.) */
- while (bits_left < MIN_GET_BITS) {
- /* Attempt to read a byte */
- if (state->unread_marker != 0)
- goto no_more_data; /* can't advance past a marker */
- if (bytes_in_buffer == 0) {
- if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
- return FALSE;
- next_input_byte = state->cinfo->src->next_input_byte;
- bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- /* If it's 0xFF, check and discard stuffed zero byte */
- if (c == 0xFF) {
- do {
- if (bytes_in_buffer == 0) {
- if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
- return FALSE;
- next_input_byte = state->cinfo->src->next_input_byte;
- bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- } while (c == 0xFF);
- if (c == 0) {
- /* Found FF/00, which represents an FF data byte */
- c = 0xFF;
- } else {
- /* Oops, it's actually a marker indicating end of compressed data. */
- /* Better put it back for use later */
- state->unread_marker = c;
- no_more_data:
- /* There should be enough bits still left in the data segment; */
- /* if so, just break out of the outer while loop. */
- if (bits_left >= nbits)
- break;
- /* Uh-oh. Report corrupted data to user and stuff zeroes into
- * the data stream, so that we can produce some kind of image.
- * Note that this will be repeated for each byte demanded for the
- * rest of the segment; this is slow but not unreasonably so.
- * The main thing is to avoid getting a zillion warnings, hence
- * we use a flag to ensure that only one warning appears.
- */
- if (! ((huff_entropy_ptr) state->cinfo->entropy)->printed_eod) {
- WARNMS(state->cinfo, JWRN_HIT_MARKER);
- ((huff_entropy_ptr) state->cinfo->entropy)->printed_eod = TRUE;
- }
- c = 0; /* insert a zero byte into bit buffer */
- }
- }
- /* OK, load c into get_buffer */
- get_buffer = (get_buffer << 8) | c;
- bits_left += 8;
- }
- /* Unload the local registers */
- state->next_input_byte = next_input_byte;
- state->bytes_in_buffer = bytes_in_buffer;
- state->cur.get_buffer = get_buffer;
- state->cur.bits_left = bits_left;
- return TRUE;
- }
- /*
- * These macros provide the in-line portion of bit fetching.
- * Use check_bit_buffer to ensure there are N bits in get_buffer
- * before using get_bits, peek_bits, or drop_bits.
- * check_bit_buffer(state,n,action);
- * Ensure there are N bits in get_buffer; if suspend, take action.
- * val = get_bits(state,n);
- * Fetch next N bits.
- * val = peek_bits(state,n);
- * Fetch next N bits without removing them from the buffer.
- * drop_bits(state,n);
- * Discard next N bits.
- * The value N should be a simple variable, not an expression, because it
- * is evaluated multiple times.
- */
- #define check_bit_buffer(state,nbits,action)
- { if ((state).cur.bits_left < (nbits))
- if (! fill_bit_buffer(&(state), nbits))
- { action; } }
- #define get_bits(state,nbits)
- (((int) ((state).cur.get_buffer >> ((state).cur.bits_left -= (nbits)))) & ((1<<(nbits))-1))
- #define peek_bits(state,nbits)
- (((int) ((state).cur.get_buffer >> ((state).cur.bits_left - (nbits)))) & ((1<<(nbits))-1))
- #define drop_bits(state,nbits)
- ((state).cur.bits_left -= (nbits))
- /*
- * Code for extracting next Huffman-coded symbol from input bit stream.
- * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
- * without looping. Usually, more than 95% of the Huffman codes will be 8
- * or fewer bits long. The few overlength codes are handled with a loop.
- * The primary case is made a macro for speed reasons; the secondary
- * routine slow_DECODE is rarely entered and need not be inline code.
- *
- * Notes about the huff_DECODE macro:
- * 1. Near the end of the data segment, we may fail to get enough bits
- * for a lookahead. In that case, we do it the hard way.
- * 2. If the lookahead table contains no entry, the next code must be
- * more than HUFF_LOOKAHEAD bits long.
- * 3. slow_DECODE returns -1 if forced to suspend.
- */
- #define huff_DECODE(result,state,htbl,donelabel)
- { if (state.cur.bits_left < HUFF_LOOKAHEAD) {
- if (! fill_bit_buffer(&state, 0)) return FALSE;
- if (state.cur.bits_left < HUFF_LOOKAHEAD) {
- if ((result = slow_DECODE(&state, htbl, 1)) < 0) return FALSE;
- goto donelabel;
- }
- }
- { register int nb, look;
- look = peek_bits(state, HUFF_LOOKAHEAD);
- if ((nb = htbl->look_nbits[look]) != 0) {
- drop_bits(state, nb);
- result = htbl->look_sym[look];
- } else {
- if ((result = slow_DECODE(&state, htbl, HUFF_LOOKAHEAD+1)) < 0)
- return FALSE;
- }
- }
- donelabel:;
- }
- LOCAL int
- slow_DECODE (working_state * state, D_DERIVED_TBL * htbl, int min_bits)
- {
- register int l = min_bits;
- register INT32 code;
- /* huff_DECODE has determined that the code is at least min_bits */
- /* bits long, so fetch that many bits in one swoop. */
- check_bit_buffer(*state, l, return -1);
- code = get_bits(*state, l);
- /* Collect the rest of the Huffman code one bit at a time. */
- /* This is per Figure F.16 in the JPEG spec. */
- while (code > htbl->maxcode[l]) {
- code <<= 1;
- check_bit_buffer(*state, 1, return -1);
- code |= get_bits(*state, 1);
- l++;
- }
- /* With garbage input we may reach the sentinel value l = 17. */
- if (l > 16) {
- WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
- return 0; /* fake a zero as the safest result */
- }
- return htbl->pub->huffval[ htbl->valptr[l] +
- ((int) (code - htbl->mincode[l])) ];
- }
- /* Figure F.12: extend sign bit.
- * On some machines, a shift and add will be faster than a table lookup.
- */
- #ifdef AVOID_TABLES
- #define huff_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
- #else
- #define huff_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
- static const int extend_test[16] = /* entry n is 2**(n-1) */
- { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
- 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
- static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
- { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
- ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
- ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
- ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
- #endif /* AVOID_TABLES */
- /*
- * Check for a restart marker & resynchronize decoder.
- * Returns FALSE if must suspend.
- */
- LOCAL boolean
- process_restart (j_decompress_ptr cinfo)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci;
- /* Throw away any unused bits remaining in bit buffer; */
- /* include any full bytes in next_marker's count of discarded bytes */
- cinfo->marker->discarded_bytes += entropy->saved.bits_left / 8;
- entropy->saved.bits_left = 0;
- /* Advance past the RSTn marker */
- if (! (*cinfo->marker->read_restart_marker) (cinfo))
- return FALSE;
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- /* Reset restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->printed_eod = FALSE; /* next segment can get another warning */
- return TRUE;
- }
- /* ZAG[i] is the natural-order position of the i'th element of zigzag order.
- * If the incoming data is corrupted, decode_mcu could attempt to
- * reference values beyond the end of the array. To avoid a wild store,
- * we put some extra zeroes after the real entries.
- */
- static const int ZAG[DCTSIZE2+16] = {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
- 0, 0, 0, 0, 0, 0, 0, 0, /* extra entries in case k>63 below */
- 0, 0, 0, 0, 0, 0, 0, 0
- };
- /*
- * Decode and return one MCU's worth of Huffman-compressed coefficients.
- * The coefficients are reordered from zigzag order into natural array order,
- * but are not dequantized.
- *
- * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
- * (Wholesale zeroing is usually a little faster than retail...)
- *
- * Returns FALSE if data source requested suspension. In that case no
- * changes have been made to permanent state. (Exception: some output
- * coefficients may already have been assigned. This is harmless for
- * this module, but would not work for decoding progressive JPEG.)
- */
- METHODDEF boolean
- decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
- {
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int s, k, r;
- int blkn, ci;
- JBLOCKROW block;
- working_state state;
- D_DERIVED_TBL * dctbl;
- D_DERIVED_TBL * actbl;
- jpeg_component_info * compptr;
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
- /* Load up working state */
- state.unread_marker = cinfo->unread_marker;
- state.next_input_byte = cinfo->src->next_input_byte;
- state.bytes_in_buffer = cinfo->src->bytes_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
- state.cinfo = cinfo;
- /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
- actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
- /* Decode a single block's worth of coefficients */
- /* Section F.2.2.1: decode the DC coefficient difference */
- huff_DECODE(s, state, dctbl, label1);
- if (s) {
- check_bit_buffer(state, s, return FALSE);
- r = get_bits(state, s);
- s = huff_EXTEND(r, s);
- }
- /* Shortcut if component's values are not interesting */
- if (! compptr->component_needed)
- goto skip_ACs;
- /* Convert DC difference to actual value, update last_dc_val */
- s += state.cur.last_dc_val[ci];
- state.cur.last_dc_val[ci] = s;
- /* Output the DC coefficient (assumes ZAG[0] = 0) */
- (*block)[0] = (JCOEF) s;
- /* Do we need to decode the AC coefficients for this component? */
- if (compptr->DCT_scaled_size > 1) {
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (k = 1; k < DCTSIZE2; k++) {
- huff_DECODE(s, state, actbl, label2);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- check_bit_buffer(state, s, return FALSE);
- r = get_bits(state, s);
- s = huff_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order */
- (*block)[ZAG[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
- } else {
- skip_ACs:
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (k = 1; k < DCTSIZE2; k++) {
- huff_DECODE(s, state, actbl, label3);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- check_bit_buffer(state, s, return FALSE);
- drop_bits(state, s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
- }
- }
- /* Completed MCU, so update state */
- cinfo->unread_marker = state.unread_marker;
- cinfo->src->next_input_byte = state.next_input_byte;
- cinfo->src->bytes_in_buffer = state.bytes_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
- return TRUE;
- }
- /*
- * Module initialization routine for Huffman entropy decoding.
- */
- GLOBAL void
- jinit_huff_decoder (j_decompress_ptr cinfo)
- {
- huff_entropy_ptr entropy;
- int i;
- entropy = (huff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_decoder));
- cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
- entropy->pub.start_pass = start_pass_huff_decoder;
- entropy->pub.decode_mcu = decode_mcu;
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
- }
- }