lopcodes.h
上传用户:yisoukefu
上传日期:2020-08-09
资源大小:39506k
文件大小:8k
- /*
- ** $Id: lopcodes.h,v 1.124 2005/12/02 18:42:08 roberto Exp $
- ** Opcodes for Lua virtual machine
- ** See Copyright Notice in lua.h
- */
- #ifndef lopcodes_h
- #define lopcodes_h
- #include "llimits.h"
- /*===========================================================================
- We assume that instructions are unsigned numbers.
- All instructions have an opcode in the first 6 bits.
- Instructions can have the following fields:
- `A' : 8 bits
- `B' : 9 bits
- `C' : 9 bits
- `Bx' : 18 bits (`B' and `C' together)
- `sBx' : signed Bx
- A signed argument is represented in excess K; that is, the number
- value is the unsigned value minus K. K is exactly the maximum value
- for that argument (so that -max is represented by 0, and +max is
- represented by 2*max), which is half the maximum for the corresponding
- unsigned argument.
- ===========================================================================*/
- enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */
- /*
- ** size and position of opcode arguments.
- */
- #define SIZE_C 9
- #define SIZE_B 9
- #define SIZE_Bx (SIZE_C + SIZE_B)
- #define SIZE_A 8
- #define SIZE_OP 6
- #define POS_OP 0
- #define POS_A (POS_OP + SIZE_OP)
- #define POS_C (POS_A + SIZE_A)
- #define POS_B (POS_C + SIZE_C)
- #define POS_Bx POS_C
- /*
- ** limits for opcode arguments.
- ** we use (signed) int to manipulate most arguments,
- ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
- */
- #if SIZE_Bx < LUAI_BITSINT-1
- #define MAXARG_Bx ((1<<SIZE_Bx)-1)
- #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
- #else
- #define MAXARG_Bx MAX_INT
- #define MAXARG_sBx MAX_INT
- #endif
- #define MAXARG_A ((1<<SIZE_A)-1)
- #define MAXARG_B ((1<<SIZE_B)-1)
- #define MAXARG_C ((1<<SIZE_C)-1)
- /* creates a mask with `n' 1 bits at position `p' */
- #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
- /* creates a mask with `n' 0 bits at position `p' */
- #define MASK0(n,p) (~MASK1(n,p))
- /*
- ** the following macros help to manipulate instructions
- */
- #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
- #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) |
- ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
- #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
- #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) |
- ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
- #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
- #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) |
- ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
- #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
- #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) |
- ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
- #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
- #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) |
- ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
- #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
- #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
- #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP)
- | (cast(Instruction, a)<<POS_A)
- | (cast(Instruction, b)<<POS_B)
- | (cast(Instruction, c)<<POS_C))
- #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP)
- | (cast(Instruction, a)<<POS_A)
- | (cast(Instruction, bc)<<POS_Bx))
- /*
- ** Macros to operate RK indices
- */
- /* this bit 1 means constant (0 means register) */
- #define BITRK (1 << (SIZE_B - 1))
- /* test whether value is a constant */
- #define ISK(x) ((x) & BITRK)
- /* gets the index of the constant */
- #define INDEXK(r) ((int)(r) & ~BITRK)
- #define MAXINDEXRK (BITRK - 1)
- /* code a constant index as a RK value */
- #define RKASK(x) ((x) | BITRK)
- /*
- ** invalid register that fits in 8 bits
- */
- #define NO_REG MAXARG_A
- /*
- ** R(x) - register
- ** Kst(x) - constant (in constant table)
- ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
- */
- /*
- ** grep "ORDER OP" if you change these enums
- */
- typedef enum {
- /*----------------------------------------------------------------------
- name args description
- ------------------------------------------------------------------------*/
- OP_MOVE,/* A B R(A) := R(B) */
- OP_LOADK,/* A Bx R(A) := Kst(Bx) */
- OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
- OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
- OP_GETUPVAL,/* A B R(A) := UpValue[B] */
- OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
- OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
- OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
- OP_SETUPVAL,/* A B UpValue[B] := R(A) */
- OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
- OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
- OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
- OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
- OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
- OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
- OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
- OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
- OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
- OP_UNM,/* A B R(A) := -R(B) */
- OP_NOT,/* A B R(A) := not R(B) */
- OP_LEN,/* A B R(A) := length of R(B) */
- OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
- OP_JMP,/* sBx pc+=sBx */
- OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
- OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
- OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
- OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
- OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
- OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
- OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
- OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
- OP_FORLOOP,/* A sBx R(A)+=R(A+2);
- if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
- OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
- OP_TFORLOOP,/* A C R(A+3), ... ,R(A+3+C) := R(A)(R(A+1), R(A+2));
- if R(A+3) ~= nil then { pc++; R(A+2)=R(A+3); } */
- OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
- OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
- OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
- OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */
- } OpCode;
- #define NUM_OPCODES (cast(int, OP_VARARG) + 1)
- /*===========================================================================
- Notes:
- (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
- and can be 0: OP_CALL then sets `top' to last_result+1, so
- next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
- (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
- set top (like in OP_CALL with C == 0).
- (*) In OP_RETURN, if (B == 0) then return up to `top'
- (*) In OP_SETLIST, if (B == 0) then B = `top';
- if (C == 0) then next `instruction' is real C
- (*) For comparisons, A specifies what condition the test should accept
- (true or false).
- (*) All `skips' (pc++) assume that next instruction is a jump
- ===========================================================================*/
- /*
- ** masks for instruction properties. The format is:
- ** bits 0-1: op mode
- ** bits 2-3: C arg mode
- ** bits 4-5: B arg mode
- ** bit 6: instruction set register A
- ** bit 7: operator is a test
- */
- enum OpArgMask {
- OpArgN, /* argument is not used */
- OpArgU, /* argument is used */
- OpArgR, /* argument is a register or a jump offset */
- OpArgK /* argument is a constant or register/constant */
- };
- LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
- #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
- #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
- #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
- #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
- #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
- LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
- /* number of list items to accumulate before a SETLIST instruction */
- #define LFIELDS_PER_FLUSH 50
- #endif