hkpLimitedHingeConstraintData.h
上传用户:yisoukefu
上传日期:2020-08-09
资源大小:39506k
文件大小:9k
源码类别:
其他游戏
开发平台:
Visual C++
- /*
- *
- * Confidential Information of Telekinesys Research Limited (t/a Havok). Not for disclosure or distribution without Havok's
- * prior written consent. This software contains code, techniques and know-how which is confidential and proprietary to Havok.
- * Level 2 and Level 3 source code contains trade secrets of Havok. Havok Software (C) Copyright 1999-2009 Telekinesys Research Limited t/a Havok. All Rights Reserved. Use of this software is subject to the terms of an end user license agreement.
- *
- */
- #ifndef HK_LIMITED_HINGE_CONSTRAINT_H
- #define HK_LIMITED_HINGE_CONSTRAINT_H
- #include <Physics/Dynamics/Constraint/hkpConstraintData.h>
- #include <Physics/ConstraintSolver/Constraint/Atom/hkpConstraintAtom.h>
- extern const hkClass hkpLimitedHingeConstraintDataClass;
- /// Full hinge constraint with limits and motor.
- ///
- /// By default the motor is disabled. When the motor is enabled friction is automatically disabled.
- class hkpLimitedHingeConstraintData : public hkpConstraintData
- {
- public:
- HK_DECLARE_REFLECTION();
- hkpLimitedHingeConstraintData();
- ~hkpLimitedHingeConstraintData();
- /// Set the data for a Limited Hinge constraint with information given in body space.
- /// param pivotA The constraint pivot point, specified in bodyA space.
- /// param pivotB The constraint pivot point, specified in bodyB space.
- /// param axisA The hinge axis, specified in bodyA space.
- /// param axisB The hinge axis, specified in bodyB space.
- /// param axisAPerp Axis perpendicular to the hinge axis, specified in bodyA space.
- /// param axisBPerp Axis perpendicular to the hinge axis, specified in bodyB space.
- void setInBodySpace(const hkVector4& pivotA, const hkVector4& pivotB,
- const hkVector4& axisA, const hkVector4& axisB,
- const hkVector4& axisAPerp, const hkVector4& axisBPerp);
- /// Set the data for a Limited Hinge constraint with information given in world space.
- /// param bodyA The first rigid body transform.
- /// param bodyB The second rigid body transform.
- /// param pivot The pivot point, specified in world space.
- /// param axis The hinge axis, specified in world space.
- void setInWorldSpace(const hkTransform& bodyATransform, const hkTransform& bodyBTransform,
- const hkVector4& pivot, const hkVector4& axis);
- /// Sets the maximum impulse that can be applied for this atom.
- /// Set it to HK_REAL_MAX to effectively disable the limit.
- virtual void setMaxLinearImpulse(hkReal maxImpulse);
- /// Gets the maximUm impulse that can be applied by this constraint.
- virtual hkReal getMaxLinearImpulse() const;
- /// Choose the body to be notified when the constraint's impulse is breached.
- virtual void setBodyToNotify(int bodyIdx);
- /// Returns the index of the body that is notified when the constraint's impulse limit is breached.
- virtual hkUint8 getNotifiedBodyIndex() const;
- /// Check consistency of constraint members
- virtual hkBool isValid() const;
- /* Methods to set and get angle limits and friction */
- /// Sets the friction value. Set this before adding to the system.
- /// Note that this value is an absolute torque value and is therefore dependent on the masses of constrained bodies
- /// and not limited between 0.0f and 1.0f.
- /// If trying to stiffen up hinge constraints, try setting this value sufficiently high so that constraints are completely stiff and then
- /// reduce until the desired behaviour has been achieved.
- inline void setMaxFrictionTorque(hkReal tmag);
- /// Gets the friction value.
- inline hkReal getMaxFrictionTorque() const;
- /// Sets the maximum angular limit.
- inline void setMaxAngularLimit(hkReal rad);
- /// Sets the minimum angular limit.
- inline void setMinAngularLimit(hkReal rad);
- /// Gets the maximum angular limit.
- inline hkReal getMaxAngularLimit() const;
- /// Gets the minimum angular limit.
- inline hkReal getMinAngularLimit() const;
- /// sets the m_angularLimitsTauFactor. This is a factor in the range between 0 and 1
- /// which controls the stiffness of the angular limits. If you slowly increase
- /// this value from 0 to 1 for a newly created constraint,
- /// you can nicely blend in the limits.
- inline void setAngularLimitsTauFactor( hkReal mag );
- /// get the m_angularLimitsTauFactor;
- inline hkReal getAngularLimitsTauFactor() const;
- /// This is the preferable way to disable angular limits when motor is active.
- inline void disableLimits();
- //
- // Motor-related methods
- //
- /// get the motor. default is HK_NULL
- inline hkpConstraintMotor* getMotor() const;
- /// Is this motor on ?
- inline hkBool isMotorActive() const;
- /// turn the motor on or off
- void setMotorActive( hkpConstraintInstance* instance, hkBool toBeEnabled );
- /// Set the motor. Setting this to null will disable any motor computations.
- /// The angle passed to the hkpConstraintMotor::motor() callback will be the relative angle
- /// between the attached and reference body. You need to set the desired target angle of
- /// your motor each step.
- /// increments reference of new motor, decrements counter of replaced motor ( if any )
- void setMotor( hkpConstraintMotor* motor );
- /// Sets the target angle for the motor. Only used by motors which use positions
- inline void setMotorTargetAngle( hkReal angle );
- /// Gets the target angle for the motor
- inline hkReal getMotorTargetAngle() const;
- //
- //
- //
- /// Get type from this constraint
- virtual int getType() const;
- enum
- {
- SOLVER_RESULT_MOTOR = 0, // the motor
- SOLVER_RESULT_FRICTION = 1, // or friction
- SOLVER_RESULT_LIMIT = 2, // limits defined around m_freeAxisA
- SOLVER_RESULT_ANG_0 = 3, // angular constraint 0
- SOLVER_RESULT_ANG_1 = 4, // angular constraint 1
- SOLVER_RESULT_LIN_0 = 5, // linear constraint
- SOLVER_RESULT_LIN_1 = 6, // linear constraint
- SOLVER_RESULT_LIN_2 = 7, // linear constraint
- SOLVER_RESULT_MAX = 8
- };
- struct Runtime
- {
- HK_DECLARE_NONVIRTUAL_CLASS_ALLOCATOR( HK_MEMORY_CLASS_DYNAMICS, hkpLimitedHingeConstraintData::Runtime );
- // Solver results must always be in the first position
- HK_ALIGN16( class hkpSolverResults m_solverResults[8/*VC6 doesn't like the scoping for SOLVER_RESULT_MAX*/] );
- // To tell whether the previous angle has been initialized.
- hkUint8 m_initialized;
- // The previous target angle
- hkReal m_previousTargetAngle;
- /// Returns current angle position
- inline hkReal getCurrentPos() const;
- };
- static inline Runtime* HK_CALL getRuntime( hkpConstraintRuntime* runtime ) { return reinterpret_cast<Runtime*>(runtime); }
- public:
- struct Atoms
- {
- HK_DECLARE_NONVIRTUAL_CLASS_ALLOCATOR( HK_MEMORY_CLASS_DYNAMICS, hkpLimitedHingeConstraintData::Atoms );
- HK_DECLARE_REFLECTION();
- struct hkpSetLocalTransformsConstraintAtom m_transforms;
- struct hkpAngMotorConstraintAtom m_angMotor;
- struct hkpAngFrictionConstraintAtom m_angFriction;
- struct hkpAngLimitConstraintAtom m_angLimit;
- struct hkp2dAngConstraintAtom m_2dAng;
- struct hkpBallSocketConstraintAtom m_ballSocket;
- enum Axis
- {
- AXIS_AXLE = 0,
- AXIS_PERP_TO_AXLE_1 = 1,
- AXIS_PERP_TO_AXLE_2 = 2
- };
- Atoms(){}
- // get a pointer to the first atom
- const hkpConstraintAtom* getAtoms() const { return &m_transforms; }
- // get the size of all atoms (we can't use sizeof(*this) because of align16 padding)
- int getSizeOfAllAtoms() const { return hkGetByteOffsetInt(this, &m_ballSocket+1); }
- Atoms(hkFinishLoadedObjectFlag f) : m_transforms(f), m_angMotor(f), m_angFriction(f), m_angLimit(f), m_2dAng(f), m_ballSocket(f) {}
- };
- HK_ALIGN16( struct Atoms m_atoms );
- public:
- // hkpConstraintData interface implementations
- virtual void getConstraintInfo( ConstraintInfo& infoOut ) const ;
- // hkpConstraintData interface implementations
- virtual void getRuntimeInfo( hkBool wantRuntime, hkpConstraintData::RuntimeInfo& infoOut ) const;
- public:
- hkpLimitedHingeConstraintData(hkFinishLoadedObjectFlag f) : hkpConstraintData(f), m_atoms(f) {}
- };
- #include <Physics/Dynamics/Constraint/Bilateral/LimitedHinge/hkpLimitedHingeConstraintData.inl>
- #endif
- /*
- * Havok SDK - NO SOURCE PC DOWNLOAD, BUILD(#20090216)
- *
- * Confidential Information of Havok. (C) Copyright 1999-2009
- * Telekinesys Research Limited t/a Havok. All Rights Reserved. The Havok
- * Logo, and the Havok buzzsaw logo are trademarks of Havok. Title, ownership
- * rights, and intellectual property rights in the Havok software remain in
- * Havok and/or its suppliers.
- *
- * Use of this software for evaluation purposes is subject to and indicates
- * acceptance of the End User licence Agreement for this product. A copy of
- * the license is included with this software and is also available at www.havok.com/tryhavok.
- *
- */