hkMatrix4.h
上传用户:yisoukefu
上传日期:2020-08-09
资源大小:39506k
文件大小:8k
- /*
- *
- * Confidential Information of Telekinesys Research Limited (t/a Havok). Not for disclosure or distribution without Havok's
- * prior written consent. This software contains code, techniques and know-how which is confidential and proprietary to Havok.
- * Level 2 and Level 3 source code contains trade secrets of Havok. Havok Software (C) Copyright 1999-2009 Telekinesys Research Limited t/a Havok. All Rights Reserved. Use of this software is subject to the terms of an end user license agreement.
- *
- */
- #ifndef HK_MATH_MATRIX4_H
- #define HK_MATH_MATRIX4_H
- #ifndef HK_MATH_MATH_H
- # error Please include Common/Base/hkBase.h instead of this file.
- #endif
- /// A 4x4 matrix of hkReals, representing a transformation.
- /// This transform representation is used by tools, cloth and display libraries, as
- /// it can represent scale and skew.
- /// Elements are stored in column major format,
- /// i.e. contiguous memory locations are (x00, x10, x20, x30), (x01, x11,...)
- /// where x10 means row 1, column 0 for example.
- /// For orthonormal transforms, use hkTransform instead (storage is equivalent).
- /// Some operations in hkMatrix4 are optimized for affine matrices (those where
- /// the last row is 0,0,0,1).
- class hkMatrix4
- {
- public:
- HK_DECLARE_NONVIRTUAL_CLASS_ALLOCATOR(HK_MEMORY_CLASS_MATH, hkMatrix4);
- /// Empty constructor. The elements of the matrix are not initialized.
- HK_FORCE_INLINE hkMatrix4() { }
- /// Gets a read-write reference to the i'th column.
- HK_FORCE_INLINE hkVector4& getColumn(int i);
- /// Gets a read-only reference to the i'th column.
- HK_FORCE_INLINE const hkVector4& getColumn(int i) const;
- /// Returns a copy of the i'th row.
- HK_FORCE_INLINE void getRow( int row, hkVector4& r) const;
- /// Gets read-write access to the specified element.
- HK_FORCE_INLINE hkReal& operator() (int row, int col);
- /// Gets read-only access to the specified elements.
- HK_FORCE_INLINE const hkReal& operator() (int row, int col) const;
- /// Sets all rows at once.
- HK_FORCE_INLINE void setRows( const hkVector4& r0, const hkVector4& r1, const hkVector4& r2, const hkVector4& r3);
- /// Writes the rows 0 to 3 in to the parameters r0, r1, r2, r3 respectively.
- HK_FORCE_INLINE void getRows( hkVector4& r0, hkVector4& r1, hkVector4& r2, hkVector4& r3) const;
- /// Sets all columns of the current matrix. Where column is set to r0 and so on.
- HK_FORCE_INLINE void setCols( const hkVector4& c0, const hkVector4& c1, const hkVector4& c2, const hkVector4& c3);
- /// Writes the columns 0 to 3 into the parameters c0, c1, c2 and c3 respectively.
- HK_FORCE_INLINE void getCols( hkVector4& c0, hkVector4& c1, hkVector4& c2, hkVector4& c3) const;
- /// Zeroes all values in this matrix.
- HK_FORCE_INLINE void setZero();
- /// Sets the specified diagonal values, zeroes the non-diagonal values.
- HK_FORCE_INLINE void setDiagonal( hkReal m00, hkReal m11, hkReal m22, hkReal m33 = 1.0f );
- /// Sets the diagonal values to 1, zeroes the non-diagonal values.
- HK_FORCE_INLINE void setIdentity();
- /// Returns a global identity transform.
- HK_FORCE_INLINE static const hkMatrix4& HK_CALL getIdentity();
- /// Set the contents based on the given hkTransform. Will set the bottom row to (0,0,0,1) in this hkMatrix4 as
- /// it is undefined in a hkTransform (not used)
- void set (const hkTransform& t);
- /// Configure the given transform with the content of self. As the transform is missing the bottom matrix row,
- /// it is simply discarded. Converting back and forth will thus not give the same matrix.
- void get (hkTransform& t) const;
- /// Writes a 4x4 matrix suitable for rendering into p.
- void get4x4ColumnMajor(hkReal* p) const;
- /// Reads a 4x4 matrix from p.
- void set4x4ColumnMajor(const hkReal* p);
- /// Writes a 4x4 matrix suitable for rendering into p.
- void get4x4RowMajor(hkReal* p) const;
- /// Reads a 4x4 matrix from p.
- void set4x4RowMajor(const hkReal* p);
- /// Checks if this matrix is equal to m within an optional epsilon.
- hkBool isApproximatelyEqual ( const hkMatrix4& m, hkReal epsilon=1e-3f ) const;
- /// Inverts the matrix. This function returns HK_SUCCESS if the determinant is greater than epsilon. Otherwise it returns HK_FAILURE and the matrix values are undefined.
- hkResult invert (hkReal epsilon);
- /// Sets the matrix to be the inverse of the given matrix. It returns HK_SUCCESS if the determinant is greater than epsilon. Otherwise it returns HK_FAILURE and the matrix values are undefined.
- hkResult setInverse (const hkMatrix4& m, hkReal epsilon);
- /// Transposes this matrix in place.
- void transpose();
- /// set to the transpose of another matrix
- void setTranspose( const hkMatrix4& s );
-
- /// (Assumes transforms are affine) Set this matrix to be the product of a and b. (this = a * b)
- HK_FORCE_INLINE void setMulAffine ( const hkMatrix4& a, const hkMatrix4& b );
- /// (Non-affine version - slower) Set this matrix to be the product of a and b. (this = a * b)
- void setMul ( const hkMatrix4& a, const hkMatrix4& b );
- /// (Assumes transforms are affine) Sets this matrix to be the product of a and the inverse of b. (this = a * b^-1)
- void setMulInverseAffine ( const hkMatrix4& a, const hkMatrix4& b );
- /// (Non-affine version - slower) Sets this matrix to be the product of a and the inverse of b. (this = a * b^-1)
- void setMulInverse ( const hkMatrix4& a, const hkMatrix4& b );
- /// Sets this matrix to be the product of a and scale (this = a * scale)
- void setMul( hkSimdRealParameter scale, const hkMatrix4& a );
- /// Modifies this matrix by adding the matrix a to it. (this += a)
- void add ( const hkMatrix4& a );
- /// Modifies this matrix by subtracting the matrix a from it. (this += a)
- void sub ( const hkMatrix4& a );
- /// (Assumes transforms are affine) Modifies this matrix by post multiplying it by the matrix a. (this = this*a)
- HK_FORCE_INLINE void mulAffine ( const hkMatrix4& a);
- /// (Non-affine version - slower) modifies this matrix by post multiplying it by the matrix a. (this = this*a)
- void mul ( const hkMatrix4& a);
- /// Modifies this matrix by multiplying by scale (this *= scale)
- void mul ( hkSimdRealParameter scale );
- /// Copies all elements from a into this matrix.
- inline void operator= ( const hkMatrix4& a );
- /// Checks for bad values (denormals or infinities)
- hkBool isOk() const;
- /// Checks whether the matrix represents an affine transformation (the 4th row is 0,0,0,1)
- hkBool32 isAffineTransformation() const;
- /// Forces the matrix to represent an affine transformation (resets the 4th row to 0,0,0,1)
- void resetFourthRow ();
- /// Transforms a position - assumes the the matrix represents an affine transform.
- HK_FORCE_INLINE void transformPosition (const hkVector4& positionIn, hkVector4& positionOut) const;
- /// Transforms a direction - assumes the matrix represents an affine transform.
- HK_FORCE_INLINE void transformDirection (const hkVector4& directionIn, hkVector4& directionOut) const;
- /// Multiplies a 4-element vector by this matrix4. Notice that the 4th component of the vector (w) is very relevant here.
- /// Use "transformPosition" or "transformDirection" to transform vectors representing positions or directions by matrices
- /// representing transformations.
- HK_FORCE_INLINE void multiplyVector (const hkVector4& vectorIn, hkVector4& resultOut) const;
- protected:
- hkVector4 m_col0;
- hkVector4 m_col1;
- hkVector4 m_col2;
- hkVector4 m_col3;
- };
- #endif // HK_MATH_MATRIX4_H
- /*
- * Havok SDK - NO SOURCE PC DOWNLOAD, BUILD(#20090216)
- *
- * Confidential Information of Havok. (C) Copyright 1999-2009
- * Telekinesys Research Limited t/a Havok. All Rights Reserved. The Havok
- * Logo, and the Havok buzzsaw logo are trademarks of Havok. Title, ownership
- * rights, and intellectual property rights in the Havok software remain in
- * Havok and/or its suppliers.
- *
- * Use of this software for evaluation purposes is subject to and indicates
- * acceptance of the End User licence Agreement for this product. A copy of
- * the license is included with this software and is also available at www.havok.com/tryhavok.
- *
- */