ec2_mult.c
上传用户:yisoukefu
上传日期:2020-08-09
资源大小:39506k
文件大小:12k
- /* crypto/ec/ec2_mult.c */
- /* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
- * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
- * to the OpenSSL project.
- *
- * The ECC Code is licensed pursuant to the OpenSSL open source
- * license provided below.
- *
- * The software is originally written by Sheueling Chang Shantz and
- * Douglas Stebila of Sun Microsystems Laboratories.
- *
- */
- /* ====================================================================
- * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
- #include <openssl/err.h>
- #include "ec_lcl.h"
- /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
- * coordinates.
- * Uses algorithm Mdouble in appendix of
- * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation".
- * modified to not require precomputation of c=b^{2^{m-1}}.
- */
- static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
- {
- BIGNUM *t1;
- int ret = 0;
-
- /* Since Mdouble is static we can guarantee that ctx != NULL. */
- BN_CTX_start(ctx);
- t1 = BN_CTX_get(ctx);
- if (t1 == NULL) goto err;
- if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
- if (!group->meth->field_sqr(group, t1, z, ctx)) goto err;
- if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err;
- if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
- if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err;
- if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err;
- if (!BN_GF2m_add(x, x, t1)) goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
- * projective coordinates.
- * Uses algorithm Madd in appendix of
- * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation".
- */
- static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
- const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
- {
- BIGNUM *t1, *t2;
- int ret = 0;
-
- /* Since Madd is static we can guarantee that ctx != NULL. */
- BN_CTX_start(ctx);
- t1 = BN_CTX_get(ctx);
- t2 = BN_CTX_get(ctx);
- if (t2 == NULL) goto err;
- if (!BN_copy(t1, x)) goto err;
- if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;
- if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;
- if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;
- if (!BN_GF2m_add(z1, z1, x1)) goto err;
- if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;
- if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;
- if (!BN_GF2m_add(x1, x1, t2)) goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
- * using Montgomery point multiplication algorithm Mxy() in appendix of
- * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation".
- * Returns:
- * 0 on error
- * 1 if return value should be the point at infinity
- * 2 otherwise
- */
- static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
- BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
- {
- BIGNUM *t3, *t4, *t5;
- int ret = 0;
-
- if (BN_is_zero(z1))
- {
- BN_zero(x2);
- BN_zero(z2);
- return 1;
- }
-
- if (BN_is_zero(z2))
- {
- if (!BN_copy(x2, x)) return 0;
- if (!BN_GF2m_add(z2, x, y)) return 0;
- return 2;
- }
-
- /* Since Mxy is static we can guarantee that ctx != NULL. */
- BN_CTX_start(ctx);
- t3 = BN_CTX_get(ctx);
- t4 = BN_CTX_get(ctx);
- t5 = BN_CTX_get(ctx);
- if (t5 == NULL) goto err;
- if (!BN_one(t5)) goto err;
- if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;
- if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;
- if (!BN_GF2m_add(z1, z1, x1)) goto err;
- if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;
- if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;
- if (!BN_GF2m_add(z2, z2, x2)) goto err;
- if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;
- if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;
- if (!BN_GF2m_add(t4, t4, y)) goto err;
- if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;
- if (!BN_GF2m_add(t4, t4, z2)) goto err;
- if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;
- if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;
- if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;
- if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;
- if (!BN_GF2m_add(z2, x2, x)) goto err;
- if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;
- if (!BN_GF2m_add(z2, z2, y)) goto err;
- ret = 2;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /* Computes scalar*point and stores the result in r.
- * point can not equal r.
- * Uses algorithm 2P of
- * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation".
- */
- static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
- const EC_POINT *point, BN_CTX *ctx)
- {
- BIGNUM *x1, *x2, *z1, *z2;
- int ret = 0, i, j;
- BN_ULONG mask;
- if (r == point)
- {
- ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
- return 0;
- }
-
- /* if result should be point at infinity */
- if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
- EC_POINT_is_at_infinity(group, point))
- {
- return EC_POINT_set_to_infinity(group, r);
- }
- /* only support affine coordinates */
- if (!point->Z_is_one) return 0;
- /* Since point_multiply is static we can guarantee that ctx != NULL. */
- BN_CTX_start(ctx);
- x1 = BN_CTX_get(ctx);
- z1 = BN_CTX_get(ctx);
- if (z1 == NULL) goto err;
- x2 = &r->X;
- z2 = &r->Y;
- if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
- if (!BN_one(z1)) goto err; /* z1 = 1 */
- if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
- if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
- if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */
- /* find top most bit and go one past it */
- i = scalar->top - 1; j = BN_BITS2 - 1;
- mask = BN_TBIT;
- while (!(scalar->d[i] & mask)) { mask >>= 1; j--; }
- mask >>= 1; j--;
- /* if top most bit was at word break, go to next word */
- if (!mask)
- {
- i--; j = BN_BITS2 - 1;
- mask = BN_TBIT;
- }
- for (; i >= 0; i--)
- {
- for (; j >= 0; j--)
- {
- if (scalar->d[i] & mask)
- {
- if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err;
- if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err;
- }
- else
- {
- if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
- if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
- }
- mask >>= 1;
- }
- j = BN_BITS2 - 1;
- mask = BN_TBIT;
- }
- /* convert out of "projective" coordinates */
- i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
- if (i == 0) goto err;
- else if (i == 1)
- {
- if (!EC_POINT_set_to_infinity(group, r)) goto err;
- }
- else
- {
- if (!BN_one(&r->Z)) goto err;
- r->Z_is_one = 1;
- }
- /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
- BN_set_negative(&r->X, 0);
- BN_set_negative(&r->Y, 0);
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /* Computes the sum
- * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
- * gracefully ignoring NULL scalar values.
- */
- int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
- size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- size_t i;
- EC_POINT *p=NULL;
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- /* This implementation is more efficient than the wNAF implementation for 2
- * or fewer points. Use the ec_wNAF_mul implementation for 3 or more points,
- * or if we can perform a fast multiplication based on precomputation.
- */
- if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group)))
- {
- ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
- goto err;
- }
- if ((p = EC_POINT_new(group)) == NULL) goto err;
- if (!EC_POINT_set_to_infinity(group, r)) goto err;
- if (scalar)
- {
- if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err;
- if (BN_is_negative(scalar))
- if (!group->meth->invert(group, p, ctx)) goto err;
- if (!group->meth->add(group, r, r, p, ctx)) goto err;
- }
- for (i = 0; i < num; i++)
- {
- if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err;
- if (BN_is_negative(scalars[i]))
- if (!group->meth->invert(group, p, ctx)) goto err;
- if (!group->meth->add(group, r, r, p, ctx)) goto err;
- }
- ret = 1;
- err:
- if (p) EC_POINT_free(p);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
- /* Precomputation for point multiplication: fall back to wNAF methods
- * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
- int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
- {
- return ec_wNAF_precompute_mult(group, ctx);
- }
- int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
- {
- return ec_wNAF_have_precompute_mult(group);
- }