sha512.c
上传用户:yisoukefu
上传日期:2020-08-09
资源大小:39506k
文件大小:15k
源码类别:

其他游戏

开发平台:

Visual C++

  1. /* crypto/sha/sha512.c */
  2. /* ====================================================================
  3.  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
  4.  * according to the OpenSSL license [found in ../../LICENSE].
  5.  * ====================================================================
  6.  */
  7. #include <openssl/opensslconf.h>
  8. #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
  9. /*
  10.  * IMPLEMENTATION NOTES.
  11.  *
  12.  * As you might have noticed 32-bit hash algorithms:
  13.  *
  14.  * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
  15.  * - optimized versions implement two transform functions: one operating
  16.  *   on [aligned] data in host byte order and one - on data in input
  17.  *   stream byte order;
  18.  * - share common byte-order neutral collector and padding function
  19.  *   implementations, ../md32_common.h;
  20.  *
  21.  * Neither of the above applies to this SHA-512 implementations. Reasons
  22.  * [in reverse order] are:
  23.  *
  24.  * - it's the only 64-bit hash algorithm for the moment of this writing,
  25.  *   there is no need for common collector/padding implementation [yet];
  26.  * - by supporting only one transform function [which operates on
  27.  *   *aligned* data in input stream byte order, big-endian in this case]
  28.  *   we minimize burden of maintenance in two ways: a) collector/padding
  29.  *   function is simpler; b) only one transform function to stare at;
  30.  * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  31.  *   apply a number of optimizations to mitigate potential performance
  32.  *   penalties caused by previous design decision;
  33.  *
  34.  * Caveat lector.
  35.  *
  36.  * Implementation relies on the fact that "long long" is 64-bit on
  37.  * both 32- and 64-bit platforms. If some compiler vendor comes up
  38.  * with 128-bit long long, adjustment to sha.h would be required.
  39.  * As this implementation relies on 64-bit integer type, it's totally
  40.  * inappropriate for platforms which don't support it, most notably
  41.  * 16-bit platforms.
  42.  * <appro@fy.chalmers.se>
  43.  */
  44. #include <stdlib.h>
  45. #include <string.h>
  46. #include <openssl/crypto.h>
  47. #include <openssl/sha.h>
  48. #include <openssl/opensslv.h>
  49. #include "cryptlib.h"
  50. const char *SHA512_version="SHA-512" OPENSSL_VERSION_PTEXT;
  51. #if defined(_M_IX86) || defined(_M_AMD64) || defined(__i386) || defined(__x86_64)
  52. #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  53. #endif
  54. int SHA384_Init (SHA512_CTX *c)
  55. {
  56. c->h[0]=U64(0xcbbb9d5dc1059ed8);
  57. c->h[1]=U64(0x629a292a367cd507);
  58. c->h[2]=U64(0x9159015a3070dd17);
  59. c->h[3]=U64(0x152fecd8f70e5939);
  60. c->h[4]=U64(0x67332667ffc00b31);
  61. c->h[5]=U64(0x8eb44a8768581511);
  62. c->h[6]=U64(0xdb0c2e0d64f98fa7);
  63. c->h[7]=U64(0x47b5481dbefa4fa4);
  64.         c->Nl=0;        c->Nh=0;
  65.         c->num=0;       c->md_len=SHA384_DIGEST_LENGTH;
  66.         return 1;
  67. }
  68. int SHA512_Init (SHA512_CTX *c)
  69. {
  70. c->h[0]=U64(0x6a09e667f3bcc908);
  71. c->h[1]=U64(0xbb67ae8584caa73b);
  72. c->h[2]=U64(0x3c6ef372fe94f82b);
  73. c->h[3]=U64(0xa54ff53a5f1d36f1);
  74. c->h[4]=U64(0x510e527fade682d1);
  75. c->h[5]=U64(0x9b05688c2b3e6c1f);
  76. c->h[6]=U64(0x1f83d9abfb41bd6b);
  77. c->h[7]=U64(0x5be0cd19137e2179);
  78.         c->Nl=0;        c->Nh=0;
  79.         c->num=0;       c->md_len=SHA512_DIGEST_LENGTH;
  80.         return 1;
  81. }
  82. #ifndef SHA512_ASM
  83. static
  84. #endif
  85. void sha512_block (SHA512_CTX *ctx, const void *in, size_t num);
  86. int SHA512_Final (unsigned char *md, SHA512_CTX *c)
  87. {
  88. unsigned char *p=(unsigned char *)c->u.p;
  89. size_t n=c->num;
  90. p[n]=0x80; /* There always is a room for one */
  91. n++;
  92. if (n > (sizeof(c->u)-16))
  93. memset (p+n,0,sizeof(c->u)-n), n=0,
  94. sha512_block (c,p,1);
  95. memset (p+n,0,sizeof(c->u)-16-n);
  96. #ifdef B_ENDIAN
  97. c->u.d[SHA_LBLOCK-2] = c->Nh;
  98. c->u.d[SHA_LBLOCK-1] = c->Nl;
  99. #else
  100. p[sizeof(c->u)-1]  = (unsigned char)(c->Nl);
  101. p[sizeof(c->u)-2]  = (unsigned char)(c->Nl>>8);
  102. p[sizeof(c->u)-3]  = (unsigned char)(c->Nl>>16);
  103. p[sizeof(c->u)-4]  = (unsigned char)(c->Nl>>24);
  104. p[sizeof(c->u)-5]  = (unsigned char)(c->Nl>>32);
  105. p[sizeof(c->u)-6]  = (unsigned char)(c->Nl>>40);
  106. p[sizeof(c->u)-7]  = (unsigned char)(c->Nl>>48);
  107. p[sizeof(c->u)-8]  = (unsigned char)(c->Nl>>56);
  108. p[sizeof(c->u)-9]  = (unsigned char)(c->Nh);
  109. p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
  110. p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
  111. p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
  112. p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
  113. p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
  114. p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
  115. p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
  116. #endif
  117. sha512_block (c,p,1);
  118. if (md==0) return 0;
  119. switch (c->md_len)
  120. {
  121. /* Let compiler decide if it's appropriate to unroll... */
  122. case SHA384_DIGEST_LENGTH:
  123. for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
  124. {
  125. SHA_LONG64 t = c->h[n];
  126. *(md++) = (unsigned char)(t>>56);
  127. *(md++) = (unsigned char)(t>>48);
  128. *(md++) = (unsigned char)(t>>40);
  129. *(md++) = (unsigned char)(t>>32);
  130. *(md++) = (unsigned char)(t>>24);
  131. *(md++) = (unsigned char)(t>>16);
  132. *(md++) = (unsigned char)(t>>8);
  133. *(md++) = (unsigned char)(t);
  134. }
  135. break;
  136. case SHA512_DIGEST_LENGTH:
  137. for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
  138. {
  139. SHA_LONG64 t = c->h[n];
  140. *(md++) = (unsigned char)(t>>56);
  141. *(md++) = (unsigned char)(t>>48);
  142. *(md++) = (unsigned char)(t>>40);
  143. *(md++) = (unsigned char)(t>>32);
  144. *(md++) = (unsigned char)(t>>24);
  145. *(md++) = (unsigned char)(t>>16);
  146. *(md++) = (unsigned char)(t>>8);
  147. *(md++) = (unsigned char)(t);
  148. }
  149. break;
  150. /* ... as well as make sure md_len is not abused. */
  151. default: return 0;
  152. }
  153. return 1;
  154. }
  155. int SHA384_Final (unsigned char *md,SHA512_CTX *c)
  156. {   return SHA512_Final (md,c);   }
  157. int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
  158. {
  159. SHA_LONG64 l;
  160. unsigned char  *p=c->u.p;
  161. const unsigned char *data=(const unsigned char *)_data;
  162. if (len==0) return  1;
  163. l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
  164. if (l < c->Nl) c->Nh++;
  165. if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
  166. c->Nl=l;
  167. if (c->num != 0)
  168. {
  169. size_t n = sizeof(c->u) - c->num;
  170. if (len < n)
  171. {
  172. memcpy (p+c->num,data,len), c->num += len;
  173. return 1;
  174. }
  175. else {
  176. memcpy (p+c->num,data,n), c->num = 0;
  177. len-=n, data+=n;
  178. sha512_block (c,p,1);
  179. }
  180. }
  181. if (len >= sizeof(c->u))
  182. {
  183. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  184. if ((size_t)data%sizeof(c->u.d[0]) != 0)
  185. while (len >= sizeof(c->u))
  186. memcpy (p,data,sizeof(c->u)),
  187. sha512_block (c,p,1),
  188. len  -= sizeof(c->u),
  189. data += sizeof(c->u);
  190. else
  191. #endif
  192. sha512_block (c,data,len/sizeof(c->u)),
  193. data += len,
  194. len  %= sizeof(c->u),
  195. data -= len;
  196. }
  197. if (len != 0) memcpy (p,data,len), c->num = (int)len;
  198. return 1;
  199. }
  200. int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
  201. {   return SHA512_Update (c,data,len);   }
  202. void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
  203. {   sha512_block (c,data,1);  }
  204. unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
  205. {
  206. SHA512_CTX c;
  207. static unsigned char m[SHA384_DIGEST_LENGTH];
  208. if (md == NULL) md=m;
  209. SHA384_Init(&c);
  210. SHA512_Update(&c,d,n);
  211. SHA512_Final(md,&c);
  212. OPENSSL_cleanse(&c,sizeof(c));
  213. return(md);
  214. }
  215. unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
  216. {
  217. SHA512_CTX c;
  218. static unsigned char m[SHA512_DIGEST_LENGTH];
  219. if (md == NULL) md=m;
  220. SHA512_Init(&c);
  221. SHA512_Update(&c,d,n);
  222. SHA512_Final(md,&c);
  223. OPENSSL_cleanse(&c,sizeof(c));
  224. return(md);
  225. }
  226. #ifndef SHA512_ASM
  227. static const SHA_LONG64 K512[80] = {
  228.         U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
  229.         U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
  230.         U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
  231.         U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
  232.         U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
  233.         U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
  234.         U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
  235.         U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
  236.         U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
  237.         U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
  238.         U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
  239.         U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
  240.         U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
  241.         U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
  242.         U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
  243.         U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
  244.         U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
  245.         U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
  246.         U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
  247.         U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
  248.         U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
  249.         U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
  250.         U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
  251.         U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
  252.         U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
  253.         U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
  254.         U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
  255.         U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
  256.         U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
  257.         U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
  258.         U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
  259.         U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
  260.         U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
  261.         U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
  262.         U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
  263.         U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
  264.         U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
  265.         U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
  266.         U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
  267.         U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
  268. #ifndef PEDANTIC
  269. # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  270. #  if defined(__x86_64) || defined(__x86_64__)
  271. #   define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x)));
  272. asm ("bswapq %0"
  273. : "=r"(ret)
  274. : "0"(ret)); ret; })
  275. #  endif
  276. # endif
  277. #endif
  278. #ifndef PULL64
  279. #define B(x,j)    (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
  280. #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
  281. #endif
  282. #ifndef PEDANTIC
  283. # if defined(_MSC_VER)
  284. #  if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  285. #   define ROTR(a,n) _rotr64((a),n)
  286. #  endif
  287. # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  288. #  if defined(__x86_64) || defined(__x86_64__)
  289. #   define ROTR(a,n) ({ unsigned long ret;
  290. asm ("rorq %1,%0"
  291. : "=r"(ret)
  292. : "J"(n),"0"(a)
  293. : "cc"); ret; })
  294. #  elif defined(_ARCH_PPC) && defined(__64BIT__)
  295. #   define ROTR(a,n) ({ unsigned long ret;
  296. asm ("rotrdi %0,%1,%2"
  297. : "=r"(ret)
  298. : "r"(a),"K"(n)); ret; })
  299. #  endif
  300. # endif
  301. #endif
  302. #ifndef ROTR
  303. #define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
  304. #endif
  305. #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
  306. #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
  307. #define sigma0(x) (ROTR((x),1)  ^ ROTR((x),8)  ^ ((x)>>7))
  308. #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
  309. #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  310. #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  311. #if defined(OPENSSL_IA32_SSE2) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY)
  312. #define GO_FOR_SSE2(ctx,in,num) do {
  313. void sha512_block_sse2(void *,const void *,size_t);
  314. if (!(OPENSSL_ia32cap_P & (1<<26))) break;
  315. sha512_block_sse2(ctx->h,in,num); return;
  316. } while (0)
  317. #endif
  318. #ifdef OPENSSL_SMALL_FOOTPRINT
  319. static void sha512_block (SHA512_CTX *ctx, const void *in, size_t num)
  320. {
  321. const SHA_LONG64 *W=in;
  322. SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
  323. SHA_LONG64 X[16];
  324. int i;
  325. #ifdef GO_FOR_SSE2
  326. GO_FOR_SSE2(ctx,in,num);
  327. #endif
  328. while (num--) {
  329. a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
  330. e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
  331. for (i=0;i<16;i++)
  332. {
  333. #ifdef B_ENDIAN
  334. T1 = X[i] = W[i];
  335. #else
  336. T1 = X[i] = PULL64(W[i]);
  337. #endif
  338. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
  339. T2 = Sigma0(a) + Maj(a,b,c);
  340. h = g; g = f; f = e; e = d + T1;
  341. d = c; c = b; b = a; a = T1 + T2;
  342. }
  343. for (;i<80;i++)
  344. {
  345. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
  346. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
  347. T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
  348. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
  349. T2 = Sigma0(a) + Maj(a,b,c);
  350. h = g; g = f; f = e; e = d + T1;
  351. d = c; c = b; b = a; a = T1 + T2;
  352. }
  353. ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
  354. ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
  355. W+=SHA_LBLOCK;
  356. }
  357. }
  358. #else
  359. #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do {
  360. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
  361. h = Sigma0(a) + Maj(a,b,c);
  362. d += T1; h += T1; } while (0)
  363. #define ROUND_16_80(i,a,b,c,d,e,f,g,h,X) do {
  364. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
  365. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
  366. T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];
  367. ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
  368. static void sha512_block (SHA512_CTX *ctx, const void *in, size_t num)
  369. {
  370. const SHA_LONG64 *W=in;
  371. SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
  372. SHA_LONG64 X[16];
  373. int i;
  374. #ifdef GO_FOR_SSE2
  375. GO_FOR_SSE2(ctx,in,num);
  376. #endif
  377. while (num--) {
  378. a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
  379. e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
  380. #ifdef B_ENDIAN
  381. T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
  382. T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
  383. T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
  384. T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
  385. T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
  386. T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
  387. T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
  388. T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
  389. T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
  390. T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
  391. T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
  392. T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
  393. T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
  394. T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
  395. T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
  396. T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
  397. #else
  398. T1 = X[0]  = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
  399. T1 = X[1]  = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
  400. T1 = X[2]  = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
  401. T1 = X[3]  = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
  402. T1 = X[4]  = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
  403. T1 = X[5]  = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
  404. T1 = X[6]  = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
  405. T1 = X[7]  = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
  406. T1 = X[8]  = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
  407. T1 = X[9]  = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
  408. T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
  409. T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
  410. T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
  411. T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
  412. T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
  413. T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
  414. #endif
  415. for (i=16;i<80;i+=8)
  416. {
  417. ROUND_16_80(i+0,a,b,c,d,e,f,g,h,X);
  418. ROUND_16_80(i+1,h,a,b,c,d,e,f,g,X);
  419. ROUND_16_80(i+2,g,h,a,b,c,d,e,f,X);
  420. ROUND_16_80(i+3,f,g,h,a,b,c,d,e,X);
  421. ROUND_16_80(i+4,e,f,g,h,a,b,c,d,X);
  422. ROUND_16_80(i+5,d,e,f,g,h,a,b,c,X);
  423. ROUND_16_80(i+6,c,d,e,f,g,h,a,b,X);
  424. ROUND_16_80(i+7,b,c,d,e,f,g,h,a,X);
  425. }
  426. ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
  427. ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
  428. W+=SHA_LBLOCK;
  429. }
  430. }
  431. #endif
  432. #endif /* SHA512_ASM */
  433. #endif /* OPENSSL_NO_SHA512 */