TONAL.C
资源名称:mpeg.zip [点击查看]
上传用户:njqiyou
上传日期:2007-01-08
资源大小:574k
文件大小:38k
源码类别:
mpeg/mp3
开发平台:
C/C++
- /**********************************************************************
- * ISO MPEG Audio Subgroup Software Simulation Group (1996)
- * ISO 13818-3 MPEG-2 Audio Encoder - Lower Sampling Frequency Extension
- *
- * $Id: tonal.c,v 1.1 1996/02/14 04:04:23 rowlands Exp $
- *
- * $Log: tonal.c,v $
- * Revision 1.1 1996/02/14 04:04:23 rowlands
- * Initial revision
- *
- * Received from Mike Coleman
- **********************************************************************/
- /**********************************************************************
- * date programmers comment *
- * 2/25/91 Douglas Wong start of version 1.1 records *
- * 3/06/91 Douglas Wong rename: setup.h to endef.h *
- * updated I_psycho_one and II_psycho_one*
- * 3/11/91 W. J. Carter Added Douglas Wong's updates dated *
- * 3/9/91 for I_Psycho_One() and for *
- * II_Psycho_One(). *
- * 5/10/91 W. Joseph Carter Ported to Macintosh and Unix. *
- * Located and fixed numerous software *
- * bugs and table data errors. *
- * 6/11/91 Davis Pan corrected several bugs *
- * based on comments from H. Fuchs *
- * 01jul91 dpwe (Aware Inc.) Made pow() args float *
- * Removed logical bug in I_tonal_label: *
- * Sometimes *tone returned == STOP *
- * 7/10/91 Earle Jennings no change necessary in port to MsDos *
- * 11sep91 dpwe@aware.com Subtracted 90.3dB from II_f_f_t peaks *
- * 10/1/91 Peter W. Farrett Updated II_Psycho_One(),I_Psycho_One()*
- * to include comments. *
- *11/29/91 Masahiro Iwadare Bug fix regarding POWERNORM *
- * fixed several other miscellaneous bugs*
- * 2/11/92 W. Joseph Carter Ported new code to Macintosh. Most *
- * important fixes involved changing *
- * 16-bit ints to long or unsigned in *
- * bit alloc routines for quant of 65535 *
- * and passing proper function args. *
- * Removed "Other Joint Stereo" option *
- * and made bitrate be total channel *
- * bitrate, irrespective of the mode. *
- * Fixed many small bugs & reorganized. *
- * 2/12/92 Masahiro Iwadare Fixed some potential bugs in *
- * Davis Pan subsampling() *
- * 2/25/92 Masahiro Iwadare Fixed some more potential bugs *
- * 6/24/92 Tan Ah Peng Modified window for FFT *
- * (denominator N-1 to N) *
- * Updated all critical band rate & *
- * absolute threshold tables and critical*
- * boundaries for use with Layer I & II *
- * Corrected boundary limits for tonal *
- * component computation *
- * Placement of non-tonal component at *
- * geometric mean of critical band *
- * (previous placement method commented *
- * out - can be used if desired) *
- * 3/01/93 Mike Li Infinite looping fix in noise_label() *
- * 3/19/93 Jens Spille fixed integer overflow problem in *
- * psychoacoutic model 1 *
- * 3/19/93 Giorgio Dimino modifications to better account for *
- * tonal and non-tonal components *
- * 5/28/93 Sriram Jayasimha "London" mod. to psychoacoustic model1*
- * 8/05/93 Masahiro Iwadare noise_label modification "option" *
- * 1/21/94 Seymore Shlien fixed another infinite looping problem*
- * 7/12/95 Soeren H. Nielsen Changes for LSF, new tables *
- **********************************************************************/
- #include "common.h"
- #include "encoder.h"
- #define LONDON /* enable "LONDON" modification */
- #define MAKE_SENSE /* enable "MAKE_SENSE" modification */
- #define MI_OPTION /* enable "MI_OPTION" modification */
- /**********************************************************************
- *
- * This module implements the psychoacoustic model I for the
- * MPEG encoder layer II. It uses simplified tonal and noise masking
- * threshold analysis to generate SMR for the encoder bit allocation
- * routine.
- *
- **********************************************************************/
- int crit_band;
- int FAR *cbound;
- int sub_size;
- void read_cbound(lay,freq) /* this function reads in critical */
- int lay, freq; /* band boundaries */
- {
- int i,j,k;
- FILE *fp;
- char r[16], t[80];
- strcpy(r, "2cb1");
- r[0] = (char) lay + '0';
- r[3] = (char) freq + '0';
- if( !(fp = OpenTableFile(r)) ){ /* check boundary values */
- printf("Please check %s boundary tablen",r);
- exit(1);
- }
- fgets(t,80,fp); /* read input for critical bands */
- sscanf(t,"%dn",&crit_band);
- cbound = (int FAR *) mem_alloc(sizeof(int) * crit_band, "cbound");
- for(i=0;i<crit_band;i++){ /* continue to read input for */
- fgets(t,80,fp); /* critical band boundaries */
- sscanf(t,"%d %dn",&j, &k);
- if(i==j) cbound[j] = k;
- else { /* error */
- printf("Please check index %d in cbound table %sn",i,r);
- exit(1);
- }
- }
- fclose(fp);
- }
- void read_freq_band(ltg,lay,freq) /* this function reads in */
- int lay, freq; /* frequency bands and bark */
- g_ptr FAR *ltg; /* values */
- {
- int i,j, k;
- double b,c;
- FILE *fp;
- char r[16], t[80];
- strcpy(r, "2th1");
- r[0] = (char) lay + '0';
- r[3] = (char) freq + '0';
- if( !(fp = OpenTableFile(r)) ){ /* check freq. values */
- printf("Please check frequency and cband table %sn",r);
- exit(1);
- }
- fgets(t,80,fp); /* read input for freq. subbands */
- sscanf(t,"%dn",&sub_size);
- *ltg = (g_ptr FAR ) mem_alloc(sizeof(g_thres) * sub_size, "ltg");
- (*ltg)[0].line = 0; /* initialize global masking threshold */
- (*ltg)[0].bark = 0;
- (*ltg)[0].hear = 0;
- for(i=1;i<sub_size;i++){ /* continue to read freq. subband */
- fgets(t,80,fp); /* and assign */
- sscanf(t,"%d %d %lf %lfn",&j, &k, &b, &c);
- if(i == j){
- (*ltg)[j].line = k;
- (*ltg)[j].bark = b;
- (*ltg)[j].hear = c;
- }
- else { /* error */
- printf("Please check index %d in freq-cb table %sn",i,r);
- exit(1);
- }
- }
- fclose(fp);
- }
- void make_map(power, ltg) /* this function calculates the */
- mask FAR power[HAN_SIZE]; /* global masking threshold */
- g_thres FAR *ltg;
- {
- int i,j;
- for(i=1;i<sub_size;i++) for(j=ltg[i-1].line;j<=ltg[i].line;j++)
- power[j].map = i;
- }
- double add_db(a,b)
- double a,b;
- {
- a = pow(10.0,a/10.0);
- b = pow(10.0,b/10.0);
- return 10 * log10(a+b);
- }
- /****************************************************************
- *
- * Fast Fourier transform of the input samples.
- *
- ****************************************************************/
- void II_f_f_t(sample, power) /* this function calculates an */
- double FAR sample[FFT_SIZE]; /* FFT analysis for the freq. */
- mask FAR power[HAN_SIZE]; /* domain */
- {
- int i,j,k,L,l=0;
- int ip, le, le1;
- double t_r, t_i, u_r, u_i;
- static int M, MM1, init = 0, N;
- double *x_r, *x_i, *energy;
- static int *rev;
- static double *w_r, *w_i;
- x_r = (double *) mem_alloc(sizeof(DFFT), "x_r");
- x_i = (double *) mem_alloc(sizeof(DFFT), "x_i");
- energy = (double *) mem_alloc(sizeof(DFFT), "energy");
- for(i=0;i<FFT_SIZE;i++) x_r[i] = x_i[i] = energy[i] = 0;
- if(!init){
- rev = (int *) mem_alloc(sizeof(IFFT), "rev");
- w_r = (double *) mem_alloc(sizeof(D10), "w_r");
- w_i = (double *) mem_alloc(sizeof(D10), "w_i");
- M = 10;
- MM1 = 9;
- N = FFT_SIZE;
- for(L=0;L<M;L++){
- le = 1 << (M-L);
- le1 = le >> 1;
- w_r[L] = cos(PI/le1);
- w_i[L] = -sin(PI/le1);
- }
- for(i=0;i<FFT_SIZE;rev[i] = l,i++) for(j=0,l=0;j<10;j++){
- k=(i>>j) & 1;
- l |= (k<<(9-j));
- }
- init = 1;
- }
- memcpy( (char *) x_r, (char *) sample, sizeof(double) * FFT_SIZE);
- for(L=0;L<MM1;L++){
- le = 1 << (M-L);
- le1 = le >> 1;
- u_r = 1;
- u_i = 0;
- for(j=0;j<le1;j++){
- for(i=j;i<N;i+=le){
- ip = i + le1;
- t_r = x_r[i] + x_r[ip];
- t_i = x_i[i] + x_i[ip];
- x_r[ip] = x_r[i] - x_r[ip];
- x_i[ip] = x_i[i] - x_i[ip];
- x_r[i] = t_r;
- x_i[i] = t_i;
- t_r = x_r[ip];
- x_r[ip] = x_r[ip] * u_r - x_i[ip] * u_i;
- x_i[ip] = x_i[ip] * u_r + t_r * u_i;
- }
- t_r = u_r;
- u_r = u_r * w_r[L] - u_i * w_i[L];
- u_i = u_i * w_r[L] + t_r * w_i[L];
- }
- }
- for(i=0;i<N;i+=2){
- ip = i + 1;
- t_r = x_r[i] + x_r[ip];
- t_i = x_i[i] + x_i[ip];
- x_r[ip] = x_r[i] - x_r[ip];
- x_i[ip] = x_i[i] - x_i[ip];
- x_r[i] = t_r;
- x_i[i] = t_i;
- energy[i] = x_r[i] * x_r[i] + x_i[i] * x_i[i];
- }
- for(i=0;i<FFT_SIZE;i++) if(i<rev[i]){
- t_r = energy[i];
- energy[i] = energy[rev[i]];
- energy[rev[i]] = t_r;
- }
- for(i=0;i<HAN_SIZE;i++){ /* calculate power density spectrum */
- if (energy[i] < 1E-20) energy[i] = 1E-20;
- power[i].x = 10 * log10(energy[i]) + POWERNORM;
- power[i].next = STOP;
- power[i].type = FALSE;
- }
- mem_free((void **) &x_r);
- mem_free((void **) &x_i);
- mem_free((void **) &energy);
- }
- /****************************************************************
- *
- * Window the incoming audio signal.
- *
- ****************************************************************/
- void II_hann_win(sample) /* this function calculates a */
- double FAR sample[FFT_SIZE]; /* Hann window for PCM (input) */
- { /* samples for a 1024-pt. FFT */
- register int i;
- register double sqrt_8_over_3;
- static int init = 0;
- static double FAR *window;
- if(!init){ /* calculate window function for the Fourier transform */
- window = (double FAR *) mem_alloc(sizeof(DFFT), "window");
- sqrt_8_over_3 = pow(8.0/3.0, 0.5);
- for(i=0;i<FFT_SIZE;i++){
- /* Hann window formula */
- window[i]=sqrt_8_over_3*0.5*(1-cos(2.0*PI*i/(FFT_SIZE)))/FFT_SIZE;
- }
- init = 1;
- }
- for(i=0;i<FFT_SIZE;i++) sample[i] *= window[i];
- }
- /*******************************************************************
- *
- * This function finds the maximum spectral component in each
- * subband and return them to the encoder for time-domain threshold
- * determination.
- *
- *******************************************************************/
- #ifndef LONDON
- void II_pick_max(power, spike)
- double FAR spike[SBLIMIT];
- mask FAR power[HAN_SIZE];
- {
- double max;
- int i,j;
- for(i=0;i<HAN_SIZE;spike[i>>4] = max, i+=16) /* calculate the */
- for(j=0, max = DBMIN;j<16;j++) /* maximum spectral */
- max = (max>power[i+j].x) ? max : power[i+j].x; /* component in each */
- } /* subband from bound */
- /* 4-16 */
- #else
- void II_pick_max(power, spike)
- double FAR spike[SBLIMIT];
- mask FAR power[HAN_SIZE];
- {
- double sum;
- int i,j;
- for(i=0;i<HAN_SIZE;spike[i>>4] = 10.0*log10(sum), i+=16)
- /* calculate the */
- for(j=0, sum = pow(10.0,0.1*DBMIN);j<16;j++) /* sum of spectral */
- sum += pow(10.0,0.1*power[i+j].x); /* component in each */
- } /* subband from bound */
- /* 4-16 */
- #endif
- /****************************************************************
- *
- * This function labels the tonal component in the power
- * spectrum.
- *
- ****************************************************************/
- void II_tonal_label(power, tone) /* this function extracts (tonal) */
- mask FAR power[HAN_SIZE]; /* sinusoidals from the spectrum */
- int *tone;
- {
- int i,j, last = LAST, first, run, last_but_one = LAST; /* dpwe */
- double max;
- *tone = LAST;
- for(i=2;i<HAN_SIZE-12;i++){
- if(power[i].x>power[i-1].x && power[i].x>=power[i+1].x){
- power[i].type = TONE;
- power[i].next = LAST;
- if(last != LAST) power[last].next = i;
- else first = *tone = i;
- last = i;
- }
- }
- last = LAST;
- first = *tone;
- *tone = LAST;
- while(first != LAST){ /* the conditions for the tonal */
- if(first<3 || first>500) run = 0;/* otherwise k+/-j will be out of bounds */
- else if(first<63) run = 2; /* components in layer II, which */
- else if(first<127) run = 3; /* are the boundaries for calc. */
- else if(first<255) run = 6; /* the tonal components */
- else run = 12;
- max = power[first].x - 7; /* after calculation of tonal */
- for(j=2;j<=run;j++) /* components, set to local max */
- if(max < power[first-j].x || max < power[first+j].x){
- power[first].type = FALSE;
- break;
- }
- if(power[first].type == TONE){ /* extract tonal components */
- int help=first;
- if(*tone==LAST) *tone = first;
- while((power[help].next!=LAST)&&(power[help].next-first)<=run)
- help=power[help].next;
- help=power[help].next;
- power[first].next=help;
- if((first-last)<=run){
- if(last_but_one != LAST) power[last_but_one].next=first;
- }
- if(first>1 && first<500){ /* calculate the sum of the */
- double tmp; /* powers of the components */
- tmp = add_db(power[first-1].x, power[first+1].x);
- power[first].x = add_db(power[first].x, tmp);
- }
- for(j=1;j<=run;j++){
- power[first-j].x = power[first+j].x = DBMIN;
- power[first-j].next = power[first+j].next = STOP;
- power[first-j].type = power[first+j].type = FALSE;
- }
- last_but_one=last;
- last = first;
- first = power[first].next;
- }
- else {
- int ll;
- if(last == LAST); /* *tone = power[first].next; dpwe */
- else power[last].next = power[first].next;
- ll = first;
- first = power[first].next;
- power[ll].next = STOP;
- }
- }
- }
- /****************************************************************
- *
- * This function groups all the remaining non-tonal
- * spectral lines into critical band where they are replaced by
- * one single line.
- *
- ****************************************************************/
- void noise_label(power, noise, ltg)
- g_thres FAR *ltg;
- mask FAR *power;
- int *noise;
- {
- int i,j, centre, last = LAST;
- double index, weight, sum;
- /* calculate the remaining spectral */
- for(i=0;i<crit_band-1;i++){ /* lines for non-tonal components */
- for(j=cbound[i],weight = 0.0,sum = DBMIN;j<cbound[i+1];j++){
- if(power[j].type != TONE){
- if(power[j].x != DBMIN){
- sum = add_db(power[j].x,sum);
- /* the line below and others under the "MAKE_SENSE" condition are an alternate
- interpretation of "geometric mean". This approach may make more sense but
- it has not been tested with hardware. */
- #ifdef MAKE_SENSE
- /* weight += pow(10.0, power[j].x/10.0) * (ltg[power[j].map].bark-i);
- bad code [SS] 21-1-93
- */
- weight += pow(10.0,power[j].x/10.0) * (double) (j-cbound[i]) /
- (double) (cbound[i+1]-cbound[i]); /* correction */
- #endif
- power[j].x = DBMIN;
- }
- } /* check to see if the spectral line is low dB, and if */
- } /* so replace the center of the critical band, which is */
- /* the center freq. of the noise component */
- #ifdef MAKE_SENSE
- if(sum <= DBMIN) centre = (cbound[i+1]+cbound[i]) /2;
- else {
- index = weight/pow(10.0,sum/10.0);
- centre = cbound[i] + (int) (index * (double) (cbound[i+1]-cbound[i]) );
- }
- #else
- index = (double)( ((double)cbound[i]) * ((double)(cbound[i+1]-1)) );
- centre = (int)(pow(index,0.5)+0.5);
- #endif
- /* locate next non-tonal component until finished; */
- /* add to list of non-tonal components */
- #ifdef MI_OPTION
- /* Masahiro Iwadare's fix for infinite looping problem? */
- if(power[centre].type == TONE)
- if (power[centre+1].type == TONE) centre++; else centre--;
- #else
- /* Mike Li's fix for infinite looping problem */
- if(power[centre].type == FALSE) centre++;
- if(power[centre].type == NOISE){
- if(power[centre].x >= ltg[power[i].map].hear){
- if(sum >= ltg[power[i].map].hear) sum = add_db(power[j].x,sum);
- else
- sum = power[centre].x;
- }
- }
- #endif
- if(last == LAST) *noise = centre;
- else {
- power[centre].next = LAST;
- power[last].next = centre;
- }
- power[centre].x = sum;
- power[centre].type = NOISE;
- last = centre;
- }
- }
- /****************************************************************
- *
- * This function reduces the number of noise and tonal
- * component for further threshold analysis.
- *
- ****************************************************************/
- void subsampling(power, ltg, tone, noise)
- mask FAR power[HAN_SIZE];
- g_thres FAR *ltg;
- int *tone, *noise;
- {
- int i, old;
- i = *tone; old = STOP; /* calculate tonal components for */
- while(i!=LAST){ /* reduction of spectral lines */
- if(power[i].x < ltg[power[i].map].hear){
- power[i].type = FALSE;
- power[i].x = DBMIN;
- if(old == STOP) *tone = power[i].next;
- else power[old].next = power[i].next;
- }
- else old = i;
- i = power[i].next;
- }
- i = *noise; old = STOP; /* calculate non-tonal components for */
- while(i!=LAST){ /* reduction of spectral lines */
- if(power[i].x < ltg[power[i].map].hear){
- power[i].type = FALSE;
- power[i].x = DBMIN;
- if(old == STOP) *noise = power[i].next;
- else power[old].next = power[i].next;
- }
- else old = i;
- i = power[i].next;
- }
- i = *tone; old = STOP;
- while(i != LAST){ /* if more than one */
- if(power[i].next == LAST)break; /* tonal component */
- if(ltg[power[power[i].next].map].bark - /* is less than .5 */
- ltg[power[i].map].bark < 0.5) { /* bark, take the */
- if(power[power[i].next].x > power[i].x ){/* maximum */
- if(old == STOP) *tone = power[i].next;
- else power[old].next = power[i].next;
- power[i].type = FALSE;
- power[i].x = DBMIN;
- i = power[i].next;
- }
- else {
- power[power[i].next].type = FALSE;
- power[power[i].next].x = DBMIN;
- power[i].next = power[power[i].next].next;
- old = i;
- }
- }
- else {
- old = i;
- i = power[i].next;
- }
- }
- }
- /****************************************************************
- *
- * This function calculates the individual threshold and
- * sum with the quiet threshold to find the global threshold.
- *
- ****************************************************************/
- void threshold(power, ltg, tone, noise, bit_rate)
- mask FAR power[HAN_SIZE];
- g_thres FAR *ltg;
- int *tone, *noise, bit_rate;
- {
- int k, t;
- double dz, tmps, vf;
- for(k=1;k<sub_size;k++){
- ltg[k].x = DBMIN;
- t = *tone; /* calculate individual masking threshold for */
- while(t != LAST){ /* components in order to find the global */
- if(ltg[k].bark-ltg[power[t].map].bark >= -3.0 && /*threshold (LTG)*/
- ltg[k].bark-ltg[power[t].map].bark <8.0){
- dz = ltg[k].bark-ltg[power[t].map].bark; /* distance of bark value*/
- tmps = -1.525-0.275*ltg[power[t].map].bark - 4.5 + power[t].x;
- /* masking function for lower & upper slopes */
- if(-3<=dz && dz<-1) vf = 17*(dz+1)-(0.4*power[t].x +6);
- else if(-1<=dz && dz<0) vf = (0.4 *power[t].x + 6) * dz;
- else if(0<=dz && dz<1) vf = (-17*dz);
- else if(1<=dz && dz<8) vf = -(dz-1) * (17-0.15 *power[t].x) - 17;
- tmps += vf;
- ltg[k].x = add_db(ltg[k].x, tmps);
- }
- t = power[t].next;
- }
- t = *noise; /* calculate individual masking threshold */
- while(t != LAST){ /* for non-tonal components to find LTG */
- if(ltg[k].bark-ltg[power[t].map].bark >= -3.0 &&
- ltg[k].bark-ltg[power[t].map].bark <8.0){
- dz = ltg[k].bark-ltg[power[t].map].bark; /* distance of bark value */
- tmps = -1.525-0.175*ltg[power[t].map].bark -0.5 + power[t].x;
- /* masking function for lower & upper slopes */
- if(-3<=dz && dz<-1) vf = 17*(dz+1)-(0.4*power[t].x +6);
- else if(-1<=dz && dz<0) vf = (0.4 *power[t].x + 6) * dz;
- else if(0<=dz && dz<1) vf = (-17*dz);
- else if(1<=dz && dz<8) vf = -(dz-1) * (17-0.15 *power[t].x) - 17;
- tmps += vf;
- ltg[k].x = add_db(ltg[k].x, tmps);
- }
- t = power[t].next;
- }
- if(bit_rate<96)ltg[k].x = add_db(ltg[k].hear, ltg[k].x);
- else ltg[k].x = add_db(ltg[k].hear-12.0, ltg[k].x);
- }
- }
- /****************************************************************
- *
- * This function finds the minimum masking threshold and
- * return the value to the encoder.
- *
- ****************************************************************/
- void II_minimum_mask(ltg,ltmin,sblimit)
- g_thres FAR *ltg;
- double FAR ltmin[SBLIMIT];
- int sblimit;
- {
- double min;
- int i,j;
- j=1;
- for(i=0;i<sblimit;i++)
- if(j>=sub_size-1) /* check subband limit, and */
- ltmin[i] = ltg[sub_size-1].hear; /* calculate the minimum masking */
- else { /* level of LTMIN for each subband*/
- min = ltg[j].x;
- while(ltg[j].line>>4 == i && j < sub_size){
- if(min>ltg[j].x) min = ltg[j].x;
- j++;
- }
- ltmin[i] = min;
- }
- }
- /*****************************************************************
- *
- * This procedure is called in musicin to pick out the
- * smaller of the scalefactor or threshold.
- *
- *****************************************************************/
- void II_smr(ltmin, spike, scale, sblimit)
- double FAR spike[SBLIMIT], scale[SBLIMIT], ltmin[SBLIMIT];
- int sblimit;
- {
- int i;
- double max;
- for(i=0;i<sblimit;i++){ /* determine the signal */
- max = 20 * log10(scale[i] * 32768) - 10; /* level for each subband */
- if(spike[i]>max) max = spike[i]; /* for the maximum scale */
- max -= ltmin[i]; /* factors */
- ltmin[i] = max;
- }
- }
- /****************************************************************
- *
- * This procedure calls all the necessary functions to
- * complete the psychoacoustic analysis.
- *
- ****************************************************************/
- void II_Psycho_One(buffer, scale, ltmin, fr_ps)
- short FAR buffer[2][1152];
- double FAR scale[2][SBLIMIT], ltmin[2][SBLIMIT];
- frame_params *fr_ps;
- {
- layer *info = fr_ps->header;
- int stereo = fr_ps->stereo;
- int sblimit = fr_ps->sblimit;
- int k,i, tone=0, noise=0;
- static char init = 0;
- static int off[2] = {256,256};
- double *sample;
- DSBL *spike;
- static D1408 *fft_buf;
- static mask_ptr FAR power;
- static g_ptr FAR ltg;
- sample = (double *) mem_alloc(sizeof(DFFT), "sample");
- spike = (DSBL *) mem_alloc(sizeof(D2SBL), "spike");
- /* call functions for critical boundaries, freq. */
- if(!init){ /* bands, bark values, and mapping */
- fft_buf = (D1408 *) mem_alloc((long) sizeof(D1408) * 2, "fft_buf");
- power = (mask_ptr FAR ) mem_alloc(sizeof(mask) * HAN_SIZE, "power");
- if (info->version == MPEG_AUDIO_ID) {
- read_cbound(info->lay, info->sampling_frequency);
- read_freq_band(<g, info->lay, info->sampling_frequency);
- } else {
- read_cbound(info->lay, info->sampling_frequency + 4);
- read_freq_band(<g, info->lay, info->sampling_frequency + 4);
- }
- make_map(power,ltg);
- for (i=0;i<1408;i++) fft_buf[0][i] = fft_buf[1][i] = 0;
- init = 1;
- }
- for(k=0;k<stereo;k++){ /* check pcm input for 3 blocks of 384 samples */
- for(i=0;i<1152;i++) fft_buf[k][(i+off[k])%1408]= (double)buffer[k][i]/SCALE;
- for(i=0;i<FFT_SIZE;i++) sample[i] = fft_buf[k][(i+1216+off[k])%1408];
- off[k] += 1152;
- off[k] %= 1408;
- /* call functions for windowing PCM samples,*/
- II_hann_win(sample); /* location of spectral components in each */
- for(i=0;i<HAN_SIZE;i++) power[i].x = DBMIN; /*subband with labeling*/
- II_f_f_t(sample, power); /*locate remaining non-*/
- II_pick_max(power, &spike[k][0]); /*tonal sinusoidals, */
- II_tonal_label(power, &tone); /*reduce noise & tonal */
- noise_label(power, &noise, ltg); /*components, find */
- subsampling(power, ltg, &tone, &noise); /*global & minimal */
- threshold(power, ltg, &tone, &noise, /*threshold, and sgnl- */
- bitrate[info->version][info->lay-1][info->bitrate_index]/stereo); /*to-mask ratio*/
- II_minimum_mask(ltg, <min[k][0], sblimit);
- II_smr(<min[k][0], &spike[k][0], &scale[k][0], sblimit);
- }
- mem_free((void **) &sample);
- mem_free((void **) &spike);
- }
- /**********************************************************************
- *
- * This module implements the psychoacoustic model I for the
- * MPEG encoder layer I. It uses simplified tonal and noise masking
- * threshold analysis to generate SMR for the encoder bit allocation
- * routine.
- *
- **********************************************************************/
- /****************************************************************
- *
- * Fast Fourier transform of the input samples.
- *
- ****************************************************************/
- void I_f_f_t(sample, power) /* this function calculates */
- double FAR sample[FFT_SIZE/2]; /* an FFT analysis for the */
- mask FAR power[HAN_SIZE/2]; /* freq. domain */
- {
- int i,j,k,L,l=0;
- int ip, le, le1;
- double t_r, t_i, u_r, u_i;
- static int M, MM1, init = 0, N;
- double *x_r, *x_i, *energy;
- static int *rev;
- static double *w_r, *w_i;
- x_r = (double *) mem_alloc(sizeof(DFFT2), "x_r");
- x_i = (double *) mem_alloc(sizeof(DFFT2), "x_i");
- energy = (double *) mem_alloc(sizeof(DFFT2), "energy");
- for(i=0;i<FFT_SIZE/2;i++) x_r[i] = x_i[i] = energy[i] = 0;
- if(!init){
- rev = (int *) mem_alloc(sizeof(IFFT2), "rev");
- w_r = (double *) mem_alloc(sizeof(D9), "w_r");
- w_i = (double *) mem_alloc(sizeof(D9), "w_i");
- M = 9;
- MM1 = 8;
- N = FFT_SIZE/2;
- for(L=0;L<M;L++){
- le = 1 << (M-L);
- le1 = le >> 1;
- w_r[L] = cos(PI/le1);
- w_i[L] = -sin(PI/le1);
- }
- for(i=0;i<FFT_SIZE/2;rev[i] = l,i++) for(j=0,l=0;j<9;j++){
- k=(i>>j) & 1;
- l |= (k<<(8-j));
- }
- init = 1;
- }
- memcpy( (char *) x_r, (char *) sample, sizeof(double) * FFT_SIZE/2);
- for(L=0;L<MM1;L++){
- le = 1 << (M-L);
- le1 = le >> 1;
- u_r = 1;
- u_i = 0;
- for(j=0;j<le1;j++){
- for(i=j;i<N;i+=le){
- ip = i + le1;
- t_r = x_r[i] + x_r[ip];
- t_i = x_i[i] + x_i[ip];
- x_r[ip] = x_r[i] - x_r[ip];
- x_i[ip] = x_i[i] - x_i[ip];
- x_r[i] = t_r;
- x_i[i] = t_i;
- t_r = x_r[ip];
- x_r[ip] = x_r[ip] * u_r - x_i[ip] * u_i;
- x_i[ip] = x_i[ip] * u_r + t_r * u_i;
- }
- t_r = u_r;
- u_r = u_r * w_r[L] - u_i * w_i[L];
- u_i = u_i * w_r[L] + t_r * w_i[L];
- }
- }
- for(i=0;i<N;i+=2){
- ip = i + 1;
- t_r = x_r[i] + x_r[ip];
- t_i = x_i[i] + x_i[ip];
- x_r[ip] = x_r[i] - x_r[ip];
- x_i[ip] = x_i[i] - x_i[ip];
- x_r[i] = t_r;
- x_i[i] = t_i;
- energy[i] = x_r[i] * x_r[i] + x_i[i] * x_i[i];
- }
- for(i=0;i<FFT_SIZE/2;i++) if(i<rev[i]){
- t_r = energy[i];
- energy[i] = energy[rev[i]];
- energy[rev[i]] = t_r;
- }
- for(i=0;i<HAN_SIZE/2;i++){ /* calculate power */
- if(energy[i] < 1E-20) energy[i] = 1E-20; /* density spectrum */
- power[i].x = 10 * log10(energy[i]) + POWERNORM;
- power[i].next = STOP;
- power[i].type = FALSE;
- }
- mem_free((void **) &x_r);
- mem_free((void **) &x_i);
- mem_free((void **) &energy);
- }
- /****************************************************************
- *
- * Window the incoming audio signal.
- *
- ****************************************************************/
- void I_hann_win(sample) /* this function calculates a */
- double FAR sample[FFT_SIZE/2]; /* Hann window for PCM (input) */
- { /* samples for a 512-pt. FFT */
- register int i;
- register double sqrt_8_over_3;
- static int init = 0;
- static double FAR *window;
- if(!init){ /* calculate window function for the Fourier transform */
- window = (double FAR *) mem_alloc(sizeof(DFFT2), "window");
- sqrt_8_over_3 = pow(8.0/3.0, 0.5);
- for(i=0;i<FFT_SIZE/2;i++){
- /* Hann window formula */
- window[i]=sqrt_8_over_3*0.5*(1-cos(2.0*PI*i/(FFT_SIZE/2)))/(FFT_SIZE/2);
- }
- init = 1;
- }
- for(i=0;i<FFT_SIZE/2;i++) sample[i] *= window[i];
- }
- /*******************************************************************
- *
- * This function finds the maximum spectral component in each
- * subband and return them to the encoder for time-domain threshold
- * determination.
- *
- *******************************************************************/
- #ifndef LONDON
- void I_pick_max(power, spike)
- double FAR spike[SBLIMIT];
- mask FAR power[HAN_SIZE/2];
- {
- double max;
- int i,j;
- /* calculate the spectral component in each subband */
- for(i=0;i<HAN_SIZE/2;spike[i>>3] = max, i+=8)
- for(j=0, max = DBMIN;j<8;j++) max = (max>power[i+j].x) ? max : power[i+j].x;
- }
- #else
- void I_pick_max(power, spike)
- double FAR spike[SBLIMIT];
- mask FAR power[HAN_SIZE];
- {
- double sum;
- int i,j;
- for(i=0;i<HAN_SIZE/2;spike[i>>3] = 10.0*log10(sum), i+=8)
- /* calculate the */
- for(j=0, sum = pow(10.0,0.1*DBMIN);j<8;j++) /* sum of spectral */
- sum += pow(10.0,0.1*power[i+j].x); /* component in each */
- } /* subband from bound */
- #endif
- /****************************************************************
- *
- * This function labels the tonal component in the power
- * spectrum.
- *
- ****************************************************************/
- void I_tonal_label(power, tone) /* this function extracts */
- mask FAR power[HAN_SIZE/2]; /* (tonal) sinusoidals from */
- int *tone; /* the spectrum */
- {
- int i,j, last = LAST, first, run;
- double max;
- int last_but_one= LAST;
- *tone = LAST;
- for(i=2;i<HAN_SIZE/2-6;i++){
- if(power[i].x>power[i-1].x && power[i].x>=power[i+1].x){
- power[i].type = TONE;
- power[i].next = LAST;
- if(last != LAST) power[last].next = i;
- else first = *tone = i;
- last = i;
- }
- }
- last = LAST;
- first = *tone;
- *tone = LAST;
- while(first != LAST){ /* conditions for the tonal */
- if(first<3 || first>250) run = 0; /* otherwise k+/-j will be out of bounds*/
- else if(first<63) run = 2; /* components in layer I, which */
- else if(first<127) run = 3; /* are the boundaries for calc. */
- else run = 6; /* the tonal components */
- max = power[first].x - 7;
- for(j=2;j<=run;j++) /* after calc. of tonal components, set to loc.*/
- if(max < power[first-j].x || max < power[first+j].x){ /* max */
- power[first].type = FALSE;
- break;
- }
- if(power[first].type == TONE){ /* extract tonal components */
- int help=first;
- if(*tone == LAST) *tone = first;
- while((power[help].next!=LAST)&&(power[help].next-first)<=run)
- help=power[help].next;
- help=power[help].next;
- power[first].next=help;
- if((first-last)<=run){
- if(last_but_one != LAST) power[last_but_one].next=first;
- }
- if(first>1 && first<255){ /* calculate the sum of the */
- double tmp; /* powers of the components */
- tmp = add_db(power[first-1].x, power[first+1].x);
- power[first].x = add_db(power[first].x, tmp);
- }
- for(j=1;j<=run;j++){
- power[first-j].x = power[first+j].x = DBMIN;
- power[first-j].next = power[first+j].next = STOP; /*dpwe: 2nd was .x*/
- power[first-j].type = power[first+j].type = FALSE;
- }
- last_but_one=last;
- last = first;
- first = power[first].next;
- }
- else {
- int ll;
- if(last == LAST) ; /* *tone = power[first].next; dpwe */
- else power[last].next = power[first].next;
- ll = first;
- first = power[first].next;
- power[ll].next = STOP;
- }
- }
- }
- /****************************************************************
- *
- * This function finds the minimum masking threshold and
- * return the value to the encoder.
- *
- ****************************************************************/
- void I_minimum_mask(ltg,ltmin)
- g_thres FAR *ltg;
- double FAR ltmin[SBLIMIT];
- {
- double min;
- int i,j;
- j=1;
- for(i=0;i<SBLIMIT;i++)
- if(j>=sub_size-1) /* check subband limit, and */
- ltmin[i] = ltg[sub_size-1].hear; /* calculate the minimum masking */
- else { /* level of LTMIN for each subband*/
- min = ltg[j].x;
- while(ltg[j].line>>3 == i && j < sub_size){
- if (min>ltg[j].x) min = ltg[j].x;
- j++;
- }
- ltmin[i] = min;
- }
- }
- /*****************************************************************
- *
- * This procedure is called in musicin to pick out the
- * smaller of the scalefactor or threshold.
- *
- *****************************************************************/
- void I_smr(ltmin, spike, scale)
- double FAR spike[SBLIMIT], scale[SBLIMIT], ltmin[SBLIMIT];
- {
- int i;
- double max;
- for(i=0;i<SBLIMIT;i++){ /* determine the signal */
- max = 20 * log10(scale[i] * 32768) - 10; /* level for each subband */
- if(spike[i]>max) max = spike[i]; /* for the scalefactor */
- max -= ltmin[i];
- ltmin[i] = max;
- }
- }
- /****************************************************************
- *
- * This procedure calls all the necessary functions to
- * complete the psychoacoustic analysis.
- *
- ****************************************************************/
- void I_Psycho_One(buffer, scale, ltmin, fr_ps)
- short FAR buffer[2][1152];
- double FAR scale[2][SBLIMIT], ltmin[2][SBLIMIT];
- frame_params *fr_ps;
- {
- int stereo = fr_ps->stereo;
- the_layer info = fr_ps->header;
- int k,i, tone=0, noise=0;
- static char init = 0;
- static int off[2] = {256,256};
- double *sample;
- DSBL *spike;
- static D640 *fft_buf;
- static mask_ptr FAR power;
- static g_ptr FAR ltg;
- sample = (double *) mem_alloc(sizeof(DFFT2), "sample");
- spike = (DSBL *) mem_alloc(sizeof(D2SBL), "spike");
- /* call functions for critical boundaries, freq. */
- if(!init){ /* bands, bark values, and mapping */
- fft_buf = (D640 *) mem_alloc(sizeof(D640) * 2, "fft_buf");
- power = (mask_ptr FAR ) mem_alloc(sizeof(mask) * HAN_SIZE/2, "power");
- if (info->version == MPEG_AUDIO_ID) {
- read_cbound(info->lay, info->sampling_frequency);
- read_freq_band(<g, info->lay, info->sampling_frequency);
- } else {
- read_cbound(info->lay, info->sampling_frequency + 4);
- read_freq_band(<g, info->lay, info->sampling_frequency + 4);
- }
- make_map(power,ltg);
- for(i=0;i<640;i++) fft_buf[0][i] = fft_buf[1][i] = 0;
- init = 1;
- }
- for(k=0;k<stereo;k++){ /* check PCM input for a block of */
- for(i=0;i<384;i++) /* 384 samples for a 512-pt. FFT */
- fft_buf[k][(i+off[k])%640]= (double) buffer[k][i]/SCALE;
- for(i=0;i<FFT_SIZE/2;i++)
- sample[i] = fft_buf[k][(i+448+off[k])%640];
- off[k] += 384;
- off[k] %= 640;
- /* call functions for windowing PCM samples, */
- I_hann_win(sample); /* location of spectral components in each */
- for(i=0;i<HAN_SIZE/2;i++) power[i].x = DBMIN; /* subband with */
- I_f_f_t(sample, power); /* labeling, locate remaining */
- I_pick_max(power, &spike[k][0]); /* non-tonal sinusoidals, */
- I_tonal_label(power, &tone); /* reduce noise & tonal com., */
- noise_label(power, &noise, ltg); /* find global & minimal */
- subsampling(power, ltg, &tone, &noise); /* threshold, and sgnl- */
- threshold(power, ltg, &tone, &noise, /* to-mask ratio */
- bitrate[info->version][info->lay-1][info->bitrate_index]/stereo);
- I_minimum_mask(ltg, <min[k][0]);
- I_smr(<min[k][0], &spike[k][0], &scale[k][0]);
- }
- mem_free((void **) &sample);
- mem_free((void **) &spike);
- }