PSY.C
上传用户:njqiyou
上传日期:2007-01-08
资源大小:574k
文件大小:18k
- /**********************************************************************
- * ISO MPEG Audio Subgroup Software Simulation Group (1996)
- * ISO 13818-3 MPEG-2 Audio Multichannel Encoder
- *
- * $Id: psy.c 1.7 1996/02/12 07:13:35 rowlands Exp $
- *
- * $Log: psy.c $
- * Revision 1.7 1996/02/12 07:13:35 rowlands
- * Release following Munich meeting
- *
- **********************************************************************/
- /**********************************************************************
- * date programmers comment *
- * 2/25/91 Davis Pan start of version 1.0 records *
- * 5/10/91 W. Joseph Carter Ported to Macintosh and Unix. *
- * 7/10/91 Earle Jennings Ported to MsDos. *
- * replace of floats with FLOAT *
- * 2/11/92 W. Joseph Carter Fixed mem_alloc() arg for "absthr". *
- **********************************************************************/
- #include "common.h"
- #include "encoder.h"
- void
- psycho_anal(
- double *buffer,
- short int *savebuf,
- int chn,
- int lay,
- float *snr32,
- double sfreq /* to match prototype : float args are always double */
- ) {
- unsigned int i, j, k;
- FLOAT r_prime, phi_prime;
- FLOAT freq_mult, bval_lo, minthres, sum_energy;
- double tb, temp1, temp2, temp3;
- /* The static variables "r", "phi_sav", "new", "old" and "oldest" have */
- /* to be remembered for the unpredictability measure. For "r" and */
- /* "phi_sav", the first index from the left is the channel select and */
- /* the second index is the "age" of the data. */
- static int new = 0, old = 1, oldest = 0;
- static int init = 0, flush, syncsize, sfreq_idx;
- /* The following static variables are constants. */
- static double nmt = 5.5;
- static FLOAT crit_band[27] = {0, 100, 200, 300, 400, 510, 630, 770,
- 920, 1080, 1270,1480,1720,2000,2320, 2700,
- 3150, 3700, 4400,5300,6400,7700,9500,12000,
- 15500,25000,30000};
- static FLOAT bmax[27] = {20.0, 20.0, 20.0, 20.0, 20.0, 17.0, 15.0,
- 10.0, 7.0, 4.4, 4.5, 4.5, 4.5, 4.5,
- 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5,
- 4.5, 4.5, 4.5, 3.5, 3.5, 3.5};
- /* The following pointer variables point to large areas of memory */
- /* dynamically allocated by the mem_alloc() function. Dynamic memory */
- /* allocation is used in order to avoid stack frame or data area */
- /* overflow errors that otherwise would have occurred at compile time */
- /* on the Macintosh computer. */
- FLOAT *grouped_c, *grouped_e, *nb, *cb, *ecb, *bc;
- FLOAT *wsamp_r, *wsamp_i, *phi, *energy;
- FLOAT *c, *fthr;
- F32 *snrtmp;
- static int *numlines;
- static int *partition;
- static FLOAT *cbval, *rnorm;
- static FLOAT *window;
- static FLOAT *absthr;
- static double *tmn;
- static FCB *s;
- static FHBLK *lthr;
- static F2HBLK *r, *phi_sav;
- /* These dynamic memory allocations simulate "automatic" variables */
- /* placed on the stack. For each mem_alloc() call here, there must be */
- /* a corresponding mem_free() call at the end of this function. */
- grouped_c = (FLOAT *) mem_alloc(sizeof(FCB), "grouped_c");
- grouped_e = (FLOAT *) mem_alloc(sizeof(FCB), "grouped_e");
- nb = (FLOAT *) mem_alloc(sizeof(FCB), "nb");
- cb = (FLOAT *) mem_alloc(sizeof(FCB), "cb");
- ecb = (FLOAT *) mem_alloc(sizeof(FCB), "ecb");
- bc = (FLOAT *) mem_alloc(sizeof(FCB), "bc");
- wsamp_r = (FLOAT *) mem_alloc(sizeof(FBLK), "wsamp_r");
- wsamp_i = (FLOAT *) mem_alloc(sizeof(FBLK), "wsamp_i");
- phi = (FLOAT *) mem_alloc(sizeof(FBLK), "phi");
- energy = (FLOAT *) mem_alloc(sizeof(FBLK), "energy");
- c = (FLOAT *) mem_alloc(sizeof(FHBLK), "c");
- fthr = (FLOAT *) mem_alloc(sizeof(FHBLK), "fthr");
- snrtmp = (F32 *) mem_alloc(sizeof(F2_32), "snrtmp");
- if(init==0){
- /* These dynamic memory allocations simulate "static" variables placed */
- /* in the data space. Each mem_alloc() call here occurs only once at */
- /* initialization time. The mem_free() function must not be called. */
- numlines = (int *) mem_alloc(sizeof(ICB), "numlines");
- partition = (int *) mem_alloc(sizeof(IHBLK), "partition");
- cbval = (FLOAT *) mem_alloc(sizeof(FCB), "cbval");
- rnorm = (FLOAT *) mem_alloc(sizeof(FCB), "rnorm");
- window = (FLOAT *) mem_alloc(sizeof(FBLK), "window");
- absthr = (FLOAT *) mem_alloc(sizeof(FHBLK), "absthr");
- tmn = (double *) mem_alloc(sizeof(DCB), "tmn");
- s = (FCB *) mem_alloc(sizeof(FCBCB), "s");
- lthr = (FHBLK *) mem_alloc(sizeof(F2HBLK), "lthr");
- r = (F2HBLK *) mem_alloc(sizeof(F22HBLK), "r");
- phi_sav = (F2HBLK *) mem_alloc(sizeof(F22HBLK), "phi_sav");
- i = sfreq + 0.5;
- switch(i){
- case 32000: sfreq_idx = 0; break;
- case 44100: sfreq_idx = 1; break;
- case 48000: sfreq_idx = 2; break;
- default: printf("error, invalid sampling frequency: %d Hzn",i);
- exit(-1);
- }
- if (verbosity >= 2) printf("absthr[][] sampling frequency index: %dn",sfreq_idx);
- read_absthr(absthr, sfreq_idx);
- if(lay==1){
- flush = 448;
- syncsize = 1024;
- }
- else {
- flush = 384*3.0/2.0;
- syncsize = 1056;
- }
- /* calculate HANN window coefficients */
- for(i=0;i<BLKSIZE;i++)window[i]=0.5*(1-cos(2.0*PI*i/(BLKSIZE-1.0)));
- /* reset states used in unpredictability measure */
- for(i=0;i<HBLKSIZE;i++){
- r[0][0][i]=r[1][0][i]=r[0][1][i]=r[1][1][i]=0;
- phi_sav[0][0][i]=phi_sav[1][0][i]=0;
- phi_sav[0][1][i]=phi_sav[1][1][i]=0;
- lthr[0][i] = 60802371420160.0;
- lthr[1][i] = 60802371420160.0;
- }
- /*****************************************************************************
- * Initialization: Compute the following constants for use later *
- * partition[HBLKSIZE] = the partition number associated with each *
- * frequency line *
- * cbval[CBANDS] = the center (average) bark value of each *
- * partition *
- * numlines[CBANDS] = the number of frequency lines in each partition *
- * tmn[CBANDS] = tone masking noise *
- *****************************************************************************/
- /* compute fft frequency multiplicand */
- freq_mult = sfreq/BLKSIZE;
-
- /* calculate fft frequency, then bval of each line (use fthr[] as tmp storage)*/
- for(i=0;i<HBLKSIZE;i++){
- temp1 = i*freq_mult;
- j = 1;
- while(temp1>crit_band[j])j++;
- fthr[i]=j-1+(temp1-crit_band[j-1])/(crit_band[j]-crit_band[j-1]);
- }
- partition[0] = 0;
- /* temp2 is the counter of the number of frequency lines in each partition */
- temp2 = 1;
- cbval[0]=fthr[0];
- bval_lo=fthr[0];
- for(i=1;i<HBLKSIZE;i++){
- if((fthr[i]-bval_lo)>0.33){
- partition[i]=partition[i-1]+1;
- cbval[partition[i-1]] = cbval[partition[i-1]]/temp2;
- cbval[partition[i]] = fthr[i];
- bval_lo = fthr[i];
- numlines[partition[i-1]] = temp2;
- temp2 = 1;
- }
- else {
- partition[i]=partition[i-1];
- cbval[partition[i]] += fthr[i];
- temp2++;
- }
- }
- numlines[partition[i-1]] = temp2;
- cbval[partition[i-1]] = cbval[partition[i-1]]/temp2;
-
- /************************************************************************
- * Now compute the spreading function, s[j][i], the value of the spread-*
- * ing function, centered at band j, for band i, store for later use *
- ************************************************************************/
- for(j=0;j<CBANDS;j++){
- for(i=0;i<CBANDS;i++){
- temp1 = (cbval[i] - cbval[j])*1.05;
- if(temp1>=0.5 && temp1<=2.5){
- temp2 = temp1 - 0.5;
- temp2 = 8.0 * (temp2*temp2 - 2.0 * temp2);
- }
- else temp2 = 0;
- temp1 += 0.474;
- temp3 = 15.811389+7.5*temp1-17.5*sqrt((double) (1.0+temp1*temp1));
- if(temp3 <= -100) s[i][j] = 0;
- else {
- temp3 = (temp2 + temp3)*LN_TO_LOG10;
- s[i][j] = exp(temp3);
- }
- }
- }
- /* Calculate Tone Masking Noise values */
- for(j=0;j<CBANDS;j++){
- temp1 = 15.5 + cbval[j];
- tmn[j] = (temp1>24.5) ? temp1 : 24.5;
- /* Calculate normalization factors for the net spreading functions */
- rnorm[j] = 0;
- for(i=0;i<CBANDS;i++){
- rnorm[j] += s[j][i];
- }
- }
- init++;
- }
-
- /************************* End of Initialization *****************************/
- switch(lay) {
- case 1:
- case 2:
- for(i=0; i<lay; i++){
- /*****************************************************************************
- * Net offset is 480 samples (1056-576) for layer 2; this is because one must*
- * stagger input data by 256 samples to synchronize psychoacoustic model with*
- * filter bank outputs, then stagger so that center of 1024 FFT window lines *
- * up with center of 576 "new" audio samples. *
- * *
- * For layer 1, the input data still needs to be staggered by 256 samples, *
- * then it must be staggered again so that the 384 "new" samples are centered*
- * in the 1024 FFT window. The net offset is then 576 and you need 448 "new"*
- * samples for each iteration to keep the 384 samples of interest centered *
- *****************************************************************************/
- for(j=0; j<syncsize; j++){
- if(j<(syncsize-flush))savebuf[j] = savebuf[j+flush];
- else savebuf[j] = *buffer++;
- /**window data with HANN window***********************************************/
- if(j<BLKSIZE){
- wsamp_r[j] = window[j]*((FLOAT) savebuf[j]);
- wsamp_i[j] = 0;
- }
- }
- /**Compute FFT****************************************************************/
- fft(wsamp_r,wsamp_i,energy,phi);
- /*****************************************************************************
- * calculate the unpredictability measure, given energy[f] and phi[f] *
- *****************************************************************************/
- for(j=0; j<HBLKSIZE; j++){
- r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];
- phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];
- r[chn][new][j] = sqrt((double) energy[j]);
- phi_sav[chn][new][j] = phi[j];
- temp1=r[chn][new][j] * cos((double) phi[j]) - r_prime * cos((double) phi_prime);
- temp2=r[chn][new][j] * sin((double) phi[j]) - r_prime * sin((double) phi_prime);
- temp3=r[chn][new][j] + fabs((double)r_prime);
- if(temp3 != 0)c[j]=sqrt(temp1*temp1+temp2*temp2)/temp3;
- else c[j] = 0;
- }
- /*only update data "age" pointers after you are done with the second channel */
- /*for layer 1 computations, for the layer 2 double computations, the pointers*/
- /*are reset automatically on the second pass */
- if(lay==2 || chn==1){
- if(new==0){new = 1; oldest = 1;}
- else {new = 0; oldest = 0;}
- if(old==0)old = 1; else old = 0;
- }
- /*****************************************************************************
- * Calculate the grouped, energy-weighted, unpredictability measure, *
- * grouped_c[], and the grouped energy. grouped_e[] *
- *****************************************************************************/
- for(j=1;j<CBANDS;j++){
- grouped_e[j] = 0;
- grouped_c[j] = 0;
- }
- grouped_e[0] = energy[0];
- grouped_c[0] = energy[0]*c[0];
- for(j=1;j<HBLKSIZE;j++){
- grouped_e[partition[j]] += energy[j];
- grouped_c[partition[j]] += energy[j]*c[j];
- }
- /*****************************************************************************
- * convolve the grouped energy-weighted unpredictability measure *
- * and the grouped energy with the spreading function, s[j][k] *
- *****************************************************************************/
- for(j=0;j<CBANDS;j++){
- ecb[j] = 0;
- cb[j] = 0;
- for(k=0;k<CBANDS;k++){
- if(s[j][k] != 0.0){
- ecb[j] += s[j][k]*grouped_e[k];
- cb[j] += s[j][k]*grouped_c[k];
- }
- }
- if(ecb[j] !=0)cb[j] = cb[j]/ecb[j];
- else cb[j] = 0;
- }
- /*****************************************************************************
- * Calculate the required SNR for each of the frequency partitions *
- * this whole section can be accomplished by a table lookup *
- *****************************************************************************/
- for(j=0;j<CBANDS;j++){
- if(cb[j]<.05)cb[j]=0.05;
- else if(cb[j]>.5)cb[j]=0.5;
- tb = -0.434294482*log((double) cb[j])-0.301029996;
- bc[j] = tmn[j]*tb + nmt*(1.0-tb);
- k = cbval[j] + 0.5;
- bc[j] = (bc[j] > bmax[k]) ? bc[j] : bmax[k];
- bc[j] = exp((double) -bc[j]*LN_TO_LOG10);
- }
- /*****************************************************************************
- * Calculate the permissible noise energy level in each of the frequency *
- * partitions. Include absolute threshold and pre-echo controls *
- * this whole section can be accomplished by a table lookup *
- *****************************************************************************/
- for(j=0;j<CBANDS;j++)
- if(rnorm[j] && numlines[j])
- nb[j] = ecb[j]*bc[j]/(rnorm[j]*numlines[j]);
- else nb[j] = 0;
- for(j=0;j<HBLKSIZE;j++){
- /*temp1 is the preliminary threshold */
- temp1=nb[partition[j]];
- temp1=(temp1>absthr[j])?temp1:absthr[j];
- /*do not use pre-echo control for layer 2 because it may do bad things to the*/
- /* MUSICAM bit allocation algorithm */
- if(lay==1){
- fthr[j] = (temp1 < lthr[chn][j]) ? temp1 : lthr[chn][j];
- temp2 = temp1 * 0.00316;
- fthr[j] = (temp2 > fthr[j]) ? temp2 : fthr[j];
- }
- else fthr[j] = temp1;
- lthr[chn][j] = LXMIN*temp1;
- }
- /*****************************************************************************
- * Translate the 512 threshold values to the 32 filter bands of the coder *
- *****************************************************************************/
- for(j=0;j<193;j += 16){
- minthres = 60802371420160.0;
- sum_energy = 0.0;
- for(k=0;k<17;k++){
- if(minthres>fthr[j+k])minthres = fthr[j+k];
- sum_energy += energy[j+k];
- }
- snrtmp[i][j/16] = sum_energy/(minthres * 17.0);
- snrtmp[i][j/16] = 4.342944819 * log((double)snrtmp[i][j/16]);
- }
- for(j=208;j<(HBLKSIZE-1);j += 16){
- minthres = 0.0;
- sum_energy = 0.0;
- for(k=0;k<17;k++){
- minthres += fthr[j+k];
- sum_energy += energy[j+k];
- }
- snrtmp[i][j/16] = sum_energy/minthres;
- snrtmp[i][j/16] = 4.342944819 * log((double)snrtmp[i][j/16]);
- }
- /*****************************************************************************
- * End of Psychoacuostic calculation loop *
- *****************************************************************************/
- }
- for(i=0; i<32; i++){
- if(lay==2)
- snr32[i]=(snrtmp[0][i]>snrtmp[1][i])?snrtmp[0][i]:snrtmp[1][i];
- else snr32[i]=snrtmp[0][i];
- }
- break;
- case 3:
- printf("layer 3 is not currently supportedn");
- break;
- default:
- printf("error, invalid MPEG/audio coding layer: %dn",lay);
- }
- /* These mem_free() calls must correspond with the mem_alloc() calls */
- /* used at the beginning of this function to simulate "automatic" */
- /* variables placed on the stack. */
- mem_free((void **) &grouped_c);
- mem_free((void **) &grouped_e);
- mem_free((void **) &nb);
- mem_free((void **) &cb);
- mem_free((void **) &ecb);
- mem_free((void **) &bc);
- mem_free((void **) &wsamp_r);
- mem_free((void **) &wsamp_i);
- mem_free((void **) &phi);
- mem_free((void **) &energy);
- mem_free((void **) &c);
- mem_free((void **) &fthr);
- mem_free((void **) &snrtmp);
- }
- /******************************************************************************
- routine to read in absthr table from a file.
- ******************************************************************************/
- void read_absthr(float *absthr, long int table)
- {
- FILE *fp;
- long i,j,index;
- float a;
- char t[80], *ta = "absthr_0";
-
- switch(table){
- case 0 : ta[7] = '0';
- break;
- case 1 : ta[7] = '1';
- break;
- case 2 : ta[7] = '2';
- break;
- default : printf("absthr table: Not valid table numbern");
- }
- if(!(fp = OpenTableFile(ta) ) ){
- printf("Please check %s tablen", ta);
- exit(0);
- }
- fgets(t, 150, fp);
- sscanf(t, "table %ld", &index);
- if(index != table){
- printf("error in absthr table %s",ta);
- exit(0);
- }
- for(j=0; j<HBLKSIZE; j++){
- fgets(t,80,fp);
- sscanf(t,"%f", &a);
- absthr[j] = a;
- }
- fclose(fp);
- }