fluid_chorus.c
上传用户:tjmskj2
上传日期:2020-08-17
资源大小:577k
文件大小:16k
- /*
- * August 24, 1998
- * Copyright (C) 1998 Juergen Mueller And Sundry Contributors
- * This source code is freely redistributable and may be used for
- * any purpose. This copyright notice must be maintained.
- * Juergen Mueller And Sundry Contributors are not responsible for
- * the consequences of using this software.
- */
- /*
- CHANGES
- - Adapted for fluidsynth, Peter Hanappe, March 2002
- - Variable delay line implementation using bandlimited
- interpolation, code reorganization: Markus Nentwig May 2002
- */
- /*
- * Chorus effect.
- *
- * Flow diagram scheme for n delays ( 1 <= n <= MAX_CHORUS ):
- *
- * * gain-in ___
- * ibuff -----+--------------------------------------------->| |
- * | _________ | |
- * | | | * level 1 | |
- * +---->| delay 1 |----------------------------->| |
- * | |_________| | |
- * | /| | |
- * : | | |
- * : +-----------------+ +--------------+ | + |
- * : | Delay control 1 |<--| mod. speed 1 | | |
- * : +-----------------+ +--------------+ | |
- * | _________ | |
- * | | | * level n | |
- * +---->| delay n |----------------------------->| |
- * |_________| | |
- * /| |___|
- * | |
- * +-----------------+ +--------------+ | * gain-out
- * | Delay control n |<--| mod. speed n | |
- * +-----------------+ +--------------+ +----->obuff
- *
- *
- * The delay i is controlled by a sine or triangle modulation i ( 1 <= i <= n).
- *
- * The delay of each block is modulated between 0..depth ms
- *
- */
- /* Variable delay line implementation
- * ==================================
- *
- * The modulated delay needs the value of the delayed signal between
- * samples. A lowpass filter is used to obtain intermediate values
- * between samples (bandlimited interpolation). The sample pulse
- * train is convoluted with the impulse response of the low pass
- * filter (sinc function). To make it work with a small number of
- * samples, the sinc function is windowed (Hamming window).
- *
- */
- #include "fluid_chorus.h"
- #include "fluid_sys.h"
- #define MAX_CHORUS 99
- #define MAX_DELAY 100
- #define MAX_DEPTH 10
- #define MIN_SPEED_HZ 0.29
- #define MAX_SPEED_HZ 5
- /* Length of one delay line in samples:
- * Set through MAX_SAMPLES_LN2.
- * For example:
- * MAX_SAMPLES_LN2=12
- * => MAX_SAMPLES=pow(2,12)=4096
- * => MAX_SAMPLES_ANDMASK=4095
- */
- #define MAX_SAMPLES_LN2 12
- #define MAX_SAMPLES (1 << (MAX_SAMPLES_LN2-1))
- #define MAX_SAMPLES_ANDMASK (MAX_SAMPLES-1)
- /* Interpolate how many steps between samples? Must be power of two
- For example: 8 => use a resolution of 256 steps between any two
- samples
- */
- #define INTERPOLATION_SUBSAMPLES_LN2 8
- #define INTERPOLATION_SUBSAMPLES (1 << (INTERPOLATION_SUBSAMPLES_LN2-1))
- #define INTERPOLATION_SUBSAMPLES_ANDMASK (INTERPOLATION_SUBSAMPLES-1)
- /* Use how many samples for interpolation? Must be odd. '7' sounds
- relatively clean, when listening to the modulated delay signal
- alone. For a demo on aliasing try '1' With '3', the aliasing is
- still quite pronounced for some input frequencies
- */
- #define INTERPOLATION_SAMPLES 5
- /* Private data for SKEL file */
- struct _fluid_chorus_t {
- int type;
- fluid_real_t depth_ms;
- fluid_real_t level;
- fluid_real_t speed_Hz;
- int number_blocks;
- fluid_real_t *chorusbuf;
- int counter;
- long phase[MAX_CHORUS];
- long modulation_period_samples;
- int *lookup_tab;
- fluid_real_t sample_rate;
- /* sinc lookup table */
- fluid_real_t sinc_table[INTERPOLATION_SAMPLES][INTERPOLATION_SUBSAMPLES];
- };
- static void fluid_chorus_triangle(int *buf, int len, int depth);
- static void fluid_chorus_sine(int *buf, int len, int depth);
- fluid_chorus_t*
- new_fluid_chorus(fluid_real_t sample_rate)
- {
- int i; int ii;
- fluid_chorus_t* chorus;
- chorus = FLUID_NEW(fluid_chorus_t);
- if (chorus == NULL) {
- fluid_log(FLUID_PANIC, "chorus: Out of memory");
- return NULL;
- }
- FLUID_MEMSET(chorus, 0, sizeof(fluid_chorus_t));
- chorus->sample_rate = sample_rate;
- /* Lookup table for the SI function (impulse response of an ideal low pass) */
- /* i: Offset in terms of whole samples */
- for (i = 0; i < INTERPOLATION_SAMPLES; i++){
- /* ii: Offset in terms of fractional samples ('subsamples') */
- for (ii = 0; ii < INTERPOLATION_SUBSAMPLES; ii++){
- /* Move the origin into the center of the table */
- double i_shifted = ((double) i- ((double) INTERPOLATION_SAMPLES) / 2.
- + (double) ii / (double) INTERPOLATION_SUBSAMPLES);
- if (fabs(i_shifted) < 0.000001) {
- /* sinc(0) cannot be calculated straightforward (limit needed
- for 0/0) */
- chorus->sinc_table[i][ii] = (fluid_real_t)1.;
- } else {
- chorus->sinc_table[i][ii] = (fluid_real_t)sin(i_shifted * M_PI) / (M_PI * i_shifted);
- /* Hamming window */
- chorus->sinc_table[i][ii] *= (fluid_real_t)0.5 * (1.0 + cos(2.0 * M_PI * i_shifted / (fluid_real_t)INTERPOLATION_SAMPLES));
- };
- };
- };
- /* allocate lookup tables */
- chorus->lookup_tab = FLUID_ARRAY(int, (int) (chorus->sample_rate / MIN_SPEED_HZ));
- if (chorus->lookup_tab == NULL) {
- fluid_log(FLUID_PANIC, "chorus: Out of memory");
- goto error_recovery;
- }
- /* allocate sample buffer */
- chorus->chorusbuf = FLUID_ARRAY(fluid_real_t, MAX_SAMPLES);
- if (chorus->chorusbuf == NULL) {
- fluid_log(FLUID_PANIC, "chorus: Out of memory");
- goto error_recovery;
- }
- if (fluid_chorus_init(chorus) != FLUID_OK){
- goto error_recovery;
- };
- return chorus;
- error_recovery:
- delete_fluid_chorus(chorus);
- return NULL;
- }
- void
- delete_fluid_chorus(fluid_chorus_t* chorus)
- {
- if (chorus == NULL) {
- return;
- }
- if (chorus->chorusbuf != NULL) {
- FLUID_FREE(chorus->chorusbuf);
- }
- if (chorus->lookup_tab != NULL) {
- FLUID_FREE(chorus->lookup_tab);
- }
- FLUID_FREE(chorus);
- }
- int
- fluid_chorus_init(fluid_chorus_t* chorus)
- {
- int i;
- for (i = 0; i < MAX_SAMPLES; i++) {
- chorus->chorusbuf[i] = 0.0;
- }
- /* initialize the chorus with the default settings */
- fluid_chorus_set (chorus, FLUID_CHORUS_SET_ALL, FLUID_CHORUS_DEFAULT_N,
- FLUID_CHORUS_DEFAULT_LEVEL, FLUID_CHORUS_DEFAULT_SPEED,
- FLUID_CHORUS_DEFAULT_DEPTH, FLUID_CHORUS_MOD_SINE);
- return FLUID_OK;
- }
- void
- fluid_chorus_reset(fluid_chorus_t* chorus)
- {
- fluid_chorus_init(chorus);
- }
- /**
- * Set one or more chorus parameters.
- * @param chorus Chorus instance
- * @param set Flags indicating which chorus parameters to set (#fluid_chorus_set_t)
- * @param nr Chorus voice count (0-99, CPU time consumption proportional to
- * this value)
- * @param level Chorus level (0.0-1.0)
- * @param speed Chorus speed in Hz (0.29-5.0)
- * @param depth_ms Chorus depth (max value depends on synth sample rate,
- * 0.0-21.0 is safe for sample rate values up to 96KHz)
- * @param type Chorus waveform type (#fluid_chorus_mod)
- */
- void
- fluid_chorus_set(fluid_chorus_t* chorus, int set, int nr, float level,
- float speed, float depth_ms, int type)
- {
- int modulation_depth_samples;
- int i;
- if (set & FLUID_CHORUS_SET_NR) chorus->number_blocks = nr;
- if (set & FLUID_CHORUS_SET_LEVEL) chorus->level = level;
- if (set & FLUID_CHORUS_SET_SPEED) chorus->speed_Hz = speed;
- if (set & FLUID_CHORUS_SET_DEPTH) chorus->depth_ms = depth_ms;
- if (set & FLUID_CHORUS_SET_TYPE) chorus->type = type;
- if (chorus->number_blocks < 0) {
- fluid_log(FLUID_WARN, "chorus: number blocks must be >=0! Setting value to 0.");
- chorus->number_blocks = 0;
- } else if (chorus->number_blocks > MAX_CHORUS) {
- fluid_log(FLUID_WARN, "chorus: number blocks larger than max. allowed! Setting value to %d.",
- MAX_CHORUS);
- chorus->number_blocks = MAX_CHORUS;
- }
- if (chorus->speed_Hz < MIN_SPEED_HZ) {
- fluid_log(FLUID_WARN, "chorus: speed is too low (min %f)! Setting value to min.",
- (double) MIN_SPEED_HZ);
- chorus->speed_Hz = MIN_SPEED_HZ;
- } else if (chorus->speed_Hz > MAX_SPEED_HZ) {
- fluid_log(FLUID_WARN, "chorus: speed must be below %f Hz! Setting value to max.",
- (double) MAX_SPEED_HZ);
- chorus->speed_Hz = MAX_SPEED_HZ;
- }
- if (chorus->depth_ms < 0.0) {
- fluid_log(FLUID_WARN, "chorus: depth must be positive! Setting value to 0.");
- chorus->depth_ms = 0.0;
- }
- /* Depth: Check for too high value through modulation_depth_samples. */
- if (chorus->level < 0.0) {
- fluid_log(FLUID_WARN, "chorus: level must be positive! Setting value to 0.");
- chorus->level = 0.0;
- } else if (chorus->level > 10) {
- fluid_log(FLUID_WARN, "chorus: level must be < 10. A reasonable level is << 1! "
- "Setting it to 0.1.");
- chorus->level = 0.1;
- }
- /* The modulating LFO goes through a full period every x samples: */
- chorus->modulation_period_samples = chorus->sample_rate / chorus->speed_Hz;
- /* The variation in delay time is x: */
- modulation_depth_samples = (int)
- (chorus->depth_ms / 1000.0 /* convert modulation depth in ms to s*/
- * chorus->sample_rate);
- if (modulation_depth_samples > MAX_SAMPLES) {
- fluid_log(FLUID_WARN, "chorus: Too high depth. Setting it to max (%d).", MAX_SAMPLES);
- modulation_depth_samples = MAX_SAMPLES;
- }
- /* initialize LFO table */
- if (chorus->type == FLUID_CHORUS_MOD_SINE) {
- fluid_chorus_sine(chorus->lookup_tab, chorus->modulation_period_samples,
- modulation_depth_samples);
- } else if (chorus->type == FLUID_CHORUS_MOD_TRIANGLE) {
- fluid_chorus_triangle(chorus->lookup_tab, chorus->modulation_period_samples,
- modulation_depth_samples);
- } else {
- fluid_log(FLUID_WARN, "chorus: Unknown modulation type. Using sinewave.");
- chorus->type = FLUID_CHORUS_MOD_SINE;
- fluid_chorus_sine(chorus->lookup_tab, chorus->modulation_period_samples,
- modulation_depth_samples);
- }
- for (i = 0; i < chorus->number_blocks; i++) {
- /* Set the phase of the chorus blocks equally spaced */
- chorus->phase[i] = (int) ((double) chorus->modulation_period_samples
- * (double) i / (double) chorus->number_blocks);
- }
- /* Start of the circular buffer */
- chorus->counter = 0;
- }
- void fluid_chorus_processmix(fluid_chorus_t* chorus, fluid_real_t *in,
- fluid_real_t *left_out, fluid_real_t *right_out)
- {
- int sample_index;
- int i;
- fluid_real_t d_in, d_out;
- for (sample_index = 0; sample_index < FLUID_BUFSIZE; sample_index++) {
- d_in = in[sample_index];
- d_out = 0.0f;
- # if 0
- /* Debug: Listen to the chorus signal only */
- left_out[sample_index]=0;
- right_out[sample_index]=0;
- #endif
- /* Write the current sample into the circular buffer */
- chorus->chorusbuf[chorus->counter] = d_in;
- for (i = 0; i < chorus->number_blocks; i++) {
- int ii;
- /* Calculate the delay in subsamples for the delay line of chorus block nr. */
- /* The value in the lookup table is so, that this expression
- * will always be positive. It will always include a number of
- * full periods of MAX_SAMPLES*INTERPOLATION_SUBSAMPLES to
- * remain positive at all times. */
- int pos_subsamples = (INTERPOLATION_SUBSAMPLES * chorus->counter
- - chorus->lookup_tab[chorus->phase[i]]);
- int pos_samples = pos_subsamples/INTERPOLATION_SUBSAMPLES;
- /* modulo divide by INTERPOLATION_SUBSAMPLES */
- pos_subsamples &= INTERPOLATION_SUBSAMPLES_ANDMASK;
- for (ii = 0; ii < INTERPOLATION_SAMPLES; ii++){
- /* Add the delayed signal to the chorus sum d_out Note: The
- * delay in the delay line moves backwards for increasing
- * delay!*/
- /* The & in chorusbuf[...] is equivalent to a division modulo
- MAX_SAMPLES, only faster. */
- d_out += chorus->chorusbuf[pos_samples & MAX_SAMPLES_ANDMASK]
- * chorus->sinc_table[ii][pos_subsamples];
- pos_samples--;
- };
- /* Cycle the phase of the modulating LFO */
- chorus->phase[i]++;
- chorus->phase[i] %= (chorus->modulation_period_samples);
- } /* foreach chorus block */
- d_out *= chorus->level;
- /* Add the chorus sum d_out to output */
- left_out[sample_index] += d_out;
- right_out[sample_index] += d_out;
- /* Move forward in circular buffer */
- chorus->counter++;
- chorus->counter %= MAX_SAMPLES;
- } /* foreach sample */
- }
- /* Duplication of code ... (replaces sample data instead of mixing) */
- void fluid_chorus_processreplace(fluid_chorus_t* chorus, fluid_real_t *in,
- fluid_real_t *left_out, fluid_real_t *right_out)
- {
- int sample_index;
- int i;
- fluid_real_t d_in, d_out;
- for (sample_index = 0; sample_index < FLUID_BUFSIZE; sample_index++) {
- d_in = in[sample_index];
- d_out = 0.0f;
- # if 0
- /* Debug: Listen to the chorus signal only */
- left_out[sample_index]=0;
- right_out[sample_index]=0;
- #endif
- /* Write the current sample into the circular buffer */
- chorus->chorusbuf[chorus->counter] = d_in;
- for (i = 0; i < chorus->number_blocks; i++) {
- int ii;
- /* Calculate the delay in subsamples for the delay line of chorus block nr. */
- /* The value in the lookup table is so, that this expression
- * will always be positive. It will always include a number of
- * full periods of MAX_SAMPLES*INTERPOLATION_SUBSAMPLES to
- * remain positive at all times. */
- int pos_subsamples = (INTERPOLATION_SUBSAMPLES * chorus->counter
- - chorus->lookup_tab[chorus->phase[i]]);
- int pos_samples = pos_subsamples / INTERPOLATION_SUBSAMPLES;
- /* modulo divide by INTERPOLATION_SUBSAMPLES */
- pos_subsamples &= INTERPOLATION_SUBSAMPLES_ANDMASK;
- for (ii = 0; ii < INTERPOLATION_SAMPLES; ii++){
- /* Add the delayed signal to the chorus sum d_out Note: The
- * delay in the delay line moves backwards for increasing
- * delay!*/
- /* The & in chorusbuf[...] is equivalent to a division modulo
- MAX_SAMPLES, only faster. */
- d_out += chorus->chorusbuf[pos_samples & MAX_SAMPLES_ANDMASK]
- * chorus->sinc_table[ii][pos_subsamples];
- pos_samples--;
- };
- /* Cycle the phase of the modulating LFO */
- chorus->phase[i]++;
- chorus->phase[i] %= (chorus->modulation_period_samples);
- } /* foreach chorus block */
- d_out *= chorus->level;
- /* Store the chorus sum d_out to output */
- left_out[sample_index] = d_out;
- right_out[sample_index] = d_out;
- /* Move forward in circular buffer */
- chorus->counter++;
- chorus->counter %= MAX_SAMPLES;
- } /* foreach sample */
- }
- /* Purpose:
- *
- * Calculates a modulation waveform (sine) Its value ( modulo
- * MAXSAMPLES) varies between 0 and depth*INTERPOLATION_SUBSAMPLES.
- * Its period length is len. The waveform data will be used modulo
- * MAXSAMPLES only. Since MAXSAMPLES is substracted from the waveform
- * a couple of times here, the resulting (current position in
- * buffer)-(waveform sample) will always be positive.
- */
- static void
- fluid_chorus_sine(int *buf, int len, int depth)
- {
- int i;
- double val;
- for (i = 0; i < len; i++) {
- val = sin((double) i / (double)len * 2.0 * M_PI);
- buf[i] = (int) ((1.0 + val) * (double) depth / 2.0 * (double) INTERPOLATION_SUBSAMPLES);
- buf[i] -= 3* MAX_SAMPLES * INTERPOLATION_SUBSAMPLES;
- // printf("%i %in",i,buf[i]);
- }
- }
- /* Purpose:
- * Calculates a modulation waveform (triangle)
- * See fluid_chorus_sine for comments.
- */
- static void
- fluid_chorus_triangle(int *buf, int len, int depth)
- {
- int i=0;
- int ii=len-1;
- double val;
- double val2;
- while (i <= ii){
- val = i * 2.0 / len * (double)depth * (double) INTERPOLATION_SUBSAMPLES;
- val2= (int) (val + 0.5) - 3 * MAX_SAMPLES * INTERPOLATION_SUBSAMPLES;
- buf[i++] = (int) val2;
- buf[ii--] = (int) val2;
- }
- }