pctolsp3.c
资源名称:celp32c.rar [点击查看]
上传用户:tsjrly
上传日期:2021-02-19
资源大小:107k
文件大小:8k
源码类别:
语音压缩
开发平台:
C/C++
- /**************************************************************************
- *
- * ROUTINE
- * pctolsp3
- *
- * FUNCTION
- *
- * compute LSP from predictor polynomial and quantize it
- *
- * SYNOPSIS
- * subroutine pctolsp3(a, freq, bits, findex)
- *
- * formal
- *
- * data I/O
- * name type type function
- * -------------------------------------------------------------------
- * a float i a-polynomial a(0)=1
- * freq float i/o lsp frequency array/
- * output quantized frequency array
- * bits int i bit allocation
- * findex int o frequency index array
- *
- *
- ***************************************************************************
- *
- * DESCRIPTION
- *
- * Compte the LSPs using Chebyshev polynomials and then quantize.
- *
- * Taken from code written by Lionel Wolovitz, PSION PLC
- *
- ***************************************************************************
- *
- * CALLED BY
- *
- * celp
- *
- * CALLS
- *
- *
- **************************************************************************
- *
- * REFRENCES
- *
- * Peter Kabal and Ravi Prakash Ramachandran, "The Computation of
- * Line Spectral Frequencies Using Chebyshev Polynomials," IEEE
- * Transactions on Acoustics, Speech, and Signal Processing,
- * Vol. ASSP-34, No. 6, December 1986
- *
- **************************************************************************/
- #include <math.h>
- #include "ccsub.h"
- /* Extracts of code to do LSP root finding from predictor coefficients, and
- to convert back from roots to predictor coefficients. */
- static float lsp[MAXNO][16] =
- {
- {0.01250000, 0.02125000, 0.02812500, 0.03125000,
- 0.03500000, 0.04250000, 0.05250000, 0.06250000},
- {0.02625000, 0.02937500, 0.03312500, 0.03687500,
- 0.04062500, 0.04500000, 0.05000000, 0.05500000,
- 0.06000000, 0.06500000, 0.07000000, 0.07625000,
- 0.08375000, 0.09250000, 0.10125000, 0.11000000},
- {0.05250000, 0.05750000, 0.06250000, 0.06750000,
- 0.07312500, 0.08000000, 0.08812500, 0.09687500,
- 0.10625000, 0.11875000, 0.13125000, 0.14375000,
- 0.15625000, 0.16875000, 0.18125000, 0.19375000},
- {0.07750000, 0.08250000, 0.09000000, 0.09937500,
- 0.11000000, 0.12125000, 0.13500000, 0.14625000,
- 0.15875000, 0.17125000, 0.18375000, 0.19625000,
- 0.20875000, 0.22125000, 0.23375000, 0.24625000},
- {0.12500000, 0.13125000, 0.14125000, 0.15125000,
- 0.16062500, 0.16875000, 0.17875000, 0.18875000,
- 0.19875000, 0.20875000, 0.21875000, 0.23125000,
- 0.24375000, 0.25625000, 0.26875000, 0.28125000},
- {0.18375000, 0.19625000, 0.21125000, 0.22875000,
- 0.25000000, 0.27500000, 0.30000000, 0.32500000},
- {0.22500000, 0.23500000, 0.24500000, 0.26250000,
- 0.28750000, 0.31000000, 0.33750000, 0.36250000},
- {0.27812500, 0.30000000, 0.31562500, 0.33125000,
- 0.35000000, 0.36875000, 0.39375000, 0.41875000},
- {0.34500000, 0.36000000, 0.37500000, 0.38750000,
- 0.40000000, 0.41375000, 0.42875000, 0.44375000},
- {0.39875000, 0.40875000, 0.41875000, 0.42750000,
- 0.43625000, 0.44875000, 0.46375000, 0.47875000}
- };
- static float table[MAXNO][17] =
- {
- { 0.99691746, 0.99110012, 0.98442723, 0.98078609,
- 0.97591778, 0.96455891, 0.94608763, 0.92388272,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
- { 0.98642983, 0.98301624, 0.97841983, 0.97328029,
- 0.96760046, 0.96029536, 0.95105858, 0.94088325,
- 0.92977943, 0.91775807, 0.90483103, 0.88741813,
- 0.86471905, 0.83581413, 0.80438365, 0.77052259, -2.0},
- { 0.94608763, 0.93544674, 0.92388272, 0.91140698,
- 0.89629734, 0.87631182, 0.85058793, 0.82040883,
- 0.78532570, 0.73433325, 0.67881359, 0.61910900,
- 0.55558755, 0.48864087, 0.41868168, 0.34614129, -2.0},
- { 0.88377046, 0.86863696, 0.84433435, 0.81132672,
- 0.77052259, 0.72358094, 0.66132536, 0.60669785,
- 0.54245932, 0.47487648, 0.40436600, 0.33136257,
- 0.25631627, 0.17968976, 0.10195545, 0.02359258, -2.0},
- { 0.70711856, 0.67881359, 0.63136740, 0.58142959,
- 0.53252513, 0.48864087, 0.43289406, 0.37543889,
- 0.31650210, 0.25631627, 0.19511892, 0.11756801,
- 0.03929228, -0.03922568, -0.11750182, -0.19505355, -2.0},
- { 0.40436600, 0.33136257, 0.24110239, 0.13315156,
- 0.00003333, -0.15639826, -0.30897896, -0.45395190,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
- { 0.15646409, 0.09413950, 0.03144340, -0.07842421,
- -0.23340810, -0.36808613, -0.52246020, -0.64941130,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
- {-0.17575978, -0.30897896, -0.40071028, -0.48858271,
- -0.58774750, -0.67876465, -0.78528443, -0.87246873,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
- {-0.56204534, -0.63738701, -0.70707143, -0.76037242,
- -0.80898565, -0.85668907, -0.90143037, -0.93817086,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
- {-0.80434405, -0.84006400, -0.87246873, -0.89800250,
- -0.92082280, -0.94858126, -0.97415943, -0.99109125,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000,
- -2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0}
- };
- pctolsp3(a, freq, sbits, findex)
- int *findex, *sbits;
- float *a, *freq;
- {
- register int index;
- int *f, *s;
- float prev1, prev2;
- float *r, *x3, *x4, temp, temp0, temp1, temp2;
- float q[6], p[6];
- q[1] = a[1] + a[10] - 1.0;
- q[2] = a[2] + a[9] - q[1];
- q[3] = a[3] + a[8] - q[2];
- q[4] = a[4] + a[7] - q[3];
- q[5] = a[5] + a[6] - q[4];
- q[5] /= 2.0;
- p[1] = a[1] - a[10] + 1.0;
- p[2] = a[2] - a[9] + p[1];
- p[3] = a[3] - a[8] + p[2];
- p[4] = a[4] - a[7] + p[3];
- p[5] = a[5] - a[6] + p[4];
- p[5] /= 2.0;
- prev1 = 9e9;
- prev2 = 9e9;
- x3 = (&table[0][0]);
- x4 = (&lsp[0][0]);
- r = (&freq[0]);
- s = (&sbits[0]);
- f = (&findex[0]);
- index = 0;
- for (;;)
- {
- for (;;)
- {
- /* evaluate sum polynomial (5 adds, 4 subs, 4 muls) */
- temp = (x3[index]);
- temp1 = 2.0*temp + q[1];
- temp2 = 2.0*temp*temp1 - 1.0 + q[2];
- temp0 = 2.0*temp*temp2 - temp1 + q[3];
- temp1 = 2.0*temp*temp0 - temp2 + q[4];
- temp2 = temp*temp1 - temp0 + q[5];
- /* look for sign change */
- if ((temp2*prev1) < 0.0 || index+1 == 1<<*s)
- {
- if (fabs(temp2) < fabs(prev1))
- (*r++) = (x4[index]);
- else
- (*r++) = (x4[--index]);
- if (prev1 < 0.0)
- prev1 = 9e9;
- else
- prev1 = (-9e9);
- *f++ = index;
- if (r < (&freq[10]))
- {
- x3 += 17;
- x4 += 16;
- s++;
- index = 0;
- while (x4[index] < *(r-1)) index++;
- break;
- }
- else
- return;
- }
- prev1 = temp2;
- index++;
- }
- for (;;)
- {
- /* evaluate sum polynomial (5 adds, 4 subs, 4 muls) */
- temp = (x3[index]);
- temp1 = 2.0*temp + p[1];
- temp2 = 2.0*temp*temp1 - 1.0 + p[2];
- temp0 = 2.0*temp*temp2 - temp1 + p[3];
- temp1 = 2.0*temp*temp0 - temp2 + p[4];
- temp2 = temp*temp1 - temp0 + p[5];
- /* look for sign change */
- if ((temp2*prev2) < 0.0 || index+1 == 1<<*s)
- {
- if (fabs(temp2) < fabs(prev2))
- (*r++) = (x4[index]);
- else
- (*r++) = (x4[--index]);
- if (prev2 < 0.0)
- prev2 = 9e9;
- else
- prev2 = (-9e9);
- *f++ = index;
- if (r < (&freq[10]))
- {
- x3 += 17;
- x4 += 16;
- s++;
- index = 0;
- while (x4[index] < *(r-1)) index++;
- break;
- }
- else
- return;
- }
- prev2 = temp2;
- index++;
- }
- }
- }