m4math.cpp
上传用户:king477883
上传日期:2021-03-01
资源大小:9553k
文件大小:19k
- /**
- * @file m4math.cpp
- * @brief LLMatrix4 class implementation.
- *
- * $LicenseInfo:firstyear=2000&license=viewergpl$
- *
- * Copyright (c) 2000-2010, Linden Research, Inc.
- *
- * Second Life Viewer Source Code
- * The source code in this file ("Source Code") is provided by Linden Lab
- * to you under the terms of the GNU General Public License, version 2.0
- * ("GPL"), unless you have obtained a separate licensing agreement
- * ("Other License"), formally executed by you and Linden Lab. Terms of
- * the GPL can be found in doc/GPL-license.txt in this distribution, or
- * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
- *
- * There are special exceptions to the terms and conditions of the GPL as
- * it is applied to this Source Code. View the full text of the exception
- * in the file doc/FLOSS-exception.txt in this software distribution, or
- * online at
- * http://secondlifegrid.net/programs/open_source/licensing/flossexception
- *
- * By copying, modifying or distributing this software, you acknowledge
- * that you have read and understood your obligations described above,
- * and agree to abide by those obligations.
- *
- * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
- * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
- * COMPLETENESS OR PERFORMANCE.
- * $/LicenseInfo$
- */
- #include "linden_common.h"
- //#include "vmath.h"
- #include "v3math.h"
- #include "v4math.h"
- #include "m4math.h"
- #include "m3math.h"
- #include "llquaternion.h"
- // LLMatrix4
- // Constructors
- LLMatrix4::LLMatrix4(const F32 *mat)
- {
- mMatrix[0][0] = mat[0];
- mMatrix[0][1] = mat[1];
- mMatrix[0][2] = mat[2];
- mMatrix[0][3] = mat[3];
- mMatrix[1][0] = mat[4];
- mMatrix[1][1] = mat[5];
- mMatrix[1][2] = mat[6];
- mMatrix[1][3] = mat[7];
- mMatrix[2][0] = mat[8];
- mMatrix[2][1] = mat[9];
- mMatrix[2][2] = mat[10];
- mMatrix[2][3] = mat[11];
- mMatrix[3][0] = mat[12];
- mMatrix[3][1] = mat[13];
- mMatrix[3][2] = mat[14];
- mMatrix[3][3] = mat[15];
- }
- LLMatrix4::LLMatrix4(const LLMatrix3 &mat, const LLVector4 &vec)
- {
- mMatrix[0][0] = mat.mMatrix[0][0];
- mMatrix[0][1] = mat.mMatrix[0][1];
- mMatrix[0][2] = mat.mMatrix[0][2];
- mMatrix[0][3] = 0.f;
- mMatrix[1][0] = mat.mMatrix[1][0];
- mMatrix[1][1] = mat.mMatrix[1][1];
- mMatrix[1][2] = mat.mMatrix[1][2];
- mMatrix[1][3] = 0.f;
- mMatrix[2][0] = mat.mMatrix[2][0];
- mMatrix[2][1] = mat.mMatrix[2][1];
- mMatrix[2][2] = mat.mMatrix[2][2];
- mMatrix[2][3] = 0.f;
- mMatrix[3][0] = vec.mV[0];
- mMatrix[3][1] = vec.mV[1];
- mMatrix[3][2] = vec.mV[2];
- mMatrix[3][3] = 1.f;
- }
- LLMatrix4::LLMatrix4(const LLMatrix3 &mat)
- {
- mMatrix[0][0] = mat.mMatrix[0][0];
- mMatrix[0][1] = mat.mMatrix[0][1];
- mMatrix[0][2] = mat.mMatrix[0][2];
- mMatrix[0][3] = 0.f;
- mMatrix[1][0] = mat.mMatrix[1][0];
- mMatrix[1][1] = mat.mMatrix[1][1];
- mMatrix[1][2] = mat.mMatrix[1][2];
- mMatrix[1][3] = 0.f;
- mMatrix[2][0] = mat.mMatrix[2][0];
- mMatrix[2][1] = mat.mMatrix[2][1];
- mMatrix[2][2] = mat.mMatrix[2][2];
- mMatrix[2][3] = 0.f;
- mMatrix[3][0] = 0.f;
- mMatrix[3][1] = 0.f;
- mMatrix[3][2] = 0.f;
- mMatrix[3][3] = 1.f;
- }
- LLMatrix4::LLMatrix4(const LLQuaternion &q)
- {
- *this = initRotation(q);
- }
- LLMatrix4::LLMatrix4(const LLQuaternion &q, const LLVector4 &pos)
- {
- *this = initRotTrans(q, pos);
- }
- LLMatrix4::LLMatrix4(const F32 angle, const LLVector4 &vec, const LLVector4 &pos)
- {
- initRotTrans(LLQuaternion(angle, vec), pos);
- }
- LLMatrix4::LLMatrix4(const F32 angle, const LLVector4 &vec)
- {
- initRotation(LLQuaternion(angle, vec));
- mMatrix[3][0] = 0.f;
- mMatrix[3][1] = 0.f;
- mMatrix[3][2] = 0.f;
- mMatrix[3][3] = 1.f;
- }
- LLMatrix4::LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw, const LLVector4 &pos)
- {
- LLMatrix3 mat(roll, pitch, yaw);
- initRotTrans(LLQuaternion(mat), pos);
- }
- LLMatrix4::LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw)
- {
- LLMatrix3 mat(roll, pitch, yaw);
- initRotation(LLQuaternion(mat));
- mMatrix[3][0] = 0.f;
- mMatrix[3][1] = 0.f;
- mMatrix[3][2] = 0.f;
- mMatrix[3][3] = 1.f;
- }
- LLMatrix4::~LLMatrix4(void)
- {
- }
- // Clear and Assignment Functions
- const LLMatrix4& LLMatrix4::setZero()
- {
- mMatrix[0][0] = 0.f;
- mMatrix[0][1] = 0.f;
- mMatrix[0][2] = 0.f;
- mMatrix[0][3] = 0.f;
- mMatrix[1][0] = 0.f;
- mMatrix[1][1] = 0.f;
- mMatrix[1][2] = 0.f;
- mMatrix[1][3] = 0.f;
- mMatrix[2][0] = 0.f;
- mMatrix[2][1] = 0.f;
- mMatrix[2][2] = 0.f;
- mMatrix[2][3] = 0.f;
- mMatrix[3][0] = 0.f;
- mMatrix[3][1] = 0.f;
- mMatrix[3][2] = 0.f;
- mMatrix[3][3] = 0.f;
- return *this;
- }
- // various useful mMatrix functions
- const LLMatrix4& LLMatrix4::transpose()
- {
- LLMatrix4 mat;
- mat.mMatrix[0][0] = mMatrix[0][0];
- mat.mMatrix[1][0] = mMatrix[0][1];
- mat.mMatrix[2][0] = mMatrix[0][2];
- mat.mMatrix[3][0] = mMatrix[0][3];
- mat.mMatrix[0][1] = mMatrix[1][0];
- mat.mMatrix[1][1] = mMatrix[1][1];
- mat.mMatrix[2][1] = mMatrix[1][2];
- mat.mMatrix[3][1] = mMatrix[1][3];
- mat.mMatrix[0][2] = mMatrix[2][0];
- mat.mMatrix[1][2] = mMatrix[2][1];
- mat.mMatrix[2][2] = mMatrix[2][2];
- mat.mMatrix[3][2] = mMatrix[2][3];
- mat.mMatrix[0][3] = mMatrix[3][0];
- mat.mMatrix[1][3] = mMatrix[3][1];
- mat.mMatrix[2][3] = mMatrix[3][2];
- mat.mMatrix[3][3] = mMatrix[3][3];
- *this = mat;
- return *this;
- }
- F32 LLMatrix4::determinant() const
- {
- llerrs << "Not implemented!" << llendl;
- return 0.f;
- }
- // Only works for pure orthonormal, homogeneous transform matrices.
- const LLMatrix4& LLMatrix4::invert(void)
- {
- // transpose the rotation part
- F32 temp;
- temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp;
- temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp;
- temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp;
- // rotate the translation part by the new rotation
- // (temporarily store in empty column of matrix)
- U32 j;
- for (j=0; j<3; j++)
- {
- mMatrix[j][VW] = mMatrix[VW][VX] * mMatrix[VX][j] +
- mMatrix[VW][VY] * mMatrix[VY][j] +
- mMatrix[VW][VZ] * mMatrix[VZ][j];
- }
- // negate and copy the temporary vector back to the tranlation row
- mMatrix[VW][VX] = -mMatrix[VX][VW];
- mMatrix[VW][VY] = -mMatrix[VY][VW];
- mMatrix[VW][VZ] = -mMatrix[VZ][VW];
- // zero the empty column again
- mMatrix[VX][VW] = mMatrix[VY][VW] = mMatrix[VZ][VW] = 0.0f;
-
- return *this;
- }
- LLVector4 LLMatrix4::getFwdRow4() const
- {
- return LLVector4(mMatrix[VX][VX], mMatrix[VX][VY], mMatrix[VX][VZ], mMatrix[VX][VW]);
- }
- LLVector4 LLMatrix4::getLeftRow4() const
- {
- return LLVector4(mMatrix[VY][VX], mMatrix[VY][VY], mMatrix[VY][VZ], mMatrix[VY][VW]);
- }
- LLVector4 LLMatrix4::getUpRow4() const
- {
- return LLVector4(mMatrix[VZ][VX], mMatrix[VZ][VY], mMatrix[VZ][VZ], mMatrix[VZ][VW]);
- }
- // SJB: This code is correct for a logicly stored (non-transposed) matrix;
- // Our matrices are stored transposed, OpenGL style, so this generates the
- // INVERSE quaternion (-x, -y, -z, w)!
- // Because we use similar logic in LLQuaternion::getMatrix3,
- // we are internally consistant so everything works OK :)
- LLQuaternion LLMatrix4::quaternion() const
- {
- LLQuaternion quat;
- F32 tr, s, q[4];
- U32 i, j, k;
- U32 nxt[3] = {1, 2, 0};
- tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2];
- // check the diagonal
- if (tr > 0.f)
- {
- s = (F32)sqrt (tr + 1.f);
- quat.mQ[VS] = s / 2.f;
- s = 0.5f / s;
- quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s;
- quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s;
- quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s;
- }
- else
- {
- // diagonal is negative
- i = 0;
- if (mMatrix[1][1] > mMatrix[0][0])
- i = 1;
- if (mMatrix[2][2] > mMatrix[i][i])
- i = 2;
- j = nxt[i];
- k = nxt[j];
- s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f);
- q[i] = s * 0.5f;
- if (s != 0.f)
- s = 0.5f / s;
- q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s;
- q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s;
- q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s;
- quat.setQuat(q);
- }
- return quat;
- }
- void LLMatrix4::initRows(const LLVector4 &row0,
- const LLVector4 &row1,
- const LLVector4 &row2,
- const LLVector4 &row3)
- {
- mMatrix[0][0] = row0.mV[0];
- mMatrix[0][1] = row0.mV[1];
- mMatrix[0][2] = row0.mV[2];
- mMatrix[0][3] = row0.mV[3];
- mMatrix[1][0] = row1.mV[0];
- mMatrix[1][1] = row1.mV[1];
- mMatrix[1][2] = row1.mV[2];
- mMatrix[1][3] = row1.mV[3];
- mMatrix[2][0] = row2.mV[0];
- mMatrix[2][1] = row2.mV[1];
- mMatrix[2][2] = row2.mV[2];
- mMatrix[2][3] = row2.mV[3];
- mMatrix[3][0] = row3.mV[0];
- mMatrix[3][1] = row3.mV[1];
- mMatrix[3][2] = row3.mV[2];
- mMatrix[3][3] = row3.mV[3];
- }
- const LLMatrix4& LLMatrix4::initRotation(const F32 angle, const F32 x, const F32 y, const F32 z)
- {
- LLMatrix3 mat(angle, x, y, z);
- return initMatrix(mat);
- }
- const LLMatrix4& LLMatrix4::initRotation(F32 angle, const LLVector4 &vec)
- {
- LLMatrix3 mat(angle, vec);
- return initMatrix(mat);
- }
- const LLMatrix4& LLMatrix4::initRotation(const F32 roll, const F32 pitch, const F32 yaw)
- {
- LLMatrix3 mat(roll, pitch, yaw);
- return initMatrix(mat);
- }
- const LLMatrix4& LLMatrix4::initRotation(const LLQuaternion &q)
- {
- LLMatrix3 mat(q);
- return initMatrix(mat);
- }
- // Position and Rotation
- const LLMatrix4& LLMatrix4::initRotTrans(const F32 angle, const F32 rx, const F32 ry, const F32 rz,
- const F32 tx, const F32 ty, const F32 tz)
- {
- LLMatrix3 mat(angle, rx, ry, rz);
- LLVector3 translation(tx, ty, tz);
- initMatrix(mat);
- setTranslation(translation);
- return (*this);
- }
- const LLMatrix4& LLMatrix4::initRotTrans(const F32 angle, const LLVector3 &axis, const LLVector3&translation)
- {
- LLMatrix3 mat(angle, axis);
- initMatrix(mat);
- setTranslation(translation);
- return (*this);
- }
- const LLMatrix4& LLMatrix4::initRotTrans(const F32 roll, const F32 pitch, const F32 yaw, const LLVector4 &translation)
- {
- LLMatrix3 mat(roll, pitch, yaw);
- initMatrix(mat);
- setTranslation(translation);
- return (*this);
- }
- /*
- const LLMatrix4& LLMatrix4::initRotTrans(const LLVector4 &fwd,
- const LLVector4 &left,
- const LLVector4 &up,
- const LLVector4 &translation)
- {
- LLMatrix3 mat(fwd, left, up);
- initMatrix(mat);
- setTranslation(translation);
- return (*this);
- }
- */
- const LLMatrix4& LLMatrix4::initRotTrans(const LLQuaternion &q, const LLVector4 &translation)
- {
- LLMatrix3 mat(q);
- initMatrix(mat);
- setTranslation(translation);
- return (*this);
- }
- const LLMatrix4& LLMatrix4::initAll(const LLVector3 &scale, const LLQuaternion &q, const LLVector3 &pos)
- {
- F32 sx, sy, sz;
- F32 xx, xy, xz, xw, yy, yz, yw, zz, zw;
- sx = scale.mV[0];
- sy = scale.mV[1];
- sz = scale.mV[2];
- xx = q.mQ[VX] * q.mQ[VX];
- xy = q.mQ[VX] * q.mQ[VY];
- xz = q.mQ[VX] * q.mQ[VZ];
- xw = q.mQ[VX] * q.mQ[VW];
- yy = q.mQ[VY] * q.mQ[VY];
- yz = q.mQ[VY] * q.mQ[VZ];
- yw = q.mQ[VY] * q.mQ[VW];
- zz = q.mQ[VZ] * q.mQ[VZ];
- zw = q.mQ[VZ] * q.mQ[VW];
- mMatrix[0][0] = (1.f - 2.f * ( yy + zz )) *sx;
- mMatrix[0][1] = ( 2.f * ( xy + zw )) *sx;
- mMatrix[0][2] = ( 2.f * ( xz - yw )) *sx;
- mMatrix[1][0] = ( 2.f * ( xy - zw )) *sy;
- mMatrix[1][1] = (1.f - 2.f * ( xx + zz )) *sy;
- mMatrix[1][2] = ( 2.f * ( yz + xw )) *sy;
- mMatrix[2][0] = ( 2.f * ( xz + yw )) *sz;
- mMatrix[2][1] = ( 2.f * ( yz - xw )) *sz;
- mMatrix[2][2] = (1.f - 2.f * ( xx + yy )) *sz;
- mMatrix[3][0] = pos.mV[0];
- mMatrix[3][1] = pos.mV[1];
- mMatrix[3][2] = pos.mV[2];
- mMatrix[3][3] = 1.0;
- // TODO -- should we set the translation portion to zero?
- return (*this);
- }
- // Rotate exisitng mMatrix
- const LLMatrix4& LLMatrix4::rotate(const F32 angle, const F32 x, const F32 y, const F32 z)
- {
- LLVector4 vec4(x, y, z);
- LLMatrix4 mat(angle, vec4);
- *this *= mat;
- return *this;
- }
- const LLMatrix4& LLMatrix4::rotate(const F32 angle, const LLVector4 &vec)
- {
- LLMatrix4 mat(angle, vec);
- *this *= mat;
- return *this;
- }
- const LLMatrix4& LLMatrix4::rotate(const F32 roll, const F32 pitch, const F32 yaw)
- {
- LLMatrix4 mat(roll, pitch, yaw);
- *this *= mat;
- return *this;
- }
- const LLMatrix4& LLMatrix4::rotate(const LLQuaternion &q)
- {
- LLMatrix4 mat(q);
- *this *= mat;
- return *this;
- }
- const LLMatrix4& LLMatrix4::translate(const LLVector3 &vec)
- {
- mMatrix[3][0] += vec.mV[0];
- mMatrix[3][1] += vec.mV[1];
- mMatrix[3][2] += vec.mV[2];
- return (*this);
- }
- void LLMatrix4::setFwdRow(const LLVector3 &row)
- {
- mMatrix[VX][VX] = row.mV[VX];
- mMatrix[VX][VY] = row.mV[VY];
- mMatrix[VX][VZ] = row.mV[VZ];
- }
- void LLMatrix4::setLeftRow(const LLVector3 &row)
- {
- mMatrix[VY][VX] = row.mV[VX];
- mMatrix[VY][VY] = row.mV[VY];
- mMatrix[VY][VZ] = row.mV[VZ];
- }
- void LLMatrix4::setUpRow(const LLVector3 &row)
- {
- mMatrix[VZ][VX] = row.mV[VX];
- mMatrix[VZ][VY] = row.mV[VY];
- mMatrix[VZ][VZ] = row.mV[VZ];
- }
- void LLMatrix4::setFwdCol(const LLVector3 &col)
- {
- mMatrix[VX][VX] = col.mV[VX];
- mMatrix[VY][VX] = col.mV[VY];
- mMatrix[VZ][VX] = col.mV[VZ];
- }
- void LLMatrix4::setLeftCol(const LLVector3 &col)
- {
- mMatrix[VX][VY] = col.mV[VX];
- mMatrix[VY][VY] = col.mV[VY];
- mMatrix[VZ][VY] = col.mV[VZ];
- }
- void LLMatrix4::setUpCol(const LLVector3 &col)
- {
- mMatrix[VX][VZ] = col.mV[VX];
- mMatrix[VY][VZ] = col.mV[VY];
- mMatrix[VZ][VZ] = col.mV[VZ];
- }
- const LLMatrix4& LLMatrix4::setTranslation(const F32 tx, const F32 ty, const F32 tz)
- {
- mMatrix[VW][VX] = tx;
- mMatrix[VW][VY] = ty;
- mMatrix[VW][VZ] = tz;
- return (*this);
- }
- const LLMatrix4& LLMatrix4::setTranslation(const LLVector3 &translation)
- {
- mMatrix[VW][VX] = translation.mV[VX];
- mMatrix[VW][VY] = translation.mV[VY];
- mMatrix[VW][VZ] = translation.mV[VZ];
- return (*this);
- }
- const LLMatrix4& LLMatrix4::setTranslation(const LLVector4 &translation)
- {
- mMatrix[VW][VX] = translation.mV[VX];
- mMatrix[VW][VY] = translation.mV[VY];
- mMatrix[VW][VZ] = translation.mV[VZ];
- return (*this);
- }
- // LLMatrix3 Extraction and Setting
- LLMatrix3 LLMatrix4::getMat3() const
- {
- LLMatrix3 retmat;
- retmat.mMatrix[0][0] = mMatrix[0][0];
- retmat.mMatrix[0][1] = mMatrix[0][1];
- retmat.mMatrix[0][2] = mMatrix[0][2];
- retmat.mMatrix[1][0] = mMatrix[1][0];
- retmat.mMatrix[1][1] = mMatrix[1][1];
- retmat.mMatrix[1][2] = mMatrix[1][2];
- retmat.mMatrix[2][0] = mMatrix[2][0];
- retmat.mMatrix[2][1] = mMatrix[2][1];
- retmat.mMatrix[2][2] = mMatrix[2][2];
- return retmat;
- }
- const LLMatrix4& LLMatrix4::initMatrix(const LLMatrix3 &mat)
- {
- mMatrix[0][0] = mat.mMatrix[0][0];
- mMatrix[0][1] = mat.mMatrix[0][1];
- mMatrix[0][2] = mat.mMatrix[0][2];
- mMatrix[0][3] = 0.f;
- mMatrix[1][0] = mat.mMatrix[1][0];
- mMatrix[1][1] = mat.mMatrix[1][1];
- mMatrix[1][2] = mat.mMatrix[1][2];
- mMatrix[1][3] = 0.f;
- mMatrix[2][0] = mat.mMatrix[2][0];
- mMatrix[2][1] = mat.mMatrix[2][1];
- mMatrix[2][2] = mat.mMatrix[2][2];
- mMatrix[2][3] = 0.f;
- mMatrix[3][0] = 0.f;
- mMatrix[3][1] = 0.f;
- mMatrix[3][2] = 0.f;
- mMatrix[3][3] = 1.f;
- return (*this);
- }
- const LLMatrix4& LLMatrix4::initMatrix(const LLMatrix3 &mat, const LLVector4 &translation)
- {
- mMatrix[0][0] = mat.mMatrix[0][0];
- mMatrix[0][1] = mat.mMatrix[0][1];
- mMatrix[0][2] = mat.mMatrix[0][2];
- mMatrix[0][3] = 0.f;
- mMatrix[1][0] = mat.mMatrix[1][0];
- mMatrix[1][1] = mat.mMatrix[1][1];
- mMatrix[1][2] = mat.mMatrix[1][2];
- mMatrix[1][3] = 0.f;
- mMatrix[2][0] = mat.mMatrix[2][0];
- mMatrix[2][1] = mat.mMatrix[2][1];
- mMatrix[2][2] = mat.mMatrix[2][2];
- mMatrix[2][3] = 0.f;
- mMatrix[3][0] = translation.mV[0];
- mMatrix[3][1] = translation.mV[1];
- mMatrix[3][2] = translation.mV[2];
- mMatrix[3][3] = 1.f;
- return (*this);
- }
- // LLMatrix4 Operators
- /* Not implemented to help enforce code consistency with the syntax of
- row-major notation. This is a Good Thing.
- LLVector4 operator*(const LLMatrix4 &a, const LLVector4 &b)
- {
- // Operate "to the right" on column-vector b
- LLVector4 vec;
- vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] +
- a.mMatrix[VY][VX] * b.mV[VY] +
- a.mMatrix[VZ][VX] * b.mV[VZ] +
- a.mMatrix[VW][VX] * b.mV[VW];
- vec.mV[VY] = a.mMatrix[VX][VY] * b.mV[VX] +
- a.mMatrix[VY][VY] * b.mV[VY] +
- a.mMatrix[VZ][VY] * b.mV[VZ] +
- a.mMatrix[VW][VY] * b.mV[VW];
- vec.mV[VZ] = a.mMatrix[VX][VZ] * b.mV[VX] +
- a.mMatrix[VY][VZ] * b.mV[VY] +
- a.mMatrix[VZ][VZ] * b.mV[VZ] +
- a.mMatrix[VW][VZ] * b.mV[VW];
- vec.mV[VW] = a.mMatrix[VX][VW] * b.mV[VX] +
- a.mMatrix[VY][VW] * b.mV[VY] +
- a.mMatrix[VZ][VW] * b.mV[VZ] +
- a.mMatrix[VW][VW] * b.mV[VW];
- return vec;
- }
- */
- LLVector4 operator*(const LLVector4 &a, const LLMatrix4 &b)
- {
- // Operate "to the left" on row-vector a
- return LLVector4(a.mV[VX] * b.mMatrix[VX][VX] +
- a.mV[VY] * b.mMatrix[VY][VX] +
- a.mV[VZ] * b.mMatrix[VZ][VX] +
- a.mV[VW] * b.mMatrix[VW][VX],
- a.mV[VX] * b.mMatrix[VX][VY] +
- a.mV[VY] * b.mMatrix[VY][VY] +
- a.mV[VZ] * b.mMatrix[VZ][VY] +
- a.mV[VW] * b.mMatrix[VW][VY],
- a.mV[VX] * b.mMatrix[VX][VZ] +
- a.mV[VY] * b.mMatrix[VY][VZ] +
- a.mV[VZ] * b.mMatrix[VZ][VZ] +
- a.mV[VW] * b.mMatrix[VW][VZ],
- a.mV[VX] * b.mMatrix[VX][VW] +
- a.mV[VY] * b.mMatrix[VY][VW] +
- a.mV[VZ] * b.mMatrix[VZ][VW] +
- a.mV[VW] * b.mMatrix[VW][VW]);
- }
- LLVector4 rotate_vector(const LLVector4 &a, const LLMatrix4 &b)
- {
- // Rotates but does not translate
- // Operate "to the left" on row-vector a
- LLVector4 vec;
- vec.mV[VX] = a.mV[VX] * b.mMatrix[VX][VX] +
- a.mV[VY] * b.mMatrix[VY][VX] +
- a.mV[VZ] * b.mMatrix[VZ][VX];
- vec.mV[VY] = a.mV[VX] * b.mMatrix[VX][VY] +
- a.mV[VY] * b.mMatrix[VY][VY] +
- a.mV[VZ] * b.mMatrix[VZ][VY];
- vec.mV[VZ] = a.mV[VX] * b.mMatrix[VX][VZ] +
- a.mV[VY] * b.mMatrix[VY][VZ] +
- a.mV[VZ] * b.mMatrix[VZ][VZ];
- // vec.mV[VW] = a.mV[VX] * b.mMatrix[VX][VW] +
- // a.mV[VY] * b.mMatrix[VY][VW] +
- // a.mV[VZ] * b.mMatrix[VZ][VW] +
- vec.mV[VW] = a.mV[VW];
- return vec;
- }
- LLVector3 rotate_vector(const LLVector3 &a, const LLMatrix4 &b)
- {
- // Rotates but does not translate
- // Operate "to the left" on row-vector a
- LLVector3 vec;
- vec.mV[VX] = a.mV[VX] * b.mMatrix[VX][VX] +
- a.mV[VY] * b.mMatrix[VY][VX] +
- a.mV[VZ] * b.mMatrix[VZ][VX];
- vec.mV[VY] = a.mV[VX] * b.mMatrix[VX][VY] +
- a.mV[VY] * b.mMatrix[VY][VY] +
- a.mV[VZ] * b.mMatrix[VZ][VY];
- vec.mV[VZ] = a.mV[VX] * b.mMatrix[VX][VZ] +
- a.mV[VY] * b.mMatrix[VY][VZ] +
- a.mV[VZ] * b.mMatrix[VZ][VZ];
- return vec;
- }
- bool operator==(const LLMatrix4 &a, const LLMatrix4 &b)
- {
- U32 i, j;
- for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
- {
- if (a.mMatrix[j][i] != b.mMatrix[j][i])
- return FALSE;
- }
- }
- return TRUE;
- }
- bool operator!=(const LLMatrix4 &a, const LLMatrix4 &b)
- {
- U32 i, j;
- for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
- {
- if (a.mMatrix[j][i] != b.mMatrix[j][i])
- return TRUE;
- }
- }
- return FALSE;
- }
- const LLMatrix4& operator*=(LLMatrix4 &a, F32 k)
- {
- U32 i, j;
- for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
- {
- a.mMatrix[j][i] *= k;
- }
- }
- return a;
- }
- std::ostream& operator<<(std::ostream& s, const LLMatrix4 &a)
- {
- s << "{ "
- << a.mMatrix[VX][VX] << ", "
- << a.mMatrix[VX][VY] << ", "
- << a.mMatrix[VX][VZ] << ", "
- << a.mMatrix[VX][VW]
- << "; "
- << a.mMatrix[VY][VX] << ", "
- << a.mMatrix[VY][VY] << ", "
- << a.mMatrix[VY][VZ] << ", "
- << a.mMatrix[VY][VW]
- << "; "
- << a.mMatrix[VZ][VX] << ", "
- << a.mMatrix[VZ][VY] << ", "
- << a.mMatrix[VZ][VZ] << ", "
- << a.mMatrix[VZ][VW]
- << "; "
- << a.mMatrix[VW][VX] << ", "
- << a.mMatrix[VW][VY] << ", "
- << a.mMatrix[VW][VZ] << ", "
- << a.mMatrix[VW][VW]
- << " }";
- return s;
- }