m3math.cpp
上传用户:king477883
上传日期:2021-03-01
资源大小:9553k
文件大小:15k
- /**
- * @file m3math.cpp
- * @brief LLMatrix3 class implementation.
- *
- * $LicenseInfo:firstyear=2000&license=viewergpl$
- *
- * Copyright (c) 2000-2010, Linden Research, Inc.
- *
- * Second Life Viewer Source Code
- * The source code in this file ("Source Code") is provided by Linden Lab
- * to you under the terms of the GNU General Public License, version 2.0
- * ("GPL"), unless you have obtained a separate licensing agreement
- * ("Other License"), formally executed by you and Linden Lab. Terms of
- * the GPL can be found in doc/GPL-license.txt in this distribution, or
- * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
- *
- * There are special exceptions to the terms and conditions of the GPL as
- * it is applied to this Source Code. View the full text of the exception
- * in the file doc/FLOSS-exception.txt in this software distribution, or
- * online at
- * http://secondlifegrid.net/programs/open_source/licensing/flossexception
- *
- * By copying, modifying or distributing this software, you acknowledge
- * that you have read and understood your obligations described above,
- * and agree to abide by those obligations.
- *
- * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
- * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
- * COMPLETENESS OR PERFORMANCE.
- * $/LicenseInfo$
- */
- #include "linden_common.h"
- //#include "vmath.h"
- #include "v3math.h"
- #include "v3dmath.h"
- #include "v4math.h"
- #include "m4math.h"
- #include "m3math.h"
- #include "llquaternion.h"
- // LLMatrix3
- // ji
- // LLMatrix3 = |00 01 02 |
- // |10 11 12 |
- // |20 21 22 |
- // LLMatrix3 = |fx fy fz | forward-axis
- // |lx ly lz | left-axis
- // |ux uy uz | up-axis
- // Constructors
- LLMatrix3::LLMatrix3(const LLQuaternion &q)
- {
- setRot(q);
- }
- LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec)
- {
- LLQuaternion quat(angle, vec);
- setRot(quat);
- }
- LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec)
- {
- LLVector3 vec_f;
- vec_f.setVec(vec);
- LLQuaternion quat(angle, vec_f);
- setRot(quat);
- }
- LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec)
- {
- LLQuaternion quat(angle, vec);
- setRot(quat);
- }
- LLMatrix3::LLMatrix3(const F32 angle, const F32 x, const F32 y, const F32 z)
- {
- LLVector3 vec(x, y, z);
- LLQuaternion quat(angle, vec);
- setRot(quat);
- }
- LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw)
- {
- setRot(roll,pitch,yaw);
- }
- // From Matrix and Quaternion FAQ
- void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const
- {
- F64 angle_x, angle_y, angle_z;
- F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z
- F64 sx, sz; // sine of angle_x, angle_y, angle_z
- angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f));
- cy = cos(angle_y);
- if (fabs(cy) > 0.005) // non-zero
- {
- // no gimbal lock
- cx = mMatrix[2][2] / cy;
- sx = - mMatrix[2][1] / cy;
- angle_x = (F32) atan2(sx, cx);
- cz = mMatrix[0][0] / cy;
- sz = - mMatrix[1][0] / cy;
- angle_z = (F32) atan2(sz, cz);
- }
- else
- {
- // yup, gimbal lock
- angle_x = 0;
- // some tricky math thereby avoided, see article
- cz = mMatrix[1][1];
- sz = mMatrix[0][1];
- angle_z = atan2(sz, cz);
- }
- *roll = (F32)angle_x;
- *pitch = (F32)angle_y;
- *yaw = (F32)angle_z;
- }
-
- // Clear and Assignment Functions
- const LLMatrix3& LLMatrix3::setIdentity()
- {
- mMatrix[0][0] = 1.f;
- mMatrix[0][1] = 0.f;
- mMatrix[0][2] = 0.f;
- mMatrix[1][0] = 0.f;
- mMatrix[1][1] = 1.f;
- mMatrix[1][2] = 0.f;
- mMatrix[2][0] = 0.f;
- mMatrix[2][1] = 0.f;
- mMatrix[2][2] = 1.f;
- return (*this);
- }
- const LLMatrix3& LLMatrix3::clear()
- {
- mMatrix[0][0] = 0.f;
- mMatrix[0][1] = 0.f;
- mMatrix[0][2] = 0.f;
- mMatrix[1][0] = 0.f;
- mMatrix[1][1] = 0.f;
- mMatrix[1][2] = 0.f;
- mMatrix[2][0] = 0.f;
- mMatrix[2][1] = 0.f;
- mMatrix[2][2] = 0.f;
- return (*this);
- }
- const LLMatrix3& LLMatrix3::setZero()
- {
- mMatrix[0][0] = 0.f;
- mMatrix[0][1] = 0.f;
- mMatrix[0][2] = 0.f;
- mMatrix[1][0] = 0.f;
- mMatrix[1][1] = 0.f;
- mMatrix[1][2] = 0.f;
- mMatrix[2][0] = 0.f;
- mMatrix[2][1] = 0.f;
- mMatrix[2][2] = 0.f;
- return (*this);
- }
- // various useful mMatrix functions
- const LLMatrix3& LLMatrix3::transpose()
- {
- // transpose the matrix
- F32 temp;
- temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp;
- temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp;
- temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp;
- return *this;
- }
- F32 LLMatrix3::determinant() const
- {
- // Is this a useful method when we assume the matrices are valid rotation
- // matrices throughout this implementation?
- return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) +
- mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) +
- mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]);
- }
- // inverts this matrix
- void LLMatrix3::invert()
- {
- // fails silently if determinant is zero too small
- F32 det = determinant();
- const F32 VERY_SMALL_DETERMINANT = 0.000001f;
- if (fabs(det) > VERY_SMALL_DETERMINANT)
- {
- // invertiable
- LLMatrix3 t(*this);
- mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det;
- mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det;
- mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det;
- mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det;
- mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det;
- mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det;
- mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det;
- mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det;
- mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det;
- }
- }
- // does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized
- const LLMatrix3& LLMatrix3::adjointTranspose()
- {
- LLMatrix3 adjoint_transpose;
- adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ;
- adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ;
- adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ;
- adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ;
- adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ;
- adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ;
- adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ;
- adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ;
- adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ;
- *this = adjoint_transpose;
- return *this;
- }
- // SJB: This code is correct for a logicly stored (non-transposed) matrix;
- // Our matrices are stored transposed, OpenGL style, so this generates the
- // INVERSE quaternion (-x, -y, -z, w)!
- // Because we use similar logic in LLQuaternion::getMatrix3,
- // we are internally consistant so everything works OK :)
- LLQuaternion LLMatrix3::quaternion() const
- {
- LLQuaternion quat;
- F32 tr, s, q[4];
- U32 i, j, k;
- U32 nxt[3] = {1, 2, 0};
- tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2];
- // check the diagonal
- if (tr > 0.f)
- {
- s = (F32)sqrt (tr + 1.f);
- quat.mQ[VS] = s / 2.f;
- s = 0.5f / s;
- quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s;
- quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s;
- quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s;
- }
- else
- {
- // diagonal is negative
- i = 0;
- if (mMatrix[1][1] > mMatrix[0][0])
- i = 1;
- if (mMatrix[2][2] > mMatrix[i][i])
- i = 2;
- j = nxt[i];
- k = nxt[j];
- s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f);
- q[i] = s * 0.5f;
- if (s != 0.f)
- s = 0.5f / s;
- q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s;
- q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s;
- q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s;
- quat.setQuat(q);
- }
- return quat;
- }
- // These functions take Rotation arguments
- const LLMatrix3& LLMatrix3::setRot(const F32 angle, const F32 x, const F32 y, const F32 z)
- {
- setRot(LLQuaternion(angle,x,y,z));
- return *this;
- }
- const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec)
- {
- setRot(LLQuaternion(angle, vec));
- return *this;
- }
- const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw)
- {
- // Rotates RH about x-axis by 'roll' then
- // rotates RH about the old y-axis by 'pitch' then
- // rotates RH about the original z-axis by 'yaw'.
- // .
- // /| yaw axis
- // | __.
- // ._ ___| /| pitch axis
- // _|| \ |-. /
- // || ________|___/_______
- // | _ _ o o o_o_o_o o /__ ________ roll axis
- // // /_______/ /__________> /
- // /_,-' // /
- // /__,-'
- F32 cx, sx, cy, sy, cz, sz;
- F32 cxsy, sxsy;
- cx = (F32)cos(roll); //A
- sx = (F32)sin(roll); //B
- cy = (F32)cos(pitch); //C
- sy = (F32)sin(pitch); //D
- cz = (F32)cos(yaw); //E
- sz = (F32)sin(yaw); //F
- cxsy = cx * sy; //AD
- sxsy = sx * sy; //BD
- mMatrix[0][0] = cy * cz;
- mMatrix[1][0] = -cy * sz;
- mMatrix[2][0] = sy;
- mMatrix[0][1] = sxsy * cz + cx * sz;
- mMatrix[1][1] = -sxsy * sz + cx * cz;
- mMatrix[2][1] = -sx * cy;
- mMatrix[0][2] = -cxsy * cz + sx * sz;
- mMatrix[1][2] = cxsy * sz + sx * cz;
- mMatrix[2][2] = cx * cy;
- return *this;
- }
- const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q)
- {
- *this = q.getMatrix3();
- return *this;
- }
- const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up)
- {
- mMatrix[0][0] = fwd.mV[0];
- mMatrix[0][1] = fwd.mV[1];
- mMatrix[0][2] = fwd.mV[2];
- mMatrix[1][0] = left.mV[0];
- mMatrix[1][1] = left.mV[1];
- mMatrix[1][2] = left.mV[2];
- mMatrix[2][0] = up.mV[0];
- mMatrix[2][1] = up.mV[1];
- mMatrix[2][2] = up.mV[2];
- return *this;
- }
- const LLMatrix3& LLMatrix3::setRow( U32 rowIndex, const LLVector3& row )
- {
- llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 );
- mMatrix[rowIndex][0] = row[0];
- mMatrix[rowIndex][1] = row[1];
- mMatrix[rowIndex][2] = row[2];
- return *this;
- }
- const LLMatrix3& LLMatrix3::setCol( U32 colIndex, const LLVector3& col )
- {
- llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 );
- mMatrix[0][colIndex] = col[0];
- mMatrix[1][colIndex] = col[1];
- mMatrix[2][colIndex] = col[2];
- return *this;
- }
-
- // Rotate exisitng mMatrix
- const LLMatrix3& LLMatrix3::rotate(const F32 angle, const F32 x, const F32 y, const F32 z)
- {
- LLMatrix3 mat(angle, x, y, z);
- *this *= mat;
- return *this;
- }
- const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec)
- {
- LLMatrix3 mat(angle, vec);
- *this *= mat;
- return *this;
- }
- const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw)
- {
- LLMatrix3 mat(roll, pitch, yaw);
- *this *= mat;
- return *this;
- }
- const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q)
- {
- LLMatrix3 mat(q);
- *this *= mat;
- return *this;
- }
- void LLMatrix3::add(const LLMatrix3& other_matrix)
- {
- for (S32 i = 0; i < 3; ++i)
- {
- for (S32 j = 0; j < 3; ++j)
- {
- mMatrix[i][j] += other_matrix.mMatrix[i][j];
- }
- }
- }
- LLVector3 LLMatrix3::getFwdRow() const
- {
- return LLVector3(mMatrix[VX]);
- }
- LLVector3 LLMatrix3::getLeftRow() const
- {
- return LLVector3(mMatrix[VY]);
- }
- LLVector3 LLMatrix3::getUpRow() const
- {
- return LLVector3(mMatrix[VZ]);
- }
- const LLMatrix3& LLMatrix3::orthogonalize()
- {
- LLVector3 x_axis(mMatrix[VX]);
- LLVector3 y_axis(mMatrix[VY]);
- LLVector3 z_axis(mMatrix[VZ]);
- x_axis.normVec();
- y_axis -= x_axis * (x_axis * y_axis);
- y_axis.normVec();
- z_axis = x_axis % y_axis;
- setRows(x_axis, y_axis, z_axis);
- return (*this);
- }
- // LLMatrix3 Operators
- LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b)
- {
- U32 i, j;
- LLMatrix3 mat;
- for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
- {
- mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
- a.mMatrix[j][1] * b.mMatrix[1][i] +
- a.mMatrix[j][2] * b.mMatrix[2][i];
- }
- }
- return mat;
- }
- /* Not implemented to help enforce code consistency with the syntax of
- row-major notation. This is a Good Thing.
- LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b)
- {
- LLVector3 vec;
- // matrix operates "from the left" on column vector
- vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] +
- a.mMatrix[VX][VY] * b.mV[VY] +
- a.mMatrix[VX][VZ] * b.mV[VZ];
-
- vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] +
- a.mMatrix[VY][VY] * b.mV[VY] +
- a.mMatrix[VY][VZ] * b.mV[VZ];
-
- vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] +
- a.mMatrix[VZ][VY] * b.mV[VY] +
- a.mMatrix[VZ][VZ] * b.mV[VZ];
- return vec;
- }
- */
- LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b)
- {
- // matrix operates "from the right" on row vector
- return LLVector3(
- a.mV[VX] * b.mMatrix[VX][VX] +
- a.mV[VY] * b.mMatrix[VY][VX] +
- a.mV[VZ] * b.mMatrix[VZ][VX],
-
- a.mV[VX] * b.mMatrix[VX][VY] +
- a.mV[VY] * b.mMatrix[VY][VY] +
- a.mV[VZ] * b.mMatrix[VZ][VY],
-
- a.mV[VX] * b.mMatrix[VX][VZ] +
- a.mV[VY] * b.mMatrix[VY][VZ] +
- a.mV[VZ] * b.mMatrix[VZ][VZ] );
- }
- LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b)
- {
- // matrix operates "from the right" on row vector
- return LLVector3d(
- a.mdV[VX] * b.mMatrix[VX][VX] +
- a.mdV[VY] * b.mMatrix[VY][VX] +
- a.mdV[VZ] * b.mMatrix[VZ][VX],
-
- a.mdV[VX] * b.mMatrix[VX][VY] +
- a.mdV[VY] * b.mMatrix[VY][VY] +
- a.mdV[VZ] * b.mMatrix[VZ][VY],
-
- a.mdV[VX] * b.mMatrix[VX][VZ] +
- a.mdV[VY] * b.mMatrix[VY][VZ] +
- a.mdV[VZ] * b.mMatrix[VZ][VZ] );
- }
- bool operator==(const LLMatrix3 &a, const LLMatrix3 &b)
- {
- U32 i, j;
- for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
- {
- if (a.mMatrix[j][i] != b.mMatrix[j][i])
- return FALSE;
- }
- }
- return TRUE;
- }
- bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b)
- {
- U32 i, j;
- for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
- {
- if (a.mMatrix[j][i] != b.mMatrix[j][i])
- return TRUE;
- }
- }
- return FALSE;
- }
- const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b)
- {
- U32 i, j;
- LLMatrix3 mat;
- for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
- {
- for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
- {
- mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
- a.mMatrix[j][1] * b.mMatrix[1][i] +
- a.mMatrix[j][2] * b.mMatrix[2][i];
- }
- }
- a = mat;
- return a;
- }
- const LLMatrix3& operator*=(LLMatrix3 &a, F32 scalar )
- {
- for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i )
- {
- for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j )
- {
- a.mMatrix[i][j] *= scalar;
- }
- }
- return a;
- }
- std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a)
- {
- s << "{ "
- << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; "
- << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; "
- << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ]
- << " }";
- return s;
- }