blas_agmg_win.f
资源名称:SRC.zip [点击查看]
上传用户:qi_qi_qi_
上传日期:2021-11-15
资源大小:35k
文件大小:13k
源码类别:
网格计算
开发平台:
Windows_Unix
- SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
- * .. Scalar Arguments ..
- INTEGER INCX,N
- CHARACTER DIAG,TRANS,UPLO
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION AP(*),X(*)
- * ..
- *
- * Purpose
- * =======
- *
- * DTPSV solves one of the systems of equations
- *
- * A*x = b, or A'*x = b,
- *
- * where b and x are n element vectors and A is an n by n unit, or
- * non-unit, upper or lower triangular matrix, supplied in packed form.
- *
- * No test for singularity or near-singularity is included in this
- * routine. Such tests must be performed before calling this routine.
- *
- * Arguments
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the matrix is an upper or
- * lower triangular matrix as follows:
- *
- * UPLO = 'U' or 'u' A is an upper triangular matrix.
- *
- * UPLO = 'L' or 'l' A is a lower triangular matrix.
- *
- * Unchanged on exit.
- *
- * TRANS - CHARACTER*1.
- * On entry, TRANS specifies the equations to be solved as
- * follows:
- *
- * TRANS = 'N' or 'n' A*x = b.
- *
- * TRANS = 'T' or 't' A'*x = b.
- *
- * TRANS = 'C' or 'c' A'*x = b.
- *
- * Unchanged on exit.
- *
- * DIAG - CHARACTER*1.
- * On entry, DIAG specifies whether or not A is unit
- * triangular as follows:
- *
- * DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *
- * DIAG = 'N' or 'n' A is not assumed to be unit
- * triangular.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * AP - DOUBLE PRECISION array of DIMENSION at least
- * ( ( n*( n + 1 ) )/2 ).
- * Before entry with UPLO = 'U' or 'u', the array AP must
- * contain the upper triangular matrix packed sequentially,
- * column by column, so that AP( 1 ) contains a( 1, 1 ),
- * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
- * respectively, and so on.
- * Before entry with UPLO = 'L' or 'l', the array AP must
- * contain the lower triangular matrix packed sequentially,
- * column by column, so that AP( 1 ) contains a( 1, 1 ),
- * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
- * respectively, and so on.
- * Note that when DIAG = 'U' or 'u', the diagonal elements of
- * A are not referenced, but are assumed to be unity.
- * Unchanged on exit.
- *
- * X - DOUBLE PRECISION array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element right-hand side vector b. On exit, X is overwritten
- * with the solution vector x.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER (ZERO=0.0D+0)
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I,INFO,IX,J,JX,K,KK,KX
- LOGICAL NOUNIT
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (INCX.EQ.0) THEN
- INFO = 7
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('DTPSV ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF (N.EQ.0) RETURN
- *
- NOUNIT = LSAME(DIAG,'N')
- *
- * Set up the start point in X if the increment is not unity. This
- * will be ( N - 1 )*INCX too small for descending loops.
- *
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of AP are
- * accessed sequentially with one pass through AP.
- *
- IF (LSAME(TRANS,'N')) THEN
- *
- * Form x := inv( A )*x.
- *
- IF (LSAME(UPLO,'U')) THEN
- KK = (N* (N+1))/2
- IF (INCX.EQ.1) THEN
- DO 20 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- IF (NOUNIT) X(J) = X(J)/AP(KK)
- TEMP = X(J)
- K = KK - 1
- DO 10 I = J - 1,1,-1
- X(I) = X(I) - TEMP*AP(K)
- K = K - 1
- 10 CONTINUE
- END IF
- KK = KK - J
- 20 CONTINUE
- ELSE
- JX = KX + (N-1)*INCX
- DO 40 J = N,1,-1
- IF (X(JX).NE.ZERO) THEN
- IF (NOUNIT) X(JX) = X(JX)/AP(KK)
- TEMP = X(JX)
- IX = JX
- DO 30 K = KK - 1,KK - J + 1,-1
- IX = IX - INCX
- X(IX) = X(IX) - TEMP*AP(K)
- 30 CONTINUE
- END IF
- JX = JX - INCX
- KK = KK - J
- 40 CONTINUE
- END IF
- ELSE
- KK = 1
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- IF (NOUNIT) X(J) = X(J)/AP(KK)
- TEMP = X(J)
- K = KK + 1
- DO 50 I = J + 1,N
- X(I) = X(I) - TEMP*AP(K)
- K = K + 1
- 50 CONTINUE
- END IF
- KK = KK + (N-J+1)
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- IF (NOUNIT) X(JX) = X(JX)/AP(KK)
- TEMP = X(JX)
- IX = JX
- DO 70 K = KK + 1,KK + N - J
- IX = IX + INCX
- X(IX) = X(IX) - TEMP*AP(K)
- 70 CONTINUE
- END IF
- JX = JX + INCX
- KK = KK + (N-J+1)
- 80 CONTINUE
- END IF
- END IF
- ELSE
- *
- * Form x := inv( A' )*x.
- *
- IF (LSAME(UPLO,'U')) THEN
- KK = 1
- IF (INCX.EQ.1) THEN
- DO 100 J = 1,N
- TEMP = X(J)
- K = KK
- DO 90 I = 1,J - 1
- TEMP = TEMP - AP(K)*X(I)
- K = K + 1
- 90 CONTINUE
- IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
- X(J) = TEMP
- KK = KK + J
- 100 CONTINUE
- ELSE
- JX = KX
- DO 120 J = 1,N
- TEMP = X(JX)
- IX = KX
- DO 110 K = KK,KK + J - 2
- TEMP = TEMP - AP(K)*X(IX)
- IX = IX + INCX
- 110 CONTINUE
- IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
- X(JX) = TEMP
- JX = JX + INCX
- KK = KK + J
- 120 CONTINUE
- END IF
- ELSE
- KK = (N* (N+1))/2
- IF (INCX.EQ.1) THEN
- DO 140 J = N,1,-1
- TEMP = X(J)
- K = KK
- DO 130 I = N,J + 1,-1
- TEMP = TEMP - AP(K)*X(I)
- K = K - 1
- 130 CONTINUE
- IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
- X(J) = TEMP
- KK = KK - (N-J+1)
- 140 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 160 J = N,1,-1
- TEMP = X(JX)
- IX = KX
- DO 150 K = KK,KK - (N- (J+1)),-1
- TEMP = TEMP - AP(K)*X(IX)
- IX = IX - INCX
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
- X(JX) = TEMP
- JX = JX - INCX
- KK = KK - (N-J+1)
- 160 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of DTPSV .
- *
- END
- LOGICAL FUNCTION LSAME( CA, CB )
- *
- * -- LAPACK auxiliary routine (version 3.1) --
- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
- * November 2006
- *
- * .. Scalar Arguments ..
- CHARACTER CA, CB
- * ..
- *
- * Purpose
- * =======
- *
- * LSAME returns .TRUE. if CA is the same letter as CB regardless of
- * case.
- *
- * Arguments
- * =========
- *
- * CA (input) CHARACTER*1
- * CB (input) CHARACTER*1
- * CA and CB specify the single characters to be compared.
- *
- * =====================================================================
- *
- * .. Intrinsic Functions ..
- INTRINSIC ICHAR
- * ..
- * .. Local Scalars ..
- INTEGER INTA, INTB, ZCODE
- * ..
- * .. Executable Statements ..
- *
- * Test if the characters are equal
- *
- LSAME = CA.EQ.CB
- IF( LSAME )
- $ RETURN
- *
- * Now test for equivalence if both characters are alphabetic.
- *
- ZCODE = ICHAR( 'Z' )
- *
- * Use 'Z' rather than 'A' so that ASCII can be detected on Prime
- * machines, on which ICHAR returns a value with bit 8 set.
- * ICHAR('A') on Prime machines returns 193 which is the same as
- * ICHAR('A') on an EBCDIC machine.
- *
- INTA = ICHAR( CA )
- INTB = ICHAR( CB )
- *
- IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN
- *
- * ASCII is assumed - ZCODE is the ASCII code of either lower or
- * upper case 'Z'.
- *
- IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32
- IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32
- *
- ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN
- *
- * EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
- * upper case 'Z'.
- *
- IF( INTA.GE.129 .AND. INTA.LE.137 .OR.
- $ INTA.GE.145 .AND. INTA.LE.153 .OR.
- $ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64
- IF( INTB.GE.129 .AND. INTB.LE.137 .OR.
- $ INTB.GE.145 .AND. INTB.LE.153 .OR.
- $ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64
- *
- ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN
- *
- * ASCII is assumed, on Prime machines - ZCODE is the ASCII code
- * plus 128 of either lower or upper case 'Z'.
- *
- IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32
- IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32
- END IF
- LSAME = INTA.EQ.INTB
- *
- * RETURN
- *
- * End of LSAME
- *
- END
- SUBROUTINE XERBLA( SRNAME, INFO )
- *
- * -- LAPACK auxiliary routine (version 3.1) --
- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
- * November 2006
- *
- * .. Scalar Arguments ..
- CHARACTER*6 SRNAME
- INTEGER INFO
- * ..
- *
- * Purpose
- * =======
- *
- * XERBLA is an error handler for the LAPACK routines.
- * It is called by an LAPACK routine if an input parameter has an
- * invalid value. A message is printed and execution stops.
- *
- * Installers may consider modifying the STOP statement in order to
- * call system-specific exception-handling facilities.
- *
- * Arguments
- * =========
- *
- * SRNAME (input) CHARACTER*6
- * The name of the routine which called XERBLA.
- *
- * INFO (input) INTEGER
- * The position of the invalid parameter in the parameter list
- * of the calling routine.
- *
- * =====================================================================
- *
- * .. Executable Statements ..
- *
- WRITE( *, FMT = 9999 )SRNAME, INFO
- *
- STOP
- *
- 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ',
- $ 'an illegal value' )
- *
- * End of XERBLA
- *
- END