rdo.c
资源名称:chapter15.rar [点击查看]
上传用户:hjq518
上传日期:2021-12-09
资源大小:5084k
文件大小:15k
源码类别:
Audio
开发平台:
Visual C++
- /***************************************************************************** * rdo.c: h264 encoder library (rate-distortion optimization) ***************************************************************************** * Copyright (C) 2005 x264 project * * Authors: Loren Merritt <lorenm@u.washington.edu> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. *****************************************************************************/ /* duplicate all the writer functions, just calculating bit cost * instead of writing the bitstream. * TODO: use these for fast 1st pass too. */ #define RDO_SKIP_BS /* CAVLC: produces exactly the same bit count as a normal encode */ /* this probably still leaves some unnecessary computations */ #define bs_write1(s,v) ((s)->i_bits_encoded += 1) #define bs_write(s,n,v) ((s)->i_bits_encoded += (n)) #define bs_write_ue(s,v) ((s)->i_bits_encoded += bs_size_ue(v)) #define bs_write_se(s,v) ((s)->i_bits_encoded += bs_size_se(v)) #define bs_write_te(s,v,l) ((s)->i_bits_encoded += bs_size_te(v,l)) #define x264_macroblock_write_cavlc x264_macroblock_size_cavlc #include "cavlc.c" /* CABAC: not exactly the same. x264_cabac_size_decision() keeps track of * fractional bits, but only finite precision. */ #define x264_cabac_encode_decision(c,x,v) x264_cabac_size_decision(c,x,v) #define x264_cabac_encode_terminal(c,v) x264_cabac_size_decision(c,276,v) #define x264_cabac_encode_bypass(c,v) ((c)->f8_bits_encoded += 256) #define x264_cabac_encode_flush(c) #define x264_macroblock_write_cabac x264_macroblock_size_cabac #define x264_cabac_mb_skip x264_cabac_mb_size_skip_unused #include "cabac.c" static int ssd_mb( x264_t *h ) { return h->pixf.ssd[PIXEL_16x16]( h->mb.pic.p_fenc[0], FENC_STRIDE, h->mb.pic.p_fdec[0], FDEC_STRIDE ) + h->pixf.ssd[PIXEL_8x8]( h->mb.pic.p_fenc[1], FENC_STRIDE, h->mb.pic.p_fdec[1], FDEC_STRIDE ) + h->pixf.ssd[PIXEL_8x8]( h->mb.pic.p_fenc[2], FENC_STRIDE, h->mb.pic.p_fdec[2], FDEC_STRIDE ); } static int x264_rd_cost_mb( x264_t *h, int i_lambda2 ) { int b_transform_bak = h->mb.b_transform_8x8; int i_ssd; int i_bits; x264_macroblock_encode( h ); i_ssd = ssd_mb( h ); if( IS_SKIP( h->mb.i_type ) ) { i_bits = 1 * i_lambda2; } else if( h->param.b_cabac ) { x264_cabac_t cabac_tmp = h->cabac; cabac_tmp.f8_bits_encoded = 0; x264_macroblock_size_cabac( h, &cabac_tmp ); i_bits = ( cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8; } else { bs_t bs_tmp = h->out.bs; bs_tmp.i_bits_encoded = 0; x264_macroblock_size_cavlc( h, &bs_tmp ); i_bits = bs_tmp.i_bits_encoded * i_lambda2; } h->mb.b_transform_8x8 = b_transform_bak; return i_ssd + i_bits; } /**************************************************************************** * Trellis RD quantization ****************************************************************************/ //#define TRELLIS_SCORE_MAX (1ULL<<50)
- #define TRELLIS_SCORE_MAX (1uI64<<50) //lsp051219 gcc ULL = vc uI64 #define CABAC_SIZE_BITS 8 #define SSD_WEIGHT_BITS 5 #define LAMBDA_BITS 4 /* precalculate the cost of coding abs_level_m1 */ static int cabac_prefix_transition[15][128]; static int cabac_prefix_size[15][128]; void x264_rdo_init( ) { int i_prefix; int i_ctx; for( i_prefix = 0; i_prefix < 15; i_prefix++ ) { for( i_ctx = 0; i_ctx < 128; i_ctx++ ) { int f8_bits = 0; uint8_t ctx = i_ctx; int i; for( i = 1; i < i_prefix; i++ ) f8_bits += x264_cabac_size_decision2( &ctx, 1 ); if( i_prefix > 0 && i_prefix < 14 ) f8_bits += x264_cabac_size_decision2( &ctx, 0 ); f8_bits += 1 << CABAC_SIZE_BITS; //sign cabac_prefix_size[i_prefix][i_ctx] = f8_bits; cabac_prefix_transition[i_prefix][i_ctx] = ctx; } } } // node ctx: 0..3: abslevel1 (with abslevelgt1 == 0). // 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter). /* map node ctx => cabac ctx for level=1 */ static const int coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 }; /* map node ctx => cabac ctx for level>1 */ static const int coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 }; static const int coeff_abs_level_transition[2][8] = { /* update node.ctx after coding a level=1 */ { 1, 2, 3, 3, 4, 5, 6, 7 }, /* update node.ctx after coding a level>1 */ { 4, 4, 4, 4, 5, 6, 7, 7 } }; static const int lambda2_tab[6] = { 1024, 1290, 1625, 2048, 2580, 3251 }; typedef struct { uint64_t score; int level_idx; // index into level_tree[] uint8_t cabac_state[10]; //just the contexts relevant to coding abs_level_m1 } trellis_node_t; // TODO: // support chroma and i16x16 DC // save cabac state between blocks? // use trellis' RD score instead of x264_mb_decimate_score? // code 8x8 sig/last flags forwards with deadzone and save the contexts at // each position? // change weights when using CQMs? // possible optimizations: // make scores fit in 32bit // save quantized coefs during rd, to avoid a duplicate trellis in the final encode // if trellissing all MBRD modes, finish SSD calculation so we can skip all of // the normal dequant/idct/ssd/cabac // the unquant_mf here is not the same as dequant_mf: // in normal operation (dct->quant->dequant->idct) the dct and idct are not // normalized. quant/dequant absorb those scaling factors. // in this function, we just do (quant->unquant) and want the output to be // comparable to the input. so unquant is the direct inverse of quant, // and uses the dct scaling factors, not the idct ones. static void quant_trellis_cabac( x264_t *h, int16_t *dct, const int *quant_mf, const int *unquant_mf, const int *coef_weight, const int *zigzag, int i_ctxBlockCat, int i_qbits, int i_lambda2, int b_ac, int i_coefs ) { int abs_coefs[64], signs[64]; trellis_node_t nodes[2][8]; trellis_node_t *nodes_cur = nodes[0]; trellis_node_t *nodes_prev = nodes[1]; trellis_node_t *bnode; uint8_t cabac_state_sig[64]; uint8_t cabac_state_last[64]; const int f = 1 << (i_qbits-1); // no deadzone int i_last_nnz = -1; int i, j; // (# of coefs) * (# of ctx) * (# of levels tried) = 1024 // we don't need to keep all of those: (# of coefs) * (# of ctx) would be enough, // but it takes more time to remove dead states than you gain in reduced memory. struct { uint16_t abs_level; uint16_t next; } level_tree[64*8*2]; int i_levels_used = 1; /* init coefs */ for( i = b_ac; i < i_coefs; i++ ) { int coef = dct[zigzag[i]]; abs_coefs[i] = abs(coef); signs[i] = coef < 0 ? -1 : 1; if( f <= abs_coefs[i] * quant_mf[zigzag[i]] ) i_last_nnz = i; } if( i_last_nnz == -1 ) { memset( dct, 0, i_coefs * sizeof(*dct) ); return; } /* init trellis */ for( i = 1; i < 8; i++ ) nodes_cur[i].score = TRELLIS_SCORE_MAX; nodes_cur[0].score = 0; nodes_cur[0].level_idx = 0; level_tree[0].abs_level = 0; level_tree[0].next = 0; // coefs are processed in reverse order, because that's how the abs value is coded. // last_coef and significant_coef flags are normally coded in forward order, but // we have to reverse them to match the levels. // in 4x4 blocks, last_coef and significant_coef use a separate context for each // position, so the order doesn't matter, and we don't even have to update their contexts. // in 8x8 blocks, some positions share contexts, so we'll just have to hope that // cabac isn't too sensitive. if( i_coefs == 64 ) { const uint8_t *ctx_sig = &h->cabac.state[ significant_coeff_flag_offset[i_ctxBlockCat] ]; const uint8_t *ctx_last = &h->cabac.state[ last_coeff_flag_offset[i_ctxBlockCat] ]; for( i = 0; i < 63; i++ ) { cabac_state_sig[i] = ctx_sig[ significant_coeff_flag_offset_8x8[i] ]; cabac_state_last[i] = ctx_last[ last_coeff_flag_offset_8x8[i] ]; } } else { memcpy( cabac_state_sig, &h->cabac.state[ significant_coeff_flag_offset[i_ctxBlockCat] ], 15 ); memcpy( cabac_state_last, &h->cabac.state[ last_coeff_flag_offset[i_ctxBlockCat] ], 15 ); } memcpy( nodes_cur[0].cabac_state, &h->cabac.state[ coeff_abs_level_m1_offset[i_ctxBlockCat] ], 10 ); for( i = i_last_nnz; i >= b_ac; i-- ) { int i_coef = abs_coefs[i]; int q = ( f + i_coef * quant_mf[zigzag[i]] ) >> i_qbits; int abs_level; int cost_sig[2], cost_last[2]; trellis_node_t n; // skip 0s: this doesn't affect the output, but saves some unnecessary computation. if( q == 0 ) { // no need to calculate ssd of 0s: it's the same in all nodes. // no need to modify level_tree for ctx=0: it starts with an infinite loop of 0s. const int cost_sig0 = x264_cabac_size_decision_noup( &cabac_state_sig[i], 0 ) * i_lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS ); for( j = 1; j < 8; j++ ) { if( nodes_cur[j].score != TRELLIS_SCORE_MAX ) { #define SET_LEVEL(n,l) level_tree[i_levels_used].abs_level = l; level_tree[i_levels_used].next = n.level_idx; n.level_idx = i_levels_used; i_levels_used++; SET_LEVEL( nodes_cur[j], 0 ); nodes_cur[j].score += cost_sig0; } } continue; } XCHG( trellis_node_t*, nodes_cur, nodes_prev ); for( j = 0; j < 8; j++ ) nodes_cur[j].score = TRELLIS_SCORE_MAX; if( i < i_coefs-1 ) { cost_sig[0] = x264_cabac_size_decision_noup( &cabac_state_sig[i], 0 ); cost_sig[1] = x264_cabac_size_decision_noup( &cabac_state_sig[i], 1 ); cost_last[0] = x264_cabac_size_decision_noup( &cabac_state_last[i], 0 ); cost_last[1] = x264_cabac_size_decision_noup( &cabac_state_last[i], 1 ); } else { cost_sig[0] = cost_sig[1] = 0; cost_last[0] = cost_last[1] = 0; } // there are a few cases where increasing the coeff magnitude helps, // but it's only around .003 dB, and skipping them ~doubles the speed of trellis. // could also try q-2: that sometimes helps, but also sometimes decimates blocks // that are better left coded, especially at QP > 40. for( abs_level = q; abs_level >= q-1; abs_level-- ) { int d = i_coef - ((unquant_mf[zigzag[i]] * abs_level + 128) >> 8); uint64_t ssd = (int64_t)d*d * coef_weight[i]; for( j = 0; j < 8; j++ ) { int node_ctx = j; if( nodes_prev[j].score == TRELLIS_SCORE_MAX ) continue; n = nodes_prev[j]; /* code the proposed level, and count how much entropy it would take */ if( abs_level || node_ctx ) { unsigned f8_bits = cost_sig[ abs_level != 0 ]; if( abs_level ) { const int i_prefix = X264_MIN( abs_level - 1, 14 ); f8_bits += cost_last[ node_ctx == 0 ]; f8_bits += x264_cabac_size_decision2( &n.cabac_state[coeff_abs_level1_ctx[node_ctx]], i_prefix > 0 ); if( i_prefix > 0 ) { uint8_t *ctx = &n.cabac_state[coeff_abs_levelgt1_ctx[node_ctx]]; f8_bits += cabac_prefix_size[i_prefix][*ctx]; *ctx = cabac_prefix_transition[i_prefix][*ctx]; if( abs_level >= 15 ) f8_bits += bs_size_ue( abs_level - 15 ) << CABAC_SIZE_BITS; node_ctx = coeff_abs_level_transition[1][node_ctx]; } else { f8_bits += 1 << CABAC_SIZE_BITS; node_ctx = coeff_abs_level_transition[0][node_ctx]; } } n.score += (uint64_t)f8_bits * i_lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS ); } n.score += ssd; /* save the node if it's better than any existing node with the same cabac ctx */ if( n.score < nodes_cur[node_ctx].score ) { SET_LEVEL( n, abs_level ); nodes_cur[node_ctx] = n; } } } } /* output levels from the best path through the trellis */ bnode = &nodes_cur[0]; for( j = 1; j < 8; j++ ) if( nodes_cur[j].score < bnode->score ) bnode = &nodes_cur[j]; j = bnode->level_idx; for( i = b_ac; i < i_coefs; i++ ) { dct[zigzag[i]] = level_tree[j].abs_level * signs[i]; j = level_tree[j].next; } } void x264_quant_4x4_trellis( x264_t *h, int16_t dct[4][4], int i_quant_cat, int i_qp, int i_ctxBlockCat, int b_intra ) { const int i_qbits = i_qp / 6; const int i_mf = i_qp % 6; const int b_ac = (i_ctxBlockCat == DCT_LUMA_AC); /* should the lambdas be different? I'm just matching the behaviour of deadzone quant. */ const int i_lambda_mult = b_intra ? 65 : 85; const int i_lambda2 = ((lambda2_tab[i_mf] * i_lambda_mult*i_lambda_mult / 10000) << (2*i_qbits)) >> LAMBDA_BITS; quant_trellis_cabac( h, (int16_t*)dct, (int*)h->quant4_mf[i_quant_cat][i_mf], h->unquant4_mf[i_quant_cat][i_qp], x264_dct4_weight2_zigzag, x264_zigzag_scan4, i_ctxBlockCat, 15+i_qbits, i_lambda2, b_ac, 16 ); } void x264_quant_8x8_trellis( x264_t *h, int16_t dct[8][8], int i_quant_cat, int i_qp, int b_intra ) { const int i_qbits = i_qp / 6; const int i_mf = i_qp % 6; const int i_lambda_mult = b_intra ? 65 : 85; const int i_lambda2 = ((lambda2_tab[i_mf] * i_lambda_mult*i_lambda_mult / 10000) << (2*i_qbits)) >> LAMBDA_BITS; quant_trellis_cabac( h, (int16_t*)dct, (int*)h->quant8_mf[i_quant_cat][i_mf], h->unquant8_mf[i_quant_cat][i_qp], x264_dct8_weight2_zigzag, x264_zigzag_scan8, DCT_LUMA_8x8, 16+i_qbits, i_lambda2, 0, 64 ); }