ratecontrol.c
资源名称:chapter15.rar [点击查看]
上传用户:hjq518
上传日期:2021-12-09
资源大小:5084k
文件大小:67k
源码类别:
Audio
开发平台:
Visual C++
- /***************************************************-*- coding: iso-8859-1 -*-
- * ratecontrol.c: h264 encoder library (Rate Control)
- *****************************************************************************
- * Copyright (C) 2005-2008 x264 project
- *
- * Authors: Loren Merritt <lorenm@u.washington.edu>
- * Michael Niedermayer <michaelni@gmx.at>
- * Gabriel Bouvigne <gabriel.bouvigne@joost.com>
- * Jason Garrett-Glaser <darkshikari@gmail.com>
- * M錸s Rullg錼d <mru@mru.ath.cx>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
- *****************************************************************************/
- #define _ISOC99_SOURCE
- #undef NDEBUG // always check asserts, the speed effect is far too small to disable them
- #include <math.h>
- #include <limits.h>
- #include <assert.h>
- #include "common/common.h"
- #include "common/cpu.h"
- #include "ratecontrol.h"
- typedef struct
- {
- int pict_type;
- int kept_as_ref;
- float qscale;
- int mv_bits;
- int tex_bits;
- int misc_bits;
- uint64_t expected_bits;
- double expected_vbv;
- float new_qscale;
- int new_qp;
- int i_count;
- int p_count;
- int s_count;
- float blurred_complexity;
- char direct_mode;
- } ratecontrol_entry_t;
- typedef struct
- {
- double coeff;
- double count;
- double decay;
- } predictor_t;
- struct x264_ratecontrol_t
- {
- /* constants */
- int b_abr;
- int b_2pass;
- int b_vbv;
- int b_vbv_min_rate;
- double fps;
- double bitrate;
- double rate_tolerance;
- int nmb; /* number of macroblocks in a frame */
- int qp_constant[5];
- /* current frame */
- ratecontrol_entry_t *rce;
- int qp; /* qp for current frame */
- int qpm; /* qp for current macroblock */
- float f_qpm; /* qp for current macroblock: precise float for AQ */
- float qpa_rc; /* average of macroblocks' qp before aq */
- float qpa_aq; /* average of macroblocks' qp after aq */
- int qp_force;
- /* VBV stuff */
- double buffer_size;
- double buffer_fill_final; /* real buffer as of the last finished frame */
- double buffer_fill; /* planned buffer, if all in-progress frames hit their bit budget */
- double buffer_rate; /* # of bits added to buffer_fill after each frame */
- predictor_t *pred; /* predict frame size from satd */
- /* ABR stuff */
- int last_satd;
- double last_rceq;
- double cplxr_sum; /* sum of bits*qscale/rceq */
- double expected_bits_sum; /* sum of qscale2bits after rceq, ratefactor, and overflow */
- double wanted_bits_window; /* target bitrate * window */
- double cbr_decay;
- double short_term_cplxsum;
- double short_term_cplxcount;
- double rate_factor_constant;
- double ip_offset;
- double pb_offset;
- /* 2pass stuff */
- FILE *p_stat_file_out;
- char *psz_stat_file_tmpname;
- int num_entries; /* number of ratecontrol_entry_ts */
- ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */
- double last_qscale;
- double last_qscale_for[5]; /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */
- int last_non_b_pict_type;
- double accum_p_qp; /* for determining I-frame quant */
- double accum_p_norm;
- double last_accum_p_norm;
- double lmin[5]; /* min qscale by frame type */
- double lmax[5];
- double lstep; /* max change (multiply) in qscale per frame */
- /* MBRC stuff */
- double frame_size_estimated;
- double frame_size_planned;
- predictor_t *row_pred;
- predictor_t row_preds[5];
- predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */
- int bframes; /* # consecutive B-frames before this P-frame */
- int bframe_bits; /* total cost of those frames */
- /* AQ stuff */
- float aq_threshold;
- int *ac_energy;
- int i_zones;
- x264_zone_t *zones;
- x264_zone_t *prev_zone;
- };
- static int parse_zones( x264_t *h );
- static int init_pass2(x264_t *);
- static float rate_estimate_qscale( x264_t *h );
- static void update_vbv( x264_t *h, int bits );
- static void update_vbv_plan( x264_t *h );
- static double predict_size( predictor_t *p, double q, double var );
- static void update_predictor( predictor_t *p, double q, double var, double bits );
- /* Terminology:
- * qp = h.264's quantizer
- * qscale = linearized quantizer = Lagrange multiplier
- */
- static inline double qp2qscale(double qp)
- {
- return 0.85 * pow(2.0, ( qp - 12.0 ) / 6.0);
- }
- static inline double qscale2qp(double qscale)
- {
- return 12.0 + 6.0 * log(qscale/0.85) / log(2.0);
- }
- /* Texture bitrate is not quite inversely proportional to qscale,
- * probably due the the changing number of SKIP blocks.
- * MV bits level off at about qp<=12, because the lambda used
- * for motion estimation is constant there. */
- static inline double qscale2bits(ratecontrol_entry_t *rce, double qscale)
- {
- if(qscale<0.1)
- qscale = 0.1;
- return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 )
- + rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 )
- + rce->misc_bits;
- }
- // Find the total AC energy of the block in all planes.
- static NOINLINE int ac_energy_mb( x264_t *h, int mb_x, int mb_y, int *satd )
- {
- /* This function contains annoying hacks because GCC has a habit of reordering emms
- * and putting it after floating point ops. As a result, we put the emms at the end of the
- * function and make sure that its always called before the float math. Noinline makes
- * sure no reordering goes on. */
- /* FIXME: This array is larger than necessary because a bug in GCC causes an all-zero
- * array to be placed in .bss despite .bss not being correctly aligned on some platforms (win32?) */
- DECLARE_ALIGNED_16( static uint8_t zero[17] ) = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
- unsigned int var=0, sad, i;
- if( satd || h->param.rc.i_aq_mode == X264_AQ_GLOBAL )
- {
- for( i=0; i<3; i++ )
- {
- int w = i ? 8 : 16;
- int stride = h->fenc->i_stride[i];
- int offset = h->mb.b_interlaced
- ? w * (mb_x + (mb_y&~1) * stride) + (mb_y&1) * stride
- : w * (mb_x + mb_y * stride);
- int pix = i ? PIXEL_8x8 : PIXEL_16x16;
- stride <<= h->mb.b_interlaced;
- var += h->pixf.var[pix]( h->fenc->plane[i]+offset, stride, &sad );
- // SATD to represent the block's overall complexity (bit cost) for intra encoding.
- // exclude the DC coef, because nothing short of an actual intra prediction will estimate DC cost.
- if( var && satd )
- *satd += h->pixf.satd[pix]( zero, 0, h->fenc->plane[i]+offset, stride ) - sad/2;
- }
- var = X264_MAX(var,1);
- }
- else var = h->rc->ac_energy[h->mb.i_mb_xy];
- x264_emms();
- return var;
- }
- static void x264_autosense_aq( x264_t *h )
- {
- double total = 0;
- double n = 0;
- int mb_x, mb_y;
- // FIXME: Some of the SATDs might be already calculated elsewhere (ratecontrol?). Can we reuse them?
- // FIXME: Is chroma SATD necessary?
- for( mb_y=0; mb_y<h->sps->i_mb_height; mb_y++ )
- for( mb_x=0; mb_x<h->sps->i_mb_width; mb_x++ )
- {
- int satd=0;
- int energy = ac_energy_mb( h, mb_x, mb_y, &satd );
- h->rc->ac_energy[mb_x + mb_y * h->sps->i_mb_width] = energy;
- /* Weight the energy value by the SATD value of the MB.
- * This represents the fact that the more complex blocks in a frame should
- * be weighted more when calculating the optimal threshold. This also helps
- * diminish the negative effect of large numbers of simple blocks in a frame,
- * such as in the case of a letterboxed film. */
- total += logf(energy) * satd;
- n += satd;
- }
- x264_emms();
- /* Calculate and store the threshold. */
- h->rc->aq_threshold = n ? total/n : 15;
- }
- /*****************************************************************************
- * x264_adaptive_quant:
- * adjust macroblock QP based on variance (AC energy) of the MB.
- * high variance = higher QP
- * low variance = lower QP
- * This generally increases SSIM and lowers PSNR.
- *****************************************************************************/
- void x264_adaptive_quant( x264_t *h )
- {
- int energy = ac_energy_mb( h, h->mb.i_mb_x, h->mb.i_mb_y, NULL );
- /* Adjust the QP based on the AC energy of the macroblock. */
- float qp = h->rc->f_qpm;
- float qp_adj = 1.5 * (logf(energy) - h->rc->aq_threshold);
- if( h->param.rc.i_aq_mode == X264_AQ_LOCAL )
- qp_adj = x264_clip3f( qp_adj, -5, 5 );
- h->mb.i_qp = x264_clip3( qp + qp_adj * h->param.rc.f_aq_strength + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
- /* If the QP of this MB is within 1 of the previous MB, code the same QP as the previous MB,
- * to lower the bit cost of the qp_delta. */
- if( abs(h->mb.i_qp - h->mb.i_last_qp) == 1 )
- h->mb.i_qp = h->mb.i_last_qp;
- h->mb.i_chroma_qp = h->chroma_qp_table[h->mb.i_qp];
- }
- int x264_ratecontrol_new( x264_t *h )
- {
- x264_ratecontrol_t *rc;
- int i;
- x264_emms();
- rc = h->rc = x264_malloc( h->param.i_threads * sizeof(x264_ratecontrol_t) );
- memset( rc, 0, h->param.i_threads * sizeof(x264_ratecontrol_t) );
- rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read;
- rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read;
- /* FIXME: use integers */
- if(h->param.i_fps_num > 0 && h->param.i_fps_den > 0)
- rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den;
- else
- rc->fps = 25.0;
- rc->bitrate = h->param.rc.i_bitrate * 1000.;
- rc->rate_tolerance = h->param.rc.f_rate_tolerance;
- rc->nmb = h->mb.i_mb_count;
- rc->last_non_b_pict_type = -1;
- rc->cbr_decay = 1.0;
- if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.b_stat_read )
- {
- x264_log(h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.n");
- return -1;
- }
- if( h->param.rc.i_vbv_buffer_size )
- {
- if( h->param.rc.i_rc_method == X264_RC_CQP )
- x264_log(h, X264_LOG_WARNING, "VBV is incompatible with constant QP, ignored.n");
- else if( h->param.rc.i_vbv_max_bitrate == 0 )
- {
- x264_log( h, X264_LOG_DEBUG, "VBV maxrate unspecified, assuming CBRn" );
- h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
- }
- }
- if( h->param.rc.i_vbv_max_bitrate < h->param.rc.i_bitrate &&
- h->param.rc.i_vbv_max_bitrate > 0)
- x264_log(h, X264_LOG_WARNING, "max bitrate less than average bitrate, ignored.n");
- else if( h->param.rc.i_vbv_max_bitrate > 0 &&
- h->param.rc.i_vbv_buffer_size > 0 )
- {
- if( h->param.rc.i_vbv_buffer_size < 3 * h->param.rc.i_vbv_max_bitrate / rc->fps )
- {
- h->param.rc.i_vbv_buffer_size = 3 * h->param.rc.i_vbv_max_bitrate / rc->fps;
- x264_log( h, X264_LOG_WARNING, "VBV buffer size too small, using %d kbitn",
- h->param.rc.i_vbv_buffer_size );
- }
- if( h->param.rc.f_vbv_buffer_init > 1. )
- h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
- rc->buffer_rate = h->param.rc.i_vbv_max_bitrate * 1000. / rc->fps;
- rc->buffer_size = h->param.rc.i_vbv_buffer_size * 1000.;
- rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init;
- rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size
- * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate);
- rc->b_vbv = 1;
- rc->b_vbv_min_rate = !rc->b_2pass
- && h->param.rc.i_rc_method == X264_RC_ABR
- && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate;
- }
- else if( h->param.rc.i_vbv_max_bitrate )
- {
- x264_log(h, X264_LOG_WARNING, "VBV maxrate specified, but no bufsize.n");
- h->param.rc.i_vbv_max_bitrate = 0;
- }
- if(rc->rate_tolerance < 0.01)
- {
- x264_log(h, X264_LOG_WARNING, "bitrate tolerance too small, using .01n");
- rc->rate_tolerance = 0.01;
- }
- h->mb.b_variable_qp = rc->b_vbv || h->param.rc.i_aq_mode;
- if( rc->b_abr )
- {
- /* FIXME ABR_INIT_QP is actually used only in CRF */
- #define ABR_INIT_QP ( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 )
- rc->accum_p_norm = .01;
- rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm;
- /* estimated ratio that produces a reasonable QP for the first I-frame */
- rc->cplxr_sum = .01 * pow( 7.0e5, h->param.rc.f_qcompress ) * pow( h->mb.i_mb_count, 0.5 );
- rc->wanted_bits_window = 1.0 * rc->bitrate / rc->fps;
- rc->last_non_b_pict_type = SLICE_TYPE_I;
- }
- if( h->param.rc.i_rc_method == X264_RC_CRF )
- {
- /* arbitrary rescaling to make CRF somewhat similar to QP */
- double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
- rc->rate_factor_constant = pow( base_cplx, 1 - h->param.rc.f_qcompress )
- / qp2qscale( h->param.rc.f_rf_constant );
- }
- rc->ip_offset = 6.0 * log(h->param.rc.f_ip_factor) / log(2.0);
- rc->pb_offset = 6.0 * log(h->param.rc.f_pb_factor) / log(2.0);
- rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
- rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, 51 );
- rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, 51 );
- rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 );
- rc->last_qscale = qp2qscale(26);
- rc->pred = x264_malloc( 5*sizeof(predictor_t) );
- rc->pred_b_from_p = x264_malloc( sizeof(predictor_t) );
- for( i = 0; i < 5; i++ )
- {
- rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP );
- rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min );
- rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max );
- rc->pred[i].coeff= 2.0;
- rc->pred[i].count= 1.0;
- rc->pred[i].decay= 0.5;
- rc->row_preds[i].coeff= .25;
- rc->row_preds[i].count= 1.0;
- rc->row_preds[i].decay= 0.5;
- }
- *rc->pred_b_from_p = rc->pred[0];
- if( parse_zones( h ) < 0 )
- {
- x264_log( h, X264_LOG_ERROR, "failed to parse zonesn" );
- return -1;
- }
- /* Load stat file and init 2pass algo */
- if( h->param.rc.b_stat_read )
- {
- char *p, *stats_in, *stats_buf;
- /* read 1st pass stats */
- assert( h->param.rc.psz_stat_in );
- stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in );
- if( !stats_buf )
- {
- x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats filen");
- return -1;
- }
- /* check whether 1st pass options were compatible with current options */
- if( !strncmp( stats_buf, "#options:", 9 ) )
- {
- int i;
- char *opts = stats_buf;
- stats_in = strchr( stats_buf, 'n' );
- if( !stats_in )
- return -1;
- *stats_in = ' ';
- stats_in++;
- if( ( p = strstr( opts, "bframes=" ) ) && sscanf( p, "bframes=%d", &i )
- && h->param.i_bframe != i )
- {
- x264_log( h, X264_LOG_ERROR, "different number of B-frames than 1st pass (%d vs %d)n",
- h->param.i_bframe, i );
- return -1;
- }
- /* since B-adapt doesn't (yet) take into account B-pyramid,
- * the converse is not a problem */
- if( strstr( opts, "b_pyramid=1" ) && !h->param.b_bframe_pyramid )
- x264_log( h, X264_LOG_WARNING, "1st pass used B-pyramid, 2nd doesn'tn" );
- if( ( p = strstr( opts, "keyint=" ) ) && sscanf( p, "keyint=%d", &i )
- && h->param.i_keyint_max != i )
- x264_log( h, X264_LOG_WARNING, "different keyint than 1st pass (%d vs %d)n",
- h->param.i_keyint_max, i );
- if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR )
- x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccuraten" );
- }
- /* find number of pics */
- p = stats_in;
- for(i=-1; p; i++)
- p = strchr(p+1, ';');
- if(i==0)
- {
- x264_log(h, X264_LOG_ERROR, "empty stats filen");
- return -1;
- }
- rc->num_entries = i;
- if( h->param.i_frame_total < rc->num_entries && h->param.i_frame_total > 0 )
- {
- x264_log( h, X264_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)n",
- h->param.i_frame_total, rc->num_entries );
- }
- if( h->param.i_frame_total > rc->num_entries + h->param.i_bframe )
- {
- x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)n",
- h->param.i_frame_total, rc->num_entries );
- return -1;
- }
- /* FIXME: ugly padding because VfW drops delayed B-frames */
- rc->num_entries += h->param.i_bframe;
- rc->entry = (ratecontrol_entry_t*) x264_malloc(rc->num_entries * sizeof(ratecontrol_entry_t));
- memset(rc->entry, 0, rc->num_entries * sizeof(ratecontrol_entry_t));
- /* init all to skipped p frames */
- for(i=0; i<rc->num_entries; i++)
- {
- ratecontrol_entry_t *rce = &rc->entry[i];
- rce->pict_type = SLICE_TYPE_P;
- rce->qscale = rce->new_qscale = qp2qscale(20);
- rce->misc_bits = rc->nmb + 10;
- rce->new_qp = 0;
- }
- /* read stats */
- p = stats_in;
- for(i=0; i < rc->num_entries - h->param.i_bframe; i++)
- {
- ratecontrol_entry_t *rce;
- int frame_number;
- char pict_type;
- int e;
- char *next;
- float qp;
- next= strchr(p, ';');
- if(next)
- {
- (*next)=0; //sscanf is unbelievably slow on long strings
- next++;
- }
- e = sscanf(p, " in:%d ", &frame_number);
- if(frame_number < 0 || frame_number >= rc->num_entries)
- {
- x264_log(h, X264_LOG_ERROR, "bad frame number (%d) at stats line %dn", frame_number, i);
- return -1;
- }
- rce = &rc->entry[frame_number];
- rce->direct_mode = 0;
- e += sscanf(p, " in:%*d out:%*d type:%c q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
- &pict_type, &qp, &rce->tex_bits,
- &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count,
- &rce->s_count, &rce->direct_mode);
- switch(pict_type)
- {
- case 'I': rce->kept_as_ref = 1;
- case 'i': rce->pict_type = SLICE_TYPE_I; break;
- case 'P': rce->pict_type = SLICE_TYPE_P; break;
- case 'B': rce->kept_as_ref = 1;
- case 'b': rce->pict_type = SLICE_TYPE_B; break;
- default: e = -1; break;
- }
- if(e < 10)
- {
- x264_log(h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%dn", i, e);
- return -1;
- }
- rce->qscale = qp2qscale(qp);
- p = next;
- }
- x264_free(stats_buf);
- if(h->param.rc.i_rc_method == X264_RC_ABR)
- {
- if(init_pass2(h) < 0) return -1;
- } /* else we're using constant quant, so no need to run the bitrate allocation */
- }
- /* Open output file */
- /* If input and output files are the same, output to a temp file
- * and move it to the real name only when it's complete */
- if( h->param.rc.b_stat_write )
- {
- char *p;
- rc->psz_stat_file_tmpname = x264_malloc( strlen(h->param.rc.psz_stat_out) + 6 );
- strcpy( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out );
- strcat( rc->psz_stat_file_tmpname, ".temp" );
- rc->p_stat_file_out = fopen( rc->psz_stat_file_tmpname, "wb" );
- if( rc->p_stat_file_out == NULL )
- {
- x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats filen");
- return -1;
- }
- p = x264_param2string( &h->param, 1 );
- fprintf( rc->p_stat_file_out, "#options: %sn", p );
- x264_free( p );
- }
- for( i=0; i<h->param.i_threads; i++ )
- {
- h->thread[i]->rc = rc+i;
- if( i )
- rc[i] = rc[0];
- if( h->param.rc.i_aq_mode == X264_AQ_LOCAL )
- rc[i].ac_energy = x264_malloc( h->mb.i_mb_count * sizeof(int) );
- }
- return 0;
- }
- static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
- {
- int len = 0;
- char *tok, *saveptr;
- z->param = NULL;
- z->f_bitrate_factor = 1;
- if( 3 <= sscanf(p, "%u,%u,q=%u%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
- z->b_force_qp = 1;
- else if( 3 <= sscanf(p, "%u,%u,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
- z->b_force_qp = 0;
- else if( 2 <= sscanf(p, "%u,%u%n", &z->i_start, &z->i_end, &len) )
- z->b_force_qp = 0;
- else
- {
- x264_log( h, X264_LOG_ERROR, "invalid zone: "%s"n", p );
- return -1;
- }
- p += len;
- if( !*p )
- return 0;
- z->param = malloc( sizeof(x264_param_t) );
- memcpy( z->param, &h->param, sizeof(x264_param_t) );
- while( (tok = strtok_r( p, ",", &saveptr )) )
- {
- char *val = strchr( tok, '=' );
- if( val )
- {
- *val = ' ';
- val++;
- }
- if( x264_param_parse( z->param, tok, val ) )
- {
- x264_log( h, X264_LOG_ERROR, "invalid zone param: %s = %sn", tok, val );
- return -1;
- }
- p = NULL;
- }
- return 0;
- }
- static int parse_zones( x264_t *h )
- {
- x264_ratecontrol_t *rc = h->rc;
- int i;
- if( h->param.rc.psz_zones && !h->param.rc.i_zones )
- {
- char *p, *tok, *saveptr;
- char *psz_zones = x264_malloc( strlen(h->param.rc.psz_zones)+1 );
- strcpy( psz_zones, h->param.rc.psz_zones );
- h->param.rc.i_zones = 1;
- for( p = psz_zones; *p; p++ )
- h->param.rc.i_zones += (*p == '/');
- h->param.rc.zones = x264_malloc( h->param.rc.i_zones * sizeof(x264_zone_t) );
- p = psz_zones;
- for( i = 0; i < h->param.rc.i_zones; i++ )
- {
- tok = strtok_r( p, "/", &saveptr );
- if( !tok || parse_zone( h, &h->param.rc.zones[i], tok ) )
- return -1;
- p = NULL;
- }
- x264_free( psz_zones );
- }
- if( h->param.rc.i_zones > 0 )
- {
- for( i = 0; i < h->param.rc.i_zones; i++ )
- {
- x264_zone_t z = h->param.rc.zones[i];
- if( z.i_start < 0 || z.i_start > z.i_end )
- {
- x264_log( h, X264_LOG_ERROR, "invalid zone: start=%d end=%dn",
- z.i_start, z.i_end );
- return -1;
- }
- else if( !z.b_force_qp && z.f_bitrate_factor <= 0 )
- {
- x264_log( h, X264_LOG_ERROR, "invalid zone: bitrate_factor=%fn",
- z.f_bitrate_factor );
- return -1;
- }
- }
- rc->i_zones = h->param.rc.i_zones + 1;
- rc->zones = x264_malloc( rc->i_zones * sizeof(x264_zone_t) );
- memcpy( rc->zones+1, h->param.rc.zones, (rc->i_zones-1) * sizeof(x264_zone_t) );
- // default zone to fall back to if none of the others match
- rc->zones[0].i_start = 0;
- rc->zones[0].i_end = INT_MAX;
- rc->zones[0].b_force_qp = 0;
- rc->zones[0].f_bitrate_factor = 1;
- rc->zones[0].param = x264_malloc( sizeof(x264_param_t) );
- memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) );
- for( i = 1; i < rc->i_zones; i++ )
- {
- if( !rc->zones[i].param )
- rc->zones[i].param = rc->zones[0].param;
- }
- }
- return 0;
- }
- static x264_zone_t *get_zone( x264_t *h, int frame_num )
- {
- int i;
- for( i = h->rc->i_zones-1; i >= 0; i-- )
- {
- x264_zone_t *z = &h->rc->zones[i];
- if( frame_num >= z->i_start && frame_num <= z->i_end )
- return z;
- }
- return NULL;
- }
- void x264_ratecontrol_summary( x264_t *h )
- {
- x264_ratecontrol_t *rc = h->rc;
- if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 )
- {
- double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
- x264_log( h, X264_LOG_INFO, "final ratefactor: %.2fn",
- qscale2qp( pow( base_cplx, 1 - h->param.rc.f_qcompress )
- * rc->cplxr_sum / rc->wanted_bits_window ) );
- }
- }
- void x264_ratecontrol_delete( x264_t *h )
- {
- x264_ratecontrol_t *rc = h->rc;
- int i;
- if( rc->p_stat_file_out )
- {
- fclose( rc->p_stat_file_out );
- if( h->i_frame >= rc->num_entries - h->param.i_bframe )
- if( rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 )
- {
- x264_log( h, X264_LOG_ERROR, "failed to rename "%s" to "%s"n",
- rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out );
- }
- x264_free( rc->psz_stat_file_tmpname );
- }
- x264_free( rc->pred );
- x264_free( rc->pred_b_from_p );
- x264_free( rc->entry );
- if( rc->zones )
- {
- x264_free( rc->zones[0].param );
- if( h->param.rc.psz_zones )
- for( i=1; i<rc->i_zones; i++ )
- if( rc->zones[i].param != rc->zones[0].param )
- x264_free( rc->zones[i].param );
- x264_free( rc->zones );
- }
- for( i=0; i<h->param.i_threads; i++ )
- x264_free( rc[i].ac_energy );
- x264_free( rc );
- }
- void x264_ratecontrol_set_estimated_size( x264_t *h, int bits )
- {
- x264_pthread_mutex_lock( &h->fenc->mutex );
- h->rc->frame_size_estimated = bits;
- x264_pthread_mutex_unlock( &h->fenc->mutex );
- }
- int x264_ratecontrol_get_estimated_size( x264_t const *h)
- {
- int size;
- x264_pthread_mutex_lock( &h->fenc->mutex );
- size = h->rc->frame_size_estimated;
- x264_pthread_mutex_unlock( &h->fenc->mutex );
- return size;
- }
- static void accum_p_qp_update( x264_t *h, float qp )
- {
- x264_ratecontrol_t *rc = h->rc;
- rc->accum_p_qp *= .95;
- rc->accum_p_norm *= .95;
- rc->accum_p_norm += 1;
- if( h->sh.i_type == SLICE_TYPE_I )
- rc->accum_p_qp += qp + rc->ip_offset;
- else
- rc->accum_p_qp += qp;
- }
- /* Before encoding a frame, choose a QP for it */
- void x264_ratecontrol_start( x264_t *h, int i_force_qp )
- {
- x264_ratecontrol_t *rc = h->rc;
- ratecontrol_entry_t *rce = NULL;
- x264_zone_t *zone = get_zone( h, h->fenc->i_frame );
- float q;
- x264_emms();
- if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) )
- x264_encoder_reconfig( h, zone->param );
- rc->prev_zone = zone;
- rc->qp_force = i_force_qp;
- if( h->param.rc.b_stat_read )
- {
- int frame = h->fenc->i_frame;
- assert( frame >= 0 && frame < rc->num_entries );
- rce = h->rc->rce = &h->rc->entry[frame];
- if( h->sh.i_type == SLICE_TYPE_B
- && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
- {
- h->sh.b_direct_spatial_mv_pred = ( rce->direct_mode == 's' );
- h->mb.b_direct_auto_read = ( rce->direct_mode == 's' || rce->direct_mode == 't' );
- }
- }
- if( rc->b_vbv )
- {
- memset( h->fdec->i_row_bits, 0, h->sps->i_mb_height * sizeof(int) );
- rc->row_pred = &rc->row_preds[h->sh.i_type];
- update_vbv_plan( h );
- }
- if( h->sh.i_type != SLICE_TYPE_B )
- {
- rc->bframes = 0;
- while( h->frames.current[rc->bframes] && IS_X264_TYPE_B(h->frames.current[rc->bframes]->i_type) )
- rc->bframes++;
- }
- if( i_force_qp )
- {
- q = i_force_qp - 1;
- }
- else if( rc->b_abr )
- {
- q = qscale2qp( rate_estimate_qscale( h ) );
- }
- else if( rc->b_2pass )
- {
- rce->new_qscale = rate_estimate_qscale( h );
- q = qscale2qp( rce->new_qscale );
- }
- else /* CQP */
- {
- if( h->sh.i_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref )
- q = ( rc->qp_constant[ SLICE_TYPE_B ] + rc->qp_constant[ SLICE_TYPE_P ] ) / 2;
- else
- q = rc->qp_constant[ h->sh.i_type ];
- if( zone )
- {
- if( zone->b_force_qp )
- q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P];
- else
- q -= 6*log(zone->f_bitrate_factor)/log(2);
- }
- }
- rc->qpa_rc =
- rc->qpa_aq = 0;
- h->fdec->f_qp_avg_rc =
- h->fdec->f_qp_avg_aq =
- rc->qpm =
- rc->qp = x264_clip3( (int)(q + 0.5), 0, 51 );
- rc->f_qpm = q;
- if( rce )
- rce->new_qp = rc->qp;
- /* accum_p_qp needs to be here so that future frames can benefit from the
- * data before this frame is done. but this only works because threading
- * guarantees to not re-encode any frames. so the non-threaded case does
- * accum_p_qp later. */
- if( h->param.i_threads > 1 )
- accum_p_qp_update( h, rc->qp );
- if( h->sh.i_type != SLICE_TYPE_B )
- rc->last_non_b_pict_type = h->sh.i_type;
- /* Adaptive AQ thresholding algorithm. */
- if( h->param.rc.i_aq_mode == X264_AQ_GLOBAL )
- /* Arbitrary value for "center" of the AQ curve.
- * Chosen so that any given value of CRF has on average similar bitrate with and without AQ. */
- h->rc->aq_threshold = logf(5000);
- else if( h->param.rc.i_aq_mode == X264_AQ_LOCAL )
- x264_autosense_aq(h);
- }
- static double predict_row_size( x264_t *h, int y, int qp )
- {
- /* average between two predictors:
- * absolute SATD, and scaled bit cost of the colocated row in the previous frame */
- x264_ratecontrol_t *rc = h->rc;
- double pred_s = predict_size( rc->row_pred, qp2qscale(qp), h->fdec->i_row_satd[y] );
- double pred_t = 0;
- if( h->sh.i_type != SLICE_TYPE_I
- && h->fref0[0]->i_type == h->fdec->i_type
- && h->fref0[0]->i_row_satd[y] > 0
- && (abs(h->fref0[0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
- {
- pred_t = h->fref0[0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref0[0]->i_row_satd[y]
- * qp2qscale(h->fref0[0]->i_row_qp[y]) / qp2qscale(qp);
- }
- if( pred_t == 0 )
- pred_t = pred_s;
- return (pred_s + pred_t) / 2;
- }
- static double row_bits_so_far( x264_t *h, int y )
- {
- int i;
- double bits = 0;
- for( i = 0; i <= y; i++ )
- bits += h->fdec->i_row_bits[i];
- return bits;
- }
- static double predict_row_size_sum( x264_t *h, int y, int qp )
- {
- int i;
- double bits = row_bits_so_far(h, y);
- for( i = y+1; i < h->sps->i_mb_height; i++ )
- bits += predict_row_size( h, i, qp );
- return bits;
- }
- void x264_ratecontrol_mb( x264_t *h, int bits )
- {
- x264_ratecontrol_t *rc = h->rc;
- const int y = h->mb.i_mb_y;
- x264_emms();
- h->fdec->i_row_bits[y] += bits;
- rc->qpa_rc += rc->f_qpm;
- rc->qpa_aq += h->mb.i_qp;
- if( h->mb.i_mb_x != h->sps->i_mb_width - 1 || !rc->b_vbv)
- return;
- h->fdec->i_row_qp[y] = rc->qpm;
- if( h->sh.i_type == SLICE_TYPE_B )
- {
- /* B-frames shouldn't use lower QP than their reference frames.
- * This code is a bit overzealous in limiting B-frame quantizers, but it helps avoid
- * underflows due to the fact that B-frames are not explicitly covered by VBV. */
- if( y < h->sps->i_mb_height-1 )
- {
- int i_estimated;
- int avg_qp = X264_MAX(h->fref0[0]->i_row_qp[y+1], h->fref1[0]->i_row_qp[y+1])
- + rc->pb_offset * ((h->fenc->i_type == X264_TYPE_BREF) ? 0.5 : 1);
- rc->qpm = X264_MIN(X264_MAX( rc->qp, avg_qp), 51); //avg_qp could go higher than 51 due to pb_offset
- i_estimated = row_bits_so_far(h, y); //FIXME: compute full estimated size
- if (i_estimated > h->rc->frame_size_planned)
- x264_ratecontrol_set_estimated_size(h, i_estimated);
- }
- }
- else
- {
- update_predictor( rc->row_pred, qp2qscale(rc->qpm), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
- /* tweak quality based on difference from predicted size */
- if( y < h->sps->i_mb_height-1 && h->stat.i_slice_count[h->sh.i_type] > 0 )
- {
- int prev_row_qp = h->fdec->i_row_qp[y];
- int b0 = predict_row_size_sum( h, y, rc->qpm );
- int b1 = b0;
- int i_qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, h->param.rc.i_qp_max );
- int i_qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
- float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
- float rc_tol = 1;
- float headroom = 0;
- /* Don't modify the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */
- /* area at the top of the frame was measured inaccurately. */
- if(row_bits_so_far(h,y) < 0.05 * rc->frame_size_planned)
- return;
- headroom = buffer_left_planned/rc->buffer_size;
- if(h->sh.i_type != SLICE_TYPE_I)
- headroom /= 2;
- rc_tol += headroom;
- if( !rc->b_vbv_min_rate )
- i_qp_min = X264_MAX( i_qp_min, h->sh.i_qp );
- while( rc->qpm < i_qp_max
- && (b1 > rc->frame_size_planned * rc_tol
- || (rc->buffer_fill - b1 < buffer_left_planned * 0.5)))
- {
- rc->qpm ++;
- b1 = predict_row_size_sum( h, y, rc->qpm );
- }
- /* avoid VBV underflow */
- while( (rc->qpm < h->param.rc.i_qp_max)
- && (rc->buffer_fill - b1 < rc->buffer_size * 0.005))
- {
- rc->qpm ++;
- b1 = predict_row_size_sum( h, y, rc->qpm );
- }
- while( rc->qpm > i_qp_min
- && rc->qpm > h->fdec->i_row_qp[0]
- && ((b1 < rc->frame_size_planned * 0.8 && rc->qpm <= prev_row_qp)
- || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1) )
- {
- rc->qpm --;
- b1 = predict_row_size_sum( h, y, rc->qpm );
- }
- x264_ratecontrol_set_estimated_size(h, b1);
- }
- }
- /* loses the fractional part of the frame-wise qp */
- rc->f_qpm = rc->qpm;
- }
- int x264_ratecontrol_qp( x264_t *h )
- {
- return h->rc->qpm;
- }
- /* In 2pass, force the same frame types as in the 1st pass */
- int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
- {
- x264_ratecontrol_t *rc = h->rc;
- if( h->param.rc.b_stat_read )
- {
- if( frame_num >= rc->num_entries )
- {
- /* We could try to initialize everything required for ABR and
- * adaptive B-frames, but that would be complicated.
- * So just calculate the average QP used so far. */
- h->param.rc.i_qp_constant = (h->stat.i_slice_count[SLICE_TYPE_P] == 0) ? 24
- : 1 + h->stat.f_slice_qp[SLICE_TYPE_P] / h->stat.i_slice_count[SLICE_TYPE_P];
- rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, 51 );
- rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 );
- rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 );
- x264_log(h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)n", rc->num_entries);
- x264_log(h, X264_LOG_ERROR, "continuing anyway, at constant QP=%dn", h->param.rc.i_qp_constant);
- if( h->param.b_bframe_adaptive )
- x264_log(h, X264_LOG_ERROR, "disabling adaptive B-framesn");
- rc->b_abr = 0;
- rc->b_2pass = 0;
- h->param.rc.i_rc_method = X264_RC_CQP;
- h->param.rc.b_stat_read = 0;
- h->param.b_bframe_adaptive = 0;
- if( h->param.i_bframe > 1 )
- h->param.i_bframe = 1;
- return X264_TYPE_P;
- }
- switch( rc->entry[frame_num].pict_type )
- {
- case SLICE_TYPE_I:
- return rc->entry[frame_num].kept_as_ref ? X264_TYPE_IDR : X264_TYPE_I;
- case SLICE_TYPE_B:
- return rc->entry[frame_num].kept_as_ref ? X264_TYPE_BREF : X264_TYPE_B;
- case SLICE_TYPE_P:
- default:
- return X264_TYPE_P;
- }
- }
- else
- {
- return X264_TYPE_AUTO;
- }
- }
- /* After encoding one frame, save stats and update ratecontrol state */
- void x264_ratecontrol_end( x264_t *h, int bits )
- {
- x264_ratecontrol_t *rc = h->rc;
- const int *mbs = h->stat.frame.i_mb_count;
- int i;
- x264_emms();
- h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP];
- h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4];
- h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8];
- for( i = B_DIRECT; i < B_8x8; i++ )
- h->stat.frame.i_mb_count_p += mbs[i];
- h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
- h->fdec->f_qp_avg_aq = rc->qpa_aq /= h->mb.i_mb_count;
- if( h->param.rc.b_stat_write )
- {
- char c_type = h->sh.i_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i')
- : h->sh.i_type==SLICE_TYPE_P ? 'P'
- : h->fenc->b_kept_as_ref ? 'B' : 'b';
- int dir_frame = h->stat.frame.i_direct_score[1] - h->stat.frame.i_direct_score[0];
- int dir_avg = h->stat.i_direct_score[1] - h->stat.i_direct_score[0];
- char c_direct = h->mb.b_direct_auto_write ?
- ( dir_frame>0 ? 's' : dir_frame<0 ? 't' :
- dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
- : '-';
- fprintf( rc->p_stat_file_out,
- "in:%d out:%d type:%c q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c;n",
- h->fenc->i_frame, h->i_frame,
- c_type, rc->qpa_rc,
- h->stat.frame.i_tex_bits,
- h->stat.frame.i_mv_bits,
- h->stat.frame.i_misc_bits,
- h->stat.frame.i_mb_count_i,
- h->stat.frame.i_mb_count_p,
- h->stat.frame.i_mb_count_skip,
- c_direct);
- }
- if( rc->b_abr )
- {
- if( h->sh.i_type != SLICE_TYPE_B )
- rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / rc->last_rceq;
- else
- {
- /* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
- * Not perfectly accurate with B-refs, but good enough. */
- rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor));
- }
- rc->cplxr_sum *= rc->cbr_decay;
- rc->wanted_bits_window += rc->bitrate / rc->fps;
- rc->wanted_bits_window *= rc->cbr_decay;
- if( h->param.i_threads == 1 )
- accum_p_qp_update( h, rc->qpa_rc );
- }
- if( rc->b_2pass )
- {
- rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale(rc->rce->new_qp) );
- }
- if( h->mb.b_variable_qp )
- {
- if( h->sh.i_type == SLICE_TYPE_B )
- {
- rc->bframe_bits += bits;
- if( !h->frames.current[0] || !IS_X264_TYPE_B(h->frames.current[0]->i_type) )
- {
- update_predictor( rc->pred_b_from_p, qp2qscale(rc->qpa_rc),
- h->fref1[h->i_ref1-1]->i_satd, rc->bframe_bits / rc->bframes );
- rc->bframe_bits = 0;
- }
- }
- }
- update_vbv( h, bits );
- }
- /****************************************************************************
- * 2 pass functions
- ***************************************************************************/
- /**
- * modify the bitrate curve from pass1 for one frame
- */
- static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num)
- {
- x264_ratecontrol_t *rcc= h->rc;
- double q;
- x264_zone_t *zone = get_zone( h, frame_num );
- q = pow( rce->blurred_complexity, 1 - h->param.rc.f_qcompress );
- // avoid NaN's in the rc_eq
- if(!isfinite(q) || rce->tex_bits + rce->mv_bits == 0)
- q = rcc->last_qscale;
- else
- {
- rcc->last_rceq = q;
- q /= rate_factor;
- rcc->last_qscale = q;
- }
- if( zone )
- {
- if( zone->b_force_qp )
- q = qp2qscale(zone->i_qp);
- else
- q /= zone->f_bitrate_factor;
- }
- return q;
- }
- static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
- {
- x264_ratecontrol_t *rcc = h->rc;
- const int pict_type = rce->pict_type;
- // force I/B quants as a function of P quants
- const double last_p_q = rcc->last_qscale_for[SLICE_TYPE_P];
- const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
- if( pict_type == SLICE_TYPE_I )
- {
- double iq = q;
- double pq = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
- double ip_factor = fabs( h->param.rc.f_ip_factor );
- /* don't apply ip_factor if the following frame is also I */
- if( rcc->accum_p_norm <= 0 )
- q = iq;
- else if( h->param.rc.f_ip_factor < 0 )
- q = iq / ip_factor;
- else if( rcc->accum_p_norm >= 1 )
- q = pq / ip_factor;
- else
- q = rcc->accum_p_norm * pq / ip_factor + (1 - rcc->accum_p_norm) * iq;
- }
- else if( pict_type == SLICE_TYPE_B )
- {
- if( h->param.rc.f_pb_factor > 0 )
- q = last_non_b_q;
- if( !rce->kept_as_ref )
- q *= fabs( h->param.rc.f_pb_factor );
- }
- else if( pict_type == SLICE_TYPE_P
- && rcc->last_non_b_pict_type == SLICE_TYPE_P
- && rce->tex_bits == 0 )
- {
- q = last_p_q;
- }
- /* last qscale / qdiff stuff */
- if(rcc->last_non_b_pict_type==pict_type
- && (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1))
- {
- double last_q = rcc->last_qscale_for[pict_type];
- double max_qscale = last_q * rcc->lstep;
- double min_qscale = last_q / rcc->lstep;
- if (q > max_qscale) q = max_qscale;
- else if(q < min_qscale) q = min_qscale;
- }
- rcc->last_qscale_for[pict_type] = q;
- if(pict_type!=SLICE_TYPE_B)
- rcc->last_non_b_pict_type = pict_type;
- if(pict_type==SLICE_TYPE_I)
- {
- rcc->last_accum_p_norm = rcc->accum_p_norm;
- rcc->accum_p_norm = 0;
- rcc->accum_p_qp = 0;
- }
- if(pict_type==SLICE_TYPE_P)
- {
- float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 );
- rcc->accum_p_qp = mask * (qscale2qp(q) + rcc->accum_p_qp);
- rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm);
- }
- return q;
- }
- static double predict_size( predictor_t *p, double q, double var )
- {
- return p->coeff*var / (q*p->count);
- }
- static void update_predictor( predictor_t *p, double q, double var, double bits )
- {
- if( var < 10 )
- return;
- p->count *= p->decay;
- p->coeff *= p->decay;
- p->count ++;
- p->coeff += bits*q / var;
- }
- // update VBV after encoding a frame
- static void update_vbv( x264_t *h, int bits )
- {
- x264_ratecontrol_t *rcc = h->rc;
- x264_ratecontrol_t *rct = h->thread[0]->rc;
- if( rcc->last_satd >= h->mb.i_mb_count )
- update_predictor( &rct->pred[h->sh.i_type], qp2qscale(rcc->qpa_rc), rcc->last_satd, bits );
- if( !rcc->b_vbv )
- return;
- rct->buffer_fill_final += rct->buffer_rate - bits;
- if( rct->buffer_fill_final < 0 )
- x264_log( h, X264_LOG_WARNING, "VBV underflow (%.0f bits)n", rct->buffer_fill_final );
- rct->buffer_fill_final = x264_clip3f( rct->buffer_fill_final, 0, rct->buffer_size );
- }
- // provisionally update VBV according to the planned size of all frames currently in progress
- static void update_vbv_plan( x264_t *h )
- {
- x264_ratecontrol_t *rcc = h->rc;
- rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final;
- if( h->param.i_threads > 1 )
- {
- int j = h->rc - h->thread[0]->rc;
- int i;
- for( i=1; i<h->param.i_threads; i++ )
- {
- x264_t *t = h->thread[ (j+i)%h->param.i_threads ];
- double bits = t->rc->frame_size_planned;
- if( !t->b_thread_active )
- continue;
- bits = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t));
- rcc->buffer_fill += rcc->buffer_rate - bits;
- rcc->buffer_fill = x264_clip3( rcc->buffer_fill, 0, rcc->buffer_size );
- }
- }
- }
- // apply VBV constraints and clip qscale to between lmin and lmax
- static double clip_qscale( x264_t *h, int pict_type, double q )
- {
- x264_ratecontrol_t *rcc = h->rc;
- double lmin = rcc->lmin[pict_type];
- double lmax = rcc->lmax[pict_type];
- double q0 = q;
- /* B-frames are not directly subject to VBV,
- * since they are controlled by the P-frames' QPs.
- * FIXME: in 2pass we could modify previous frames' QP too,
- * instead of waiting for the buffer to fill */
- if( rcc->b_vbv &&
- ( pict_type == SLICE_TYPE_P ||
- ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) )
- {
- if( rcc->buffer_fill/rcc->buffer_size < 0.5 )
- q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
- }
- if( rcc->b_vbv && rcc->last_satd > 0 )
- {
- /* Now a hard threshold to make sure the frame fits in VBV.
- * This one is mostly for I-frames. */
- double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
- double qf = 1.0;
- if( bits > rcc->buffer_fill/2 )
- qf = x264_clip3f( rcc->buffer_fill/(2*bits), 0.2, 1.0 );
- q /= qf;
- bits *= qf;
- if( bits < rcc->buffer_rate/2 )
- q *= bits*2/rcc->buffer_rate;
- q = X264_MAX( q0, q );
- /* Check B-frame complexity, and use up any bits that would
- * overflow before the next P-frame. */
- if( h->sh.i_type == SLICE_TYPE_P )
- {
- int nb = rcc->bframes;
- double pbbits = bits;
- double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
- double space;
- if( bbits > rcc->buffer_rate )
- nb = 0;
- pbbits += nb * bbits;
- space = rcc->buffer_fill + (1+nb)*rcc->buffer_rate - rcc->buffer_size;
- if( pbbits < space )
- {
- q *= X264_MAX( pbbits / space,
- bits / (0.5 * rcc->buffer_size) );
- }
- q = X264_MAX( q0-5, q );
- }
- if( !rcc->b_vbv_min_rate )
- q = X264_MAX( q0, q );
- }
- if(lmin==lmax)
- return lmin;
- else if(rcc->b_2pass)
- {
- double min2 = log(lmin);
- double max2 = log(lmax);
- q = (log(q) - min2)/(max2-min2) - 0.5;
- q = 1.0/(1.0 + exp(-4*q));
- q = q*(max2-min2) + min2;
- return exp(q);
- }
- else
- return x264_clip3f(q, lmin, lmax);
- }
- // update qscale for 1 frame based on actual bits used so far
- static float rate_estimate_qscale( x264_t *h )
- {
- float q;
- x264_ratecontrol_t *rcc = h->rc;
- ratecontrol_entry_t rce;
- int pict_type = h->sh.i_type;
- double lmin = rcc->lmin[pict_type];
- double lmax = rcc->lmax[pict_type];
- int64_t total_bits = 8*(h->stat.i_slice_size[SLICE_TYPE_I]
- + h->stat.i_slice_size[SLICE_TYPE_P]
- + h->stat.i_slice_size[SLICE_TYPE_B]);
- if( rcc->b_2pass )
- {
- rce = *rcc->rce;
- if(pict_type != rce.pict_type)
- {
- x264_log(h, X264_LOG_ERROR, "slice=%c but 2pass stats say %cn",
- slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type]);
- }
- }
- if( pict_type == SLICE_TYPE_B )
- {
- /* B-frames don't have independent ratecontrol, but rather get the
- * average QP of the two adjacent P-frames + an offset */
- int i0 = IS_X264_TYPE_I(h->fref0[0]->i_type);
- int i1 = IS_X264_TYPE_I(h->fref1[0]->i_type);
- int dt0 = abs(h->fenc->i_poc - h->fref0[0]->i_poc);
- int dt1 = abs(h->fenc->i_poc - h->fref1[0]->i_poc);
- float q0 = h->fref0[0]->f_qp_avg_rc;
- float q1 = h->fref1[0]->f_qp_avg_rc;
- if( h->fref0[0]->i_type == X264_TYPE_BREF )
- q0 -= rcc->pb_offset/2;
- if( h->fref1[0]->i_type == X264_TYPE_BREF )
- q1 -= rcc->pb_offset/2;
- if(i0 && i1)
- q = (q0 + q1) / 2 + rcc->ip_offset;
- else if(i0)
- q = q1;
- else if(i1)
- q = q0;
- else
- q = (q0*dt1 + q1*dt0) / (dt0 + dt1);
- if(h->fenc->b_kept_as_ref)
- q += rcc->pb_offset/2;
- else
- q += rcc->pb_offset;
- rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd );
- x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned);
- rcc->last_satd = 0;
- return qp2qscale(q);
- }
- else
- {
- double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate;
- if( rcc->b_2pass )
- {
- //FIXME adjust abr_buffer based on distance to the end of the video
- int64_t diff = total_bits - (int64_t)rce.expected_bits;
- q = rce.new_qscale;
- q /= x264_clip3f((double)(abr_buffer - diff) / abr_buffer, .5, 2);
- if( h->fenc->i_frame > 30 )
- {
- /* Adjust quant based on the difference between
- * achieved and expected bitrate so far */
- double time = (double)h->fenc->i_frame / rcc->num_entries;
- double w = x264_clip3f( time*100, 0.0, 1.0 );
- q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
- }
- if( rcc->b_vbv )
- {
- double expected_size = qscale2bits(&rce, q);
- double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
- double expected_fullness = rce.expected_vbv / rcc->buffer_size;
- double qmax = q*(2 - expected_fullness);
- double size_constraint = 1 + expected_fullness;
- if (expected_fullness < .05)
- qmax = lmax;
- qmax = X264_MIN(qmax, lmax);
- while( (expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax) )
- {
- q *= 1.05;
- expected_size = qscale2bits(&rce, q);
- expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
- }
- rcc->last_satd = x264_rc_analyse_slice( h );
- }
- q = x264_clip3f( q, lmin, lmax );
- }
- else /* 1pass ABR */
- {
- /* Calculate the quantizer which would have produced the desired
- * average bitrate if it had been applied to all frames so far.
- * Then modulate that quant based on the current frame's complexity
- * relative to the average complexity so far (using the 2pass RCEQ).
- * Then bias the quant up or down if total size so far was far from
- * the target.
- * Result: Depending on the value of rate_tolerance, there is a
- * tradeoff between quality and bitrate precision. But at large
- * tolerances, the bit distribution approaches that of 2pass. */
- double wanted_bits, overflow=1, lmin, lmax;
- rcc->last_satd = x264_rc_analyse_slice( h );
- rcc->short_term_cplxsum *= 0.5;
- rcc->short_term_cplxcount *= 0.5;
- rcc->short_term_cplxsum += rcc->last_satd;
- rcc->short_term_cplxcount ++;
- rce.tex_bits = rcc->last_satd;
- rce.blurred_complexity = rcc->short_term_cplxsum / rcc->short_term_cplxcount;
- rce.mv_bits = 0;
- rce.p_count = rcc->nmb;
- rce.i_count = 0;
- rce.s_count = 0;
- rce.qscale = 1;
- rce.pict_type = pict_type;
- if( h->param.rc.i_rc_method == X264_RC_CRF )
- {
- q = get_qscale( h, &rce, rcc->rate_factor_constant, h->fenc->i_frame );
- }
- else
- {
- int i_frame_done = h->fenc->i_frame + 1 - h->param.i_threads;
- q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame );
- // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
- wanted_bits = i_frame_done * rcc->bitrate / rcc->fps;
- if( wanted_bits > 0 )
- {
- abr_buffer *= X264_MAX( 1, sqrt(i_frame_done/25) );
- overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 );
- q *= overflow;
- }
- }
- if( pict_type == SLICE_TYPE_I && h->param.i_keyint_max > 1
- /* should test _next_ pict type, but that isn't decided yet */
- && rcc->last_non_b_pict_type != SLICE_TYPE_I )
- {
- q = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
- q /= fabs( h->param.rc.f_ip_factor );
- }
- else if( h->i_frame > 0 )
- {
- /* Asymmetric clipping, because symmetric would prevent
- * overflow control in areas of rapidly oscillating complexity */
- lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
- lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
- if( overflow > 1.1 && h->i_frame > 3 )
- lmax *= rcc->lstep;
- else if( overflow < 0.9 )
- lmin /= rcc->lstep;
- q = x264_clip3f(q, lmin, lmax);
- }
- else if( h->param.rc.i_rc_method == X264_RC_CRF )
- {
- q = qp2qscale( ABR_INIT_QP ) / fabs( h->param.rc.f_ip_factor );
- }
- //FIXME use get_diff_limited_q() ?
- q = clip_qscale( h, pict_type, q );
- }
- rcc->last_qscale_for[pict_type] =
- rcc->last_qscale = q;
- if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 )
- rcc->last_qscale_for[SLICE_TYPE_P] = q;
- if( rcc->b_2pass && rcc->b_vbv)
- rcc->frame_size_planned = qscale2bits(&rce, q);
- else
- rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
- x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned);
- return q;
- }
- }
- void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
- {
- if( cur != prev )
- {
- #define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var))
- /* these vars are updated in x264_ratecontrol_start()
- * so copy them from the context that most recently started (prev)
- * to the context that's about to start (cur).
- */
- COPY(accum_p_qp);
- COPY(accum_p_norm);
- COPY(last_satd);
- COPY(last_rceq);
- COPY(last_qscale_for);
- COPY(last_non_b_pict_type);
- COPY(short_term_cplxsum);
- COPY(short_term_cplxcount);
- COPY(bframes);
- COPY(prev_zone);
- #undef COPY
- }
- if( cur != next )
- {
- #define COPY(var) next->rc->var = cur->rc->var
- /* these vars are updated in x264_ratecontrol_end()
- * so copy them from the context that most recently ended (cur)
- * to the context that's about to end (next)
- */
- COPY(cplxr_sum);
- COPY(expected_bits_sum);
- COPY(wanted_bits_window);
- COPY(bframe_bits);
- #undef COPY
- }
- //FIXME row_preds[] (not strictly necessary, but would improve prediction)
- /* the rest of the variables are either constant or thread-local */
- }
- static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over )
- {
- /* find an interval ending on an overflow or underflow (depending on whether
- * we're adding or removing bits), and starting on the earliest frame that
- * can influence the buffer fill of that end frame. */
- x264_ratecontrol_t *rcc = h->rc;
- const double buffer_min = (over ? .1 : .1) * rcc->buffer_size;
- const double buffer_max = .9 * rcc->buffer_size;
- double fill = fills[*t0-1];
- double parity = over ? 1. : -1.;
- int i, start=-1, end=-1;
- for(i = *t0; i < rcc->num_entries; i++)
- {
- fill += (rcc->buffer_rate - qscale2bits(&rcc->entry[i], rcc->entry[i].new_qscale)) * parity;
- fill = x264_clip3f(fill, 0, rcc->buffer_size);
- fills[i] = fill;
- if(fill <= buffer_min || i == 0)
- {
- if(end >= 0)
- break;
- start = i;
- }
- else if(fill >= buffer_max && start >= 0)
- end = i;
- }
- *t0 = start;
- *t1 = end;
- return start>=0 && end>=0;
- }
- static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max)
- {
- x264_ratecontrol_t *rcc = h->rc;
- double qscale_orig, qscale_new;
- int i;
- int adjusted = 0;
- if(t0 > 0)
- t0++;
- for(i = t0; i <= t1; i++)
- {
- qscale_orig = rcc->entry[i].new_qscale;
- qscale_orig = x264_clip3f(qscale_orig, qscale_min, qscale_max);
- qscale_new = qscale_orig * adjustment;
- qscale_new = x264_clip3f(qscale_new, qscale_min, qscale_max);
- rcc->entry[i].new_qscale = qscale_new;
- adjusted = adjusted || (qscale_new != qscale_orig);
- }
- return adjusted;
- }
- static double count_expected_bits( x264_t *h )
- {
- x264_ratecontrol_t *rcc = h->rc;
- double expected_bits = 0;
- int i;
- for(i = 0; i < rcc->num_entries; i++)
- {
- ratecontrol_entry_t *rce = &rcc->entry[i];
- rce->expected_bits = expected_bits;
- expected_bits += qscale2bits(rce, rce->new_qscale);
- }
- return expected_bits;
- }
- static void vbv_pass2( x264_t *h )
- {
- /* for each interval of buffer_full .. underflow, uniformly increase the qp of all
- * frames in the interval until either buffer is full at some intermediate frame or the
- * last frame in the interval no longer underflows. Recompute intervals and repeat.
- * Then do the converse to put bits back into overflow areas until target size is met */
- x264_ratecontrol_t *rcc = h->rc;
- double *fills = x264_malloc((rcc->num_entries+1)*sizeof(double));
- double all_available_bits = h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps;
- double expected_bits = 0;
- double adjustment;
- double prev_bits = 0;
- int i, t0, t1;
- double qscale_min = qp2qscale(h->param.rc.i_qp_min);
- double qscale_max = qp2qscale(h->param.rc.i_qp_max);
- int iterations = 0;
- int adj_min, adj_max;
- fills++;
- /* adjust overall stream size */
- do
- {
- iterations++;
- prev_bits = expected_bits;
- if(expected_bits != 0)
- { /* not first iteration */
- adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9);
- fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
- t0 = 0;
- /* fix overflows */
- adj_min = 1;
- while(adj_min && find_underflow(h, fills, &t0, &t1, 1))
- {
- adj_min = fix_underflow(h, t0, t1, adjustment, qscale_min, qscale_max);
- t0 = t1;
- }
- }
- fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init);
- t0 = 0;
- /* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */
- adj_max = 1;
- while(adj_max && find_underflow(h, fills, &t0, &t1, 0))
- adj_max = fix_underflow(h, t0, t1, 1.001, qscale_min, qscale_max);
- expected_bits = count_expected_bits(h);
- } while(expected_bits < .995 * all_available_bits && expected_bits > prev_bits);
- if (!adj_max)
- x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too lown");
- /* store expected vbv filling values for tracking when encoding */
- for(i = 0; i < rcc->num_entries; i++)
- rcc->entry[i].expected_vbv = rcc->buffer_size - fills[i];
- x264_free(fills-1);
- }
- static int init_pass2( x264_t *h )
- {
- x264_ratecontrol_t *rcc = h->rc;
- uint64_t all_const_bits = 0;
- uint64_t all_available_bits = (uint64_t)(h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps);
- double rate_factor, step, step_mult;
- double qblur = h->param.rc.f_qblur;
- double cplxblur = h->param.rc.f_complexity_blur;
- const int filter_size = (int)(qblur*4) | 1;
- double expected_bits;
- double *qscale, *blurred_qscale;
- int i;
- /* find total/average complexity & const_bits */
- for(i=0; i<rcc->num_entries; i++)
- {
- ratecontrol_entry_t *rce = &rcc->entry[i];
- all_const_bits += rce->misc_bits;
- }
- if( all_available_bits < all_const_bits)
- {
- x264_log(h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbpsn",
- (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)));
- return -1;
- }
- /* Blur complexities, to reduce local fluctuation of QP.
- * We don't blur the QPs directly, because then one very simple frame
- * could drag down the QP of a nearby complex frame and give it more
- * bits than intended. */
- for(i=0; i<rcc->num_entries; i++)
- {
- ratecontrol_entry_t *rce = &rcc->entry[i];
- double weight_sum = 0;
- double cplx_sum = 0;
- double weight = 1.0;
- double gaussian_weight;
- int j;
- /* weighted average of cplx of future frames */
- for(j=1; j<cplxblur*2 && j<rcc->num_entries-i; j++)
- {
- ratecontrol_entry_t *rcj = &rcc->entry[i+j];
- weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
- if(weight < .0001)
- break;
- gaussian_weight = weight * exp(-j*j/200.0);
- weight_sum += gaussian_weight;
- cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
- }
- /* weighted average of cplx of past frames */
- weight = 1.0;
- for(j=0; j<=cplxblur*2 && j<=i; j++)
- {
- ratecontrol_entry_t *rcj = &rcc->entry[i-j];
- gaussian_weight = weight * exp(-j*j/200.0);
- weight_sum += gaussian_weight;
- cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
- weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
- if(weight < .0001)
- break;
- }
- rce->blurred_complexity = cplx_sum / weight_sum;
- }
- qscale = x264_malloc(sizeof(double)*rcc->num_entries);
- if(filter_size > 1)
- blurred_qscale = x264_malloc(sizeof(double)*rcc->num_entries);
- else
- blurred_qscale = qscale;
- /* Search for a factor which, when multiplied by the RCEQ values from
- * each frame, adds up to the desired total size.
- * There is no exact closed-form solution because of VBV constraints and
- * because qscale2bits is not invertible, but we can start with the simple
- * approximation of scaling the 1st pass by the ratio of bitrates.
- * The search range is probably overkill, but speed doesn't matter here. */
- expected_bits = 1;
- for(i=0; i<rcc->num_entries; i++)
- expected_bits += qscale2bits(&rcc->entry[i], get_qscale(h, &rcc->entry[i], 1.0, i));
- step_mult = all_available_bits / expected_bits;
- rate_factor = 0;
- for(step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
- {
- expected_bits = 0;
- rate_factor += step;
- rcc->last_non_b_pict_type = -1;
- rcc->last_accum_p_norm = 1;
- rcc->accum_p_norm = 0;
- /* find qscale */
- for(i=0; i<rcc->num_entries; i++)
- {
- qscale[i] = get_qscale(h, &rcc->entry[i], rate_factor, i);
- }
- /* fixed I/B qscale relative to P */
- for(i=rcc->num_entries-1; i>=0; i--)
- {
- qscale[i] = get_diff_limited_q(h, &rcc->entry[i], qscale[i]);
- assert(qscale[i] >= 0);
- }
- /* smooth curve */
- if(filter_size > 1)
- {
- assert(filter_size%2==1);
- for(i=0; i<rcc->num_entries; i++)
- {
- ratecontrol_entry_t *rce = &rcc->entry[i];
- int j;
- double q=0.0, sum=0.0;
- for(j=0; j<filter_size; j++)
- {
- int index = i+j-filter_size/2;
- double d = index-i;
- double coeff = qblur==0 ? 1.0 : exp(-d*d/(qblur*qblur));
- if(index < 0 || index >= rcc->num_entries)
- continue;
- if(rce->pict_type != rcc->entry[index].pict_type)
- continue;
- q += qscale[index] * coeff;
- sum += coeff;
- }
- blurred_qscale[i] = q/sum;
- }
- }
- /* find expected bits */
- for(i=0; i<rcc->num_entries; i++)
- {
- ratecontrol_entry_t *rce = &rcc->entry[i];
- rce->new_qscale = clip_qscale(h, rce->pict_type, blurred_qscale[i]);
- assert(rce->new_qscale >= 0);
- expected_bits += qscale2bits(rce, rce->new_qscale);
- }
- if(expected_bits > all_available_bits) rate_factor -= step;
- }
- x264_free(qscale);
- if(filter_size > 1)
- x264_free(blurred_qscale);
- if(rcc->b_vbv)
- vbv_pass2(h);
- expected_bits = count_expected_bits(h);
- if(fabs(expected_bits/all_available_bits - 1.0) > 0.01)
- {
- double avgq = 0;
- for(i=0; i<rcc->num_entries; i++)
- avgq += rcc->entry[i].new_qscale;
- avgq = qscale2qp(avgq / rcc->num_entries);
- if ((expected_bits > all_available_bits) || (!rcc->b_vbv))
- x264_log(h, X264_LOG_WARNING, "Error: 2pass curve failed to convergen");
- x264_log(h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4fn",
- (float)h->param.rc.i_bitrate,
- expected_bits * rcc->fps / (rcc->num_entries * 1000.),
- avgq);
- if(expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2)
- {
- if(h->param.rc.i_qp_min > 0)
- x264_log(h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)n", h->param.rc.i_qp_min);
- else
- x264_log(h, X264_LOG_WARNING, "try reducing target bitraten");
- }
- else if(expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2)
- {
- if(h->param.rc.i_qp_max < 51)
- x264_log(h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)n", h->param.rc.i_qp_max);
- else
- x264_log(h, X264_LOG_WARNING, "try increasing target bitraten");
- }
- else if(!(rcc->b_2pass && rcc->b_vbv))
- x264_log(h, X264_LOG_WARNING, "internal errorn");
- }
- return 0;
- }