ac3enc.c
上传用户:jxp0626
上传日期:2007-01-08
资源大小:102k
文件大小:39k
- /*
- * The simplest AC3 encoder
- * Copyright (c) 2000 Gerard Lantau.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- #include <stdlib.h>
- #include <stdio.h>
- #include <netinet/in.h>
- #include <math.h>
- #include "avcodec.h"
- #include "ac3enc.h"
- #include "ac3tab.h"
- //#define DEBUG
- //#define DEBUG_BITALLOC
- #define NDEBUG
- #include <assert.h>
- #define MDCT_NBITS 9
- #define N (1 << MDCT_NBITS)
- #define NB_BLOCKS 6 /* number of PCM blocks inside an AC3 frame */
- /* new exponents are sent if their Norm 1 exceed this number */
- #define EXP_DIFF_THRESHOLD 1000
- /* exponent encoding strategy */
- #define EXP_REUSE 0
- #define EXP_NEW 1
- #define EXP_D15 1
- #define EXP_D25 2
- #define EXP_D45 3
- static void fft_init(int ln);
- static void ac3_crc_init(void);
- static inline INT16 fix15(float a)
- {
- int v;
- v = (int)(a * (float)(1 << 15));
- if (v < -32767)
- v = -32767;
- else if (v > 32767)
- v = 32767;
- return v;
- }
- static inline int calc_lowcomp1(int a, int b0, int b1)
- {
- if ((b0 + 256) == b1) {
- a = 384 ;
- } else if (b0 > b1) {
- a = a - 64;
- if (a < 0) a=0;
- }
- return a;
- }
- static inline int calc_lowcomp(int a, int b0, int b1, int bin)
- {
- if (bin < 7) {
- if ((b0 + 256) == b1) {
- a = 384 ;
- } else if (b0 > b1) {
- a = a - 64;
- if (a < 0) a=0;
- }
- } else if (bin < 20) {
- if ((b0 + 256) == b1) {
- a = 320 ;
- } else if (b0 > b1) {
- a= a - 64;
- if (a < 0) a=0;
- }
- } else {
- a = a - 128;
- if (a < 0) a=0;
- }
- return a;
- }
- /* AC3 bit allocation. The algorithm is the one described in the AC3
- spec with some optimizations because of our simplified encoding
- assumptions. */
- void parametric_bit_allocation(AC3EncodeContext *s, UINT8 *bap,
- INT8 *exp, int start, int end,
- int snroffset, int fgain)
- {
- int bin,i,j,k,end1,v,v1,bndstrt,bndend,lowcomp,begin;
- int fastleak,slowleak,address,tmp;
- INT16 psd[256]; /* scaled exponents */
- INT16 bndpsd[50]; /* interpolated exponents */
- INT16 excite[50]; /* excitation */
- INT16 mask[50]; /* masking value */
- /* exponent mapping to PSD */
- for(bin=start;bin<end;bin++) {
- psd[bin]=(3072 - (exp[bin] << 7));
- }
- /* PSD integration */
- j=start;
- k=masktab[start];
- do {
- v=psd[j];
- j++;
- end1=bndtab[k+1];
- if (end1 > end) end1=end;
- for(i=j;i<end1;i++) {
- int c,adr;
- /* logadd */
- v1=psd[j];
- c=v-v1;
- if (c >= 0) {
- adr=c >> 1;
- if (adr > 255) adr=255;
- v=v + latab[adr];
- } else {
- adr=(-c) >> 1;
- if (adr > 255) adr=255;
- v=v1 + latab[adr];
- }
- j++;
- }
- bndpsd[k]=v;
- k++;
- } while (end > bndtab[k]);
- /* excitation function */
- bndstrt = masktab[start];
- bndend = masktab[end-1] + 1;
-
- lowcomp = 0;
- lowcomp = calc_lowcomp1(lowcomp, bndpsd[0], bndpsd[1]) ;
- excite[0] = bndpsd[0] - fgain - lowcomp ;
- lowcomp = calc_lowcomp1(lowcomp, bndpsd[1], bndpsd[2]) ;
- excite[1] = bndpsd[1] - fgain - lowcomp ;
- begin = 7 ;
- for (bin = 2; bin < 7; bin++) {
- lowcomp = calc_lowcomp1(lowcomp, bndpsd[bin], bndpsd[bin+1]) ;
- fastleak = bndpsd[bin] - fgain ;
- slowleak = bndpsd[bin] - s->sgain ;
- excite[bin] = fastleak - lowcomp ;
- if (bndpsd[bin] <= bndpsd[bin+1]) {
- begin = bin + 1 ;
- break ;
- }
- }
-
- end1=bndend;
- if (end1 > 22) end1=22;
-
- for (bin = begin; bin < end1; bin++) {
- lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;
-
- fastleak -= s->fdecay ;
- v = bndpsd[bin] - fgain;
- if (fastleak < v) fastleak = v;
-
- slowleak -= s->sdecay ;
- v = bndpsd[bin] - s->sgain;
- if (slowleak < v) slowleak = v;
-
- v=fastleak - lowcomp;
- if (slowleak > v) v=slowleak;
-
- excite[bin] = v;
- }
- for (bin = 22; bin < bndend; bin++) {
- fastleak -= s->fdecay ;
- v = bndpsd[bin] - fgain;
- if (fastleak < v) fastleak = v;
- slowleak -= s->sdecay ;
- v = bndpsd[bin] - s->sgain;
- if (slowleak < v) slowleak = v;
- v=fastleak;
- if (slowleak > v) v = slowleak;
- excite[bin] = v;
- }
- /* compute masking curve */
- for (bin = bndstrt; bin < bndend; bin++) {
- v1 = excite[bin];
- tmp = s->dbknee - bndpsd[bin];
- if (tmp > 0) {
- v1 += tmp >> 2;
- }
- v=hth[bin >> s->halfratecod][s->fscod];
- if (v1 > v) v=v1;
- mask[bin] = v;
- }
- /* compute bit allocation */
-
- i = start ;
- j = masktab[start] ;
- do {
- v=mask[j];
- v -= snroffset ;
- v -= s->floor ;
- if (v < 0) v = 0;
- v &= 0x1fe0 ;
- v += s->floor ;
- end1=bndtab[j] + bndsz[j];
- if (end1 > end) end1=end;
- for (k = i; k < end1; k++) {
- address = (psd[i] - v) >> 5 ;
- if (address < 0) address=0;
- else if (address > 63) address=63;
- bap[i] = baptab[address];
- i++;
- }
- } while (end > bndtab[j++]) ;
- }
- typedef struct IComplex {
- short re,im;
- } IComplex;
- static void fft_init(int ln)
- {
- int i, j, m, n;
- float alpha;
- n = 1 << ln;
- for(i=0;i<(n/2);i++) {
- alpha = 2 * M_PI * (float)i / (float)n;
- costab[i] = fix15(cos(alpha));
- sintab[i] = fix15(sin(alpha));
- }
- for(i=0;i<n;i++) {
- m=0;
- for(j=0;j<ln;j++) {
- m |= ((i >> j) & 1) << (ln-j-1);
- }
- fft_rev[i]=m;
- }
- }
- /* butter fly op */
- #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)
- {
- int ax, ay, bx, by;
- bx=pre1;
- by=pim1;
- ax=qre1;
- ay=qim1;
- pre = (bx + ax) >> 1;
- pim = (by + ay) >> 1;
- qre = (bx - ax) >> 1;
- qim = (by - ay) >> 1;
- }
- #define MUL16(a,b) ((a) * (b))
- #define CMUL(pre, pim, are, aim, bre, bim)
- {
- pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;
- pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;
- }
- /* do a 2^n point complex fft on 2^ln points. */
- static void fft(IComplex *z, int ln)
- {
- int j, l, np, np2;
- int nblocks, nloops;
- register IComplex *p,*q;
- int tmp_re, tmp_im;
- np = 1 << ln;
- /* reverse */
- for(j=0;j<np;j++) {
- int k;
- IComplex tmp;
- k = fft_rev[j];
- if (k < j) {
- tmp = z[k];
- z[k] = z[j];
- z[j] = tmp;
- }
- }
- /* pass 0 */
- p=&z[0];
- j=(np >> 1);
- do {
- BF(p[0].re, p[0].im, p[1].re, p[1].im,
- p[0].re, p[0].im, p[1].re, p[1].im);
- p+=2;
- } while (--j != 0);
- /* pass 1 */
- p=&z[0];
- j=np >> 2;
- do {
- BF(p[0].re, p[0].im, p[2].re, p[2].im,
- p[0].re, p[0].im, p[2].re, p[2].im);
- BF(p[1].re, p[1].im, p[3].re, p[3].im,
- p[1].re, p[1].im, p[3].im, -p[3].re);
- p+=4;
- } while (--j != 0);
- /* pass 2 .. ln-1 */
- nblocks = np >> 3;
- nloops = 1 << 2;
- np2 = np >> 1;
- do {
- p = z;
- q = z + nloops;
- for (j = 0; j < nblocks; ++j) {
- BF(p->re, p->im, q->re, q->im,
- p->re, p->im, q->re, q->im);
-
- p++;
- q++;
- for(l = nblocks; l < np2; l += nblocks) {
- CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
- BF(p->re, p->im, q->re, q->im,
- p->re, p->im, tmp_re, tmp_im);
- p++;
- q++;
- }
- p += nloops;
- q += nloops;
- }
- nblocks = nblocks >> 1;
- nloops = nloops << 1;
- } while (nblocks != 0);
- }
- /* do a 512 point mdct */
- static void mdct512(INT32 *out, INT16 *in)
- {
- int i, re, im, re1, im1;
- INT16 rot[N];
- IComplex x[N/4];
- /* shift to simplify computations */
- for(i=0;i<N/4;i++)
- rot[i] = -in[i + 3*N/4];
- for(i=N/4;i<N;i++)
- rot[i] = in[i - N/4];
-
- /* pre rotation */
- for(i=0;i<N/4;i++) {
- re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
- im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
- CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
- }
- fft(x, MDCT_NBITS - 2);
-
- /* post rotation */
- for(i=0;i<N/4;i++) {
- re = x[i].re;
- im = x[i].im;
- CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
- out[2*i] = im1;
- out[N/2-1-2*i] = re1;
- }
- }
- /* XXX: use another norm ? */
- static int calc_exp_diff(UINT8 *exp1, UINT8 *exp2, int n)
- {
- int sum, i;
- sum = 0;
- for(i=0;i<n;i++) {
- sum += abs(exp1[i] - exp2[i]);
- }
- return sum;
- }
- static void compute_exp_strategy(UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
- UINT8 exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
- int ch)
- {
- int i, j;
- int exp_diff;
-
- /* estimate if the exponent variation & decide if they should be
- reused in the next frame */
- exp_strategy[0][ch] = EXP_NEW;
- for(i=1;i<NB_BLOCKS;i++) {
- exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
- #ifdef DEBUG
- printf("exp_diff=%dn", exp_diff);
- #endif
- if (exp_diff > EXP_DIFF_THRESHOLD)
- exp_strategy[i][ch] = EXP_NEW;
- else
- exp_strategy[i][ch] = EXP_REUSE;
- }
- /* now select the encoding strategy type : if exponents are often
- recoded, we use a coarse encoding */
- i = 0;
- while (i < NB_BLOCKS) {
- j = i + 1;
- while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
- j++;
- switch(j - i) {
- case 1:
- exp_strategy[i][ch] = EXP_D45;
- break;
- case 2:
- case 3:
- exp_strategy[i][ch] = EXP_D25;
- break;
- default:
- exp_strategy[i][ch] = EXP_D15;
- break;
- }
- i = j;
- }
- }
- /* set exp[i] to min(exp[i], exp1[i]) */
- static void exponent_min(UINT8 exp[N/2], UINT8 exp1[N/2], int n)
- {
- int i;
- for(i=0;i<n;i++) {
- if (exp1[i] < exp[i])
- exp[i] = exp1[i];
- }
- }
-
- /* update the exponents so that they are the ones the decoder will
- decode. Return the number of bits used to code the exponents */
- static int encode_exp(UINT8 encoded_exp[N/2],
- UINT8 exp[N/2],
- int nb_exps,
- int exp_strategy)
- {
- int group_size, nb_groups, i, j, k, recurse, exp_min, delta;
- UINT8 exp1[N/2];
- switch(exp_strategy) {
- case EXP_D15:
- group_size = 1;
- break;
- case EXP_D25:
- group_size = 2;
- break;
- default:
- case EXP_D45:
- group_size = 4;
- break;
- }
- nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
- /* for each group, compute the minimum exponent */
- exp1[0] = exp[0]; /* DC exponent is handled separately */
- k = 1;
- for(i=1;i<=nb_groups;i++) {
- exp_min = exp[k];
- assert(exp_min >= 0 && exp_min <= 24);
- for(j=1;j<group_size;j++) {
- if (exp[k+j] < exp_min)
- exp_min = exp[k+j];
- }
- exp1[i] = exp_min;
- k += group_size;
- }
- /* constraint for DC exponent */
- if (exp1[0] > 15)
- exp1[0] = 15;
- /* Iterate until the delta constraints between each groups are
- satisfyed. I'm sure it is possible to find a better algorithm,
- but I am lazy */
- do {
- recurse = 0;
- for(i=1;i<=nb_groups;i++) {
- delta = exp1[i] - exp1[i-1];
- if (delta > 2) {
- /* if delta too big, we encode a smaller exponent */
- exp1[i] = exp1[i-1] + 2;
- } else if (delta < -2) {
- /* if delta is too small, we must decrease the previous
- exponent, which means we must recurse */
- recurse = 1;
- exp1[i-1] = exp1[i] + 2;
- }
- }
- } while (recurse);
-
- /* now we have the exponent values the decoder will see */
- encoded_exp[0] = exp1[0];
- k = 1;
- for(i=1;i<=nb_groups;i++) {
- for(j=0;j<group_size;j++) {
- encoded_exp[k+j] = exp1[i];
- }
- k += group_size;
- }
-
- #if defined(DEBUG)
- printf("exponents: strategy=%dn", exp_strategy);
- for(i=0;i<=nb_groups * group_size;i++) {
- printf("%d ", encoded_exp[i]);
- }
- printf("n");
- #endif
- return 4 + (nb_groups / 3) * 7;
- }
- /* return the size in bits taken by the mantissa */
- int compute_mantissa_size(AC3EncodeContext *s, UINT8 *m, int nb_coefs)
- {
- int bits, mant, i;
- bits = 0;
- for(i=0;i<nb_coefs;i++) {
- mant = m[i];
- switch(mant) {
- case 0:
- /* nothing */
- break;
- case 1:
- /* 3 mantissa in 5 bits */
- if (s->mant1_cnt == 0)
- bits += 5;
- if (++s->mant1_cnt == 3)
- s->mant1_cnt = 0;
- break;
- case 2:
- /* 3 mantissa in 7 bits */
- if (s->mant2_cnt == 0)
- bits += 7;
- if (++s->mant2_cnt == 3)
- s->mant2_cnt = 0;
- break;
- case 3:
- bits += 3;
- break;
- case 4:
- /* 2 mantissa in 7 bits */
- if (s->mant4_cnt == 0)
- bits += 7;
- if (++s->mant4_cnt == 2)
- s->mant4_cnt = 0;
- break;
- case 14:
- bits += 14;
- break;
- case 15:
- bits += 16;
- break;
- default:
- bits += mant - 1;
- break;
- }
- }
- return bits;
- }
- static int bit_alloc(AC3EncodeContext *s,
- UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
- UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
- UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
- int frame_bits, int csnroffst, int fsnroffst)
- {
- int i, ch;
- /* compute size */
- for(i=0;i<NB_BLOCKS;i++) {
- s->mant1_cnt = 0;
- s->mant2_cnt = 0;
- s->mant4_cnt = 0;
- for(ch=0;ch<s->nb_channels;ch++) {
- parametric_bit_allocation(s, bap[i][ch], encoded_exp[i][ch],
- 0, s->nb_coefs[ch],
- (((csnroffst-15) << 4) +
- fsnroffst) << 2,
- fgaintab[s->fgaincod[ch]]);
- frame_bits += compute_mantissa_size(s, bap[i][ch],
- s->nb_coefs[ch]);
- }
- }
- #if 0
- printf("csnr=%d fsnr=%d frame_bits=%d diff=%dn",
- csnroffst, fsnroffst, frame_bits,
- 16 * s->frame_size - ((frame_bits + 7) & ~7));
- #endif
- return 16 * s->frame_size - frame_bits;
- }
- #define SNR_INC1 4
- static int compute_bit_allocation(AC3EncodeContext *s,
- UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
- UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
- UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
- int frame_bits)
- {
- int i, ch;
- int csnroffst, fsnroffst;
- UINT8 bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
- /* init default parameters */
- s->sdecaycod = 2;
- s->fdecaycod = 1;
- s->sgaincod = 1;
- s->dbkneecod = 2;
- s->floorcod = 4;
- for(ch=0;ch<s->nb_channels;ch++)
- s->fgaincod[ch] = 4;
-
- /* compute real values */
- s->sdecay = sdecaytab[s->sdecaycod] >> s->halfratecod;
- s->fdecay = fdecaytab[s->fdecaycod] >> s->halfratecod;
- s->sgain = sgaintab[s->sgaincod];
- s->dbknee = dbkneetab[s->dbkneecod];
- s->floor = floortab[s->floorcod];
- /* header size */
- frame_bits += 65;
- if (s->acmod == 2)
- frame_bits += 2;
- /* audio blocks */
- for(i=0;i<NB_BLOCKS;i++) {
- frame_bits += s->nb_channels * 2 + 2;
- if (s->acmod == 2)
- frame_bits++;
- frame_bits += 2 * s->nb_channels;
- for(ch=0;ch<s->nb_channels;ch++) {
- if (exp_strategy[i][ch] != EXP_REUSE)
- frame_bits += 6 + 2;
- }
- frame_bits++; /* baie */
- frame_bits++; /* snr */
- frame_bits += 2; /* delta / skip */
- }
- frame_bits++; /* cplinu for block 0 */
- /* bit alloc info */
- frame_bits += 2*4 + 3 + 6 + s->nb_channels * (4 + 3);
- /* CRC */
- frame_bits += 16;
- /* now the big work begins : do the bit allocation. Modify the snr
- offset until we can pack everything in the requested frame size */
- csnroffst = s->csnroffst;
- while (csnroffst >= 0 &&
- bit_alloc(s, bap, encoded_exp, exp_strategy, frame_bits, csnroffst, 0) < 0)
- csnroffst -= SNR_INC1;
- if (csnroffst < 0) {
- fprintf(stderr, "Error !!!n");
- return -1;
- }
- while ((csnroffst + SNR_INC1) <= 63 &&
- bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
- csnroffst + SNR_INC1, 0) >= 0) {
- csnroffst += SNR_INC1;
- memcpy(bap, bap1, sizeof(bap1));
- }
- while ((csnroffst + 1) <= 63 &&
- bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, csnroffst + 1, 0) >= 0) {
- csnroffst++;
- memcpy(bap, bap1, sizeof(bap1));
- }
- fsnroffst = 0;
- while ((fsnroffst + SNR_INC1) <= 15 &&
- bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
- csnroffst, fsnroffst + SNR_INC1) >= 0) {
- fsnroffst += SNR_INC1;
- memcpy(bap, bap1, sizeof(bap1));
- }
- while ((fsnroffst + 1) <= 15 &&
- bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
- csnroffst, fsnroffst + 1) >= 0) {
- fsnroffst++;
- memcpy(bap, bap1, sizeof(bap1));
- }
-
- s->csnroffst = csnroffst;
- for(ch=0;ch<s->nb_channels;ch++)
- s->fsnroffst[ch] = fsnroffst;
- #if defined(DEBUG_BITALLOC)
- {
- int j;
- for(i=0;i<6;i++) {
- for(ch=0;ch<s->nb_channels;ch++) {
- printf("Block #%d Ch%d:n", i, ch);
- printf("bap=");
- for(j=0;j<s->nb_coefs[ch];j++) {
- printf("%d ",bap[i][ch][j]);
- }
- printf("n");
- }
- }
- }
- #endif
- return 0;
- }
- static int AC3_encode_init(AVEncodeContext *avctx)
- {
- int freq = avctx->rate;
- int bitrate = avctx->bit_rate;
- int channels = avctx->channels;
- AC3EncodeContext *s = avctx->priv_data;
- int i, j, k, l, ch, v;
- float alpha;
- static unsigned short freqs[3] = { 48000, 44100, 32000 };
- avctx->frame_size = AC3_FRAME_SIZE;
- avctx->key_frame = 1; /* always key frame */
-
- /* number of channels */
- if (channels == 1)
- s->acmod = 1;
- else if (channels == 2)
- s->acmod = 2;
- else
- return -1;
- s->nb_channels = channels;
- /* frequency */
- for(i=0;i<3;i++) {
- for(j=0;j<3;j++)
- if ((freqs[j] >> i) == freq)
- goto found;
- }
- return -1;
- found:
- s->sample_rate = freq;
- s->halfratecod = i;
- s->fscod = j;
- s->bsid = 8 + s->halfratecod;
- s->bsmod = 0; /* complete main audio service */
- /* bitrate & frame size */
- bitrate /= 1000;
- for(i=0;i<19;i++) {
- if ((bitratetab[i] >> s->halfratecod) == bitrate)
- break;
- }
- if (i == 19)
- return -1;
- s->bit_rate = bitrate;
- s->frmsizecod = i << 1;
- s->frame_size_min = (bitrate * 1000 * AC3_FRAME_SIZE) / (freq * 16);
- /* for now we do not handle fractional sizes */
- s->frame_size = s->frame_size_min;
-
- /* bit allocation init */
- for(ch=0;ch<s->nb_channels;ch++) {
- /* bandwidth for each channel */
- /* XXX: should compute the bandwidth according to the frame
- size, so that we avoid anoying high freq artefacts */
- s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */
- s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37;
- }
- /* initial snr offset */
- s->csnroffst = 40;
- /* compute bndtab and masktab from bandsz */
- k = 0;
- l = 0;
- for(i=0;i<50;i++) {
- bndtab[i] = l;
- v = bndsz[i];
- for(j=0;j<v;j++) masktab[k++]=i;
- l += v;
- }
- bndtab[50] = 0;
- /* mdct init */
- fft_init(MDCT_NBITS - 2);
- for(i=0;i<N/4;i++) {
- alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
- xcos1[i] = fix15(-cos(alpha));
- xsin1[i] = fix15(-sin(alpha));
- }
- ac3_crc_init();
- return 0;
- }
- /* output the AC3 frame header */
- static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
- {
- init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE, NULL, NULL);
- put_bits(&s->pb, 16, 0x0b77); /* frame header */
- put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
- put_bits(&s->pb, 2, s->fscod);
- put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min));
- put_bits(&s->pb, 5, s->bsid);
- put_bits(&s->pb, 3, s->bsmod);
- put_bits(&s->pb, 3, s->acmod);
- if (s->acmod == 2) {
- put_bits(&s->pb, 2, 0); /* surround not indicated */
- }
- put_bits(&s->pb, 1, 0); /* no LFE */
- put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
- put_bits(&s->pb, 1, 0); /* no compression control word */
- put_bits(&s->pb, 1, 0); /* no lang code */
- put_bits(&s->pb, 1, 0); /* no audio production info */
- put_bits(&s->pb, 1, 0); /* no copyright */
- put_bits(&s->pb, 1, 1); /* original bitstream */
- put_bits(&s->pb, 1, 0); /* no time code 1 */
- put_bits(&s->pb, 1, 0); /* no time code 2 */
- put_bits(&s->pb, 1, 0); /* no addtional bit stream info */
- }
- /* symetric quantization on 'levels' levels */
- static inline int sym_quant(int c, int e, int levels)
- {
- int v;
- if (c >= 0) {
- v = (levels * (c << e)) >> 25;
- v = (levels >> 1) + v;
- } else {
- v = (levels * ((-c) << e)) >> 25;
- v = (levels >> 1) - v;
- }
- assert (v >= 0 && v < levels);
- return v;
- }
- /* asymetric quantization on 2^qbits levels */
- static inline int asym_quant(int c, int e, int qbits)
- {
- int lshift, m, v;
- lshift = e + qbits - 24;
- if (lshift >= 0)
- v = c << lshift;
- else
- v = c >> (-lshift);
- /* rounding */
- v = (v + 1) >> 1;
- m = (1 << (qbits-1));
- if (v >= m)
- v = m - 1;
- assert(v >= -m);
- return v & ((1 << qbits)-1);
- }
- /* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
- frame */
- static void output_audio_block(AC3EncodeContext *s,
- UINT8 exp_strategy[AC3_MAX_CHANNELS],
- UINT8 encoded_exp[AC3_MAX_CHANNELS][N/2],
- UINT8 bap[AC3_MAX_CHANNELS][N/2],
- INT32 mdct_coefs[AC3_MAX_CHANNELS][N/2],
- INT8 global_exp[AC3_MAX_CHANNELS],
- int block_num)
- {
- int ch, nb_groups, group_size, i, baie;
- UINT8 *p;
- UINT16 qmant[AC3_MAX_CHANNELS][N/2];
- int exp0, exp1;
- int mant1_cnt, mant2_cnt, mant4_cnt;
- UINT16 *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
- int delta0, delta1, delta2;
- for(ch=0;ch<s->nb_channels;ch++)
- put_bits(&s->pb, 1, 0); /* 512 point MDCT */
- for(ch=0;ch<s->nb_channels;ch++)
- put_bits(&s->pb, 1, 1); /* no dither */
- put_bits(&s->pb, 1, 0); /* no dynamic range */
- if (block_num == 0) {
- /* for block 0, even if no coupling, we must say it. This is a
- waste of bit :-) */
- put_bits(&s->pb, 1, 1); /* coupling strategy present */
- put_bits(&s->pb, 1, 0); /* no coupling strategy */
- } else {
- put_bits(&s->pb, 1, 0); /* no new coupling strategy */
- }
- if (s->acmod == 2) {
- put_bits(&s->pb, 1, 0); /* no matrixing (but should be used in the future) */
- }
- #if defined(DEBUG)
- {
- static int count = 0;
- printf("Block #%d (%d)n", block_num, count++);
- }
- #endif
- /* exponent strategy */
- for(ch=0;ch<s->nb_channels;ch++) {
- put_bits(&s->pb, 2, exp_strategy[ch]);
- }
-
- for(ch=0;ch<s->nb_channels;ch++) {
- if (exp_strategy[ch] != EXP_REUSE)
- put_bits(&s->pb, 6, s->chbwcod[ch]);
- }
-
- /* exponents */
- for (ch = 0; ch < s->nb_channels; ch++) {
- switch(exp_strategy[ch]) {
- case EXP_REUSE:
- continue;
- case EXP_D15:
- group_size = 1;
- break;
- case EXP_D25:
- group_size = 2;
- break;
- default:
- case EXP_D45:
- group_size = 4;
- break;
- }
- nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
- p = encoded_exp[ch];
- /* first exponent */
- exp1 = *p++;
- put_bits(&s->pb, 4, exp1);
- /* next ones are delta encoded */
- for(i=0;i<nb_groups;i++) {
- /* merge three delta in one code */
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta0 = exp1 - exp0 + 2;
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta1 = exp1 - exp0 + 2;
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta2 = exp1 - exp0 + 2;
- put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
- }
- put_bits(&s->pb, 2, 0); /* no gain range info */
- }
- /* bit allocation info */
- baie = (block_num == 0);
- put_bits(&s->pb, 1, baie);
- if (baie) {
- put_bits(&s->pb, 2, s->sdecaycod);
- put_bits(&s->pb, 2, s->fdecaycod);
- put_bits(&s->pb, 2, s->sgaincod);
- put_bits(&s->pb, 2, s->dbkneecod);
- put_bits(&s->pb, 3, s->floorcod);
- }
- /* snr offset */
- put_bits(&s->pb, 1, baie); /* always present with bai */
- if (baie) {
- put_bits(&s->pb, 6, s->csnroffst);
- for(ch=0;ch<s->nb_channels;ch++) {
- put_bits(&s->pb, 4, s->fsnroffst[ch]);
- put_bits(&s->pb, 3, s->fgaincod[ch]);
- }
- }
-
- put_bits(&s->pb, 1, 0); /* no delta bit allocation */
- put_bits(&s->pb, 1, 0); /* no data to skip */
- /* mantissa encoding : we use two passes to handle the grouping. A
- one pass method may be faster, but it would necessitate to
- modify the output stream. */
- /* first pass: quantize */
- mant1_cnt = mant2_cnt = mant4_cnt = 0;
- qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
- for (ch = 0; ch < s->nb_channels; ch++) {
- int b, c, e, v;
- for(i=0;i<s->nb_coefs[ch];i++) {
- c = mdct_coefs[ch][i];
- e = encoded_exp[ch][i] - global_exp[ch];
- b = bap[ch][i];
- switch(b) {
- case 0:
- v = 0;
- break;
- case 1:
- v = sym_quant(c, e, 3);
- switch(mant1_cnt) {
- case 0:
- qmant1_ptr = &qmant[ch][i];
- v = 9 * v;
- mant1_cnt = 1;
- break;
- case 1:
- *qmant1_ptr += 3 * v;
- mant1_cnt = 2;
- v = 128;
- break;
- default:
- *qmant1_ptr += v;
- mant1_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 2:
- v = sym_quant(c, e, 5);
- switch(mant2_cnt) {
- case 0:
- qmant2_ptr = &qmant[ch][i];
- v = 25 * v;
- mant2_cnt = 1;
- break;
- case 1:
- *qmant2_ptr += 5 * v;
- mant2_cnt = 2;
- v = 128;
- break;
- default:
- *qmant2_ptr += v;
- mant2_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 3:
- v = sym_quant(c, e, 7);
- break;
- case 4:
- v = sym_quant(c, e, 11);
- switch(mant4_cnt) {
- case 0:
- qmant4_ptr = &qmant[ch][i];
- v = 11 * v;
- mant4_cnt = 1;
- break;
- default:
- *qmant4_ptr += v;
- mant4_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 5:
- v = sym_quant(c, e, 15);
- break;
- case 14:
- v = asym_quant(c, e, 14);
- break;
- case 15:
- v = asym_quant(c, e, 16);
- break;
- default:
- v = asym_quant(c, e, b - 1);
- break;
- }
- qmant[ch][i] = v;
- }
- }
- /* second pass : output the values */
- for (ch = 0; ch < s->nb_channels; ch++) {
- int b, q;
-
- for(i=0;i<s->nb_coefs[ch];i++) {
- q = qmant[ch][i];
- b = bap[ch][i];
- switch(b) {
- case 0:
- break;
- case 1:
- if (q != 128)
- put_bits(&s->pb, 5, q);
- break;
- case 2:
- if (q != 128)
- put_bits(&s->pb, 7, q);
- break;
- case 3:
- put_bits(&s->pb, 3, q);
- break;
- case 4:
- if (q != 128)
- put_bits(&s->pb, 7, q);
- break;
- case 14:
- put_bits(&s->pb, 14, q);
- break;
- case 15:
- put_bits(&s->pb, 16, q);
- break;
- default:
- put_bits(&s->pb, b - 1, q);
- break;
- }
- }
- }
- }
- /* compute the ac3 crc */
- #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
- static void ac3_crc_init(void)
- {
- unsigned int c, n, k;
- for(n=0;n<256;n++) {
- c = n << 8;
- for (k = 0; k < 8; k++) {
- if (c & (1 << 15))
- c = ((c << 1) & 0xffff) ^ (CRC16_POLY & 0xffff);
- else
- c = c << 1;
- }
- crc_table[n] = c;
- }
- }
- static unsigned int ac3_crc(UINT8 *data, int n, unsigned int crc)
- {
- int i;
- for(i=0;i<n;i++) {
- crc = (crc_table[data[i] ^ (crc >> 8)] ^ (crc << 8)) & 0xffff;
- }
- return crc;
- }
- static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
- {
- unsigned int c;
- c = 0;
- while (a) {
- if (a & 1)
- c ^= b;
- a = a >> 1;
- b = b << 1;
- if (b & (1 << 16))
- b ^= poly;
- }
- return c;
- }
- static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
- {
- unsigned int r;
- r = 1;
- while (n) {
- if (n & 1)
- r = mul_poly(r, a, poly);
- a = mul_poly(a, a, poly);
- n >>= 1;
- }
- return r;
- }
- /* compute log2(max(abs(tab[]))) */
- static int log2_tab(INT16 *tab, int n)
- {
- int i, v;
- v = 0;
- for(i=0;i<n;i++) {
- v |= abs(tab[i]);
- }
- return log2(v);
- }
- static void lshift_tab(INT16 *tab, int n, int lshift)
- {
- int i;
- if (lshift > 0) {
- for(i=0;i<n;i++) {
- tab[i] <<= lshift;
- }
- } else if (lshift < 0) {
- lshift = -lshift;
- for(i=0;i<n;i++) {
- tab[i] >>= lshift;
- }
- }
- }
- /* fill the end of the frame and compute the two crcs */
- static int output_frame_end(AC3EncodeContext *s)
- {
- int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
- UINT8 *frame;
- frame_size = s->frame_size; /* frame size in words */
- /* align to 8 bits */
- flush_put_bits(&s->pb);
- /* add zero bytes to reach the frame size */
- frame = s->pb.buf;
- n = 2 * s->frame_size - (s->pb.buf_ptr - frame) - 2;
- assert(n >= 0);
- memset(s->pb.buf_ptr, 0, n);
-
- /* Now we must compute both crcs : this is not so easy for crc1
- because it is at the beginning of the data... */
- frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
- crc1 = ac3_crc(frame + 4, (2 * frame_size_58) - 4, 0);
- /* XXX: could precompute crc_inv */
- crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
- crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
- frame[2] = crc1 >> 8;
- frame[3] = crc1;
-
- crc2 = ac3_crc(frame + 2 * frame_size_58, (frame_size - frame_size_58) * 2 - 2, 0);
- frame[2*frame_size - 2] = crc2 >> 8;
- frame[2*frame_size - 1] = crc2;
- // printf("n=%d frame_size=%dn", n, frame_size);
- return frame_size * 2;
- }
- int AC3_encode_frame(AVEncodeContext *avctx,
- unsigned char *frame, int buf_size, void *data)
- {
- AC3EncodeContext *s = avctx->priv_data;
- short *samples = data;
- int i, j, k, v, ch;
- INT16 input_samples[N];
- INT32 mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
- UINT8 exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
- UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
- UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
- UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
- INT8 exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
- int frame_bits;
- frame_bits = 0;
- for(ch=0;ch<s->nb_channels;ch++) {
- /* fixed mdct to the six sub blocks & exponent computation */
- for(i=0;i<NB_BLOCKS;i++) {
- INT16 *sptr;
- int sinc;
- /* compute input samples */
- memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(INT16));
- sinc = s->nb_channels;
- sptr = samples + (sinc * (N/2) * i) + ch;
- for(j=0;j<N/2;j++) {
- v = *sptr;
- input_samples[j + N/2] = v;
- s->last_samples[ch][j] = v;
- sptr += sinc;
- }
- /* apply the MDCT window */
- for(j=0;j<N/2;j++) {
- input_samples[j] = MUL16(input_samples[j],
- ac3_window[j]) >> 15;
- input_samples[N-j-1] = MUL16(input_samples[N-j-1],
- ac3_window[j]) >> 15;
- }
-
- /* Normalize the samples to use the maximum available
- precision */
- v = 14 - log2_tab(input_samples, N);
- if (v < 0)
- v = 0;
- exp_samples[i][ch] = v - 8;
- lshift_tab(input_samples, N, v);
- /* do the MDCT */
- mdct512(mdct_coef[i][ch], input_samples);
-
- /* compute "exponents". We take into account the
- normalization there */
- for(j=0;j<N/2;j++) {
- int e;
- v = abs(mdct_coef[i][ch][j]);
- if (v == 0)
- e = 24;
- else {
- e = 23 - log2(v) + exp_samples[i][ch];
- if (e >= 24) {
- e = 24;
- mdct_coef[i][ch][j] = 0;
- }
- }
- exp[i][ch][j] = e;
- }
- }
-
- compute_exp_strategy(exp_strategy, exp, ch);
- /* compute the exponents as the decoder will see them. The
- EXP_REUSE case must be handled carefully : we select the
- min of the exponents */
- i = 0;
- while (i < NB_BLOCKS) {
- j = i + 1;
- while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
- exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
- j++;
- }
- frame_bits += encode_exp(encoded_exp[i][ch],
- exp[i][ch], s->nb_coefs[ch],
- exp_strategy[i][ch]);
- /* copy encoded exponents for reuse case */
- for(k=i+1;k<j;k++) {
- memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
- s->nb_coefs[ch] * sizeof(UINT8));
- }
- i = j;
- }
- }
- compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
- /* everything is known... let's output the frame */
- output_frame_header(s, frame);
-
- for(i=0;i<NB_BLOCKS;i++) {
- output_audio_block(s, exp_strategy[i], encoded_exp[i],
- bap[i], mdct_coef[i], exp_samples[i], i);
- }
- return output_frame_end(s);
- }
- #if 0
- /*************************************************************************/
- /* TEST */
- #define FN (N/4)
- void fft_test(void)
- {
- IComplex in[FN], in1[FN];
- int k, n, i;
- float sum_re, sum_im, a;
- /* FFT test */
- for(i=0;i<FN;i++) {
- in[i].re = random() % 65535 - 32767;
- in[i].im = random() % 65535 - 32767;
- in1[i] = in[i];
- }
- fft(in, 7);
- /* do it by hand */
- for(k=0;k<FN;k++) {
- sum_re = 0;
- sum_im = 0;
- for(n=0;n<FN;n++) {
- a = -2 * M_PI * (n * k) / FN;
- sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
- sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
- }
- printf("%3d: %6d,%6d %6.0f,%6.0fn",
- k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
- }
- }
- void mdct_test(void)
- {
- INT16 input[N];
- INT32 output[N/2];
- float input1[N];
- float output1[N/2];
- float s, a, err, e, emax;
- int i, k, n;
- for(i=0;i<N;i++) {
- input[i] = (random() % 65535 - 32767) * 9 / 10;
- input1[i] = input[i];
- }
- mdct512(output, input);
-
- /* do it by hand */
- for(k=0;k<N/2;k++) {
- s = 0;
- for(n=0;n<N;n++) {
- a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
- s += input1[n] * cos(a);
- }
- output1[k] = -2 * s / N;
- }
-
- err = 0;
- emax = 0;
- for(i=0;i<N/2;i++) {
- printf("%3d: %7d %7.0fn", i, output[i], output1[i]);
- e = output[i] - output1[i];
- if (e > emax)
- emax = e;
- err += e * e;
- }
- printf("err2=%f emax=%fn", err / (N/2), emax);
- }
- void test_ac3(void)
- {
- AC3EncodeContext ctx;
- unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
- short samples[AC3_FRAME_SIZE];
- int ret, i;
-
- AC3_encode_init(&ctx, 44100, 64000, 1);
- fft_test();
- mdct_test();
- for(i=0;i<AC3_FRAME_SIZE;i++)
- samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
- ret = AC3_encode_frame(&ctx, frame, samples);
- printf("ret=%dn", ret);
- }
- #endif
- AVEncoder ac3_encoder = {
- "ac3",
- CODEC_TYPE_AUDIO,
- CODEC_ID_AC3,
- sizeof(AC3EncodeContext),
- AC3_encode_init,
- AC3_encode_frame,
- NULL,
- };