fts3_porter.c.svn-base
上传用户:sunhongbo
上传日期:2022-01-25
资源大小:3010k
文件大小:17k
- /*
- ** 2006 September 30
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- ** Implementation of the full-text-search tokenizer that implements
- ** a Porter stemmer.
- */
- /*
- ** The code in this file is only compiled if:
- **
- ** * The FTS3 module is being built as an extension
- ** (in which case SQLITE_CORE is not defined), or
- **
- ** * The FTS3 module is being built into the core of
- ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
- */
- #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
- #include <assert.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <string.h>
- #include <ctype.h>
- #include "fts3_tokenizer.h"
- /*
- ** Class derived from sqlite3_tokenizer
- */
- typedef struct porter_tokenizer {
- sqlite3_tokenizer base; /* Base class */
- } porter_tokenizer;
- /*
- ** Class derived from sqlit3_tokenizer_cursor
- */
- typedef struct porter_tokenizer_cursor {
- sqlite3_tokenizer_cursor base;
- const char *zInput; /* input we are tokenizing */
- int nInput; /* size of the input */
- int iOffset; /* current position in zInput */
- int iToken; /* index of next token to be returned */
- char *zToken; /* storage for current token */
- int nAllocated; /* space allocated to zToken buffer */
- } porter_tokenizer_cursor;
- /* Forward declaration */
- static const sqlite3_tokenizer_module porterTokenizerModule;
- /*
- ** Create a new tokenizer instance.
- */
- static int porterCreate(
- int argc, const char * const *argv,
- sqlite3_tokenizer **ppTokenizer
- ){
- porter_tokenizer *t;
- t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
- if( t==NULL ) return SQLITE_NOMEM;
- memset(t, 0, sizeof(*t));
- *ppTokenizer = &t->base;
- return SQLITE_OK;
- }
- /*
- ** Destroy a tokenizer
- */
- static int porterDestroy(sqlite3_tokenizer *pTokenizer){
- sqlite3_free(pTokenizer);
- return SQLITE_OK;
- }
- /*
- ** Prepare to begin tokenizing a particular string. The input
- ** string to be tokenized is zInput[0..nInput-1]. A cursor
- ** used to incrementally tokenize this string is returned in
- ** *ppCursor.
- */
- static int porterOpen(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer */
- const char *zInput, int nInput, /* String to be tokenized */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
- ){
- porter_tokenizer_cursor *c;
- c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
- if( c==NULL ) return SQLITE_NOMEM;
- c->zInput = zInput;
- if( zInput==0 ){
- c->nInput = 0;
- }else if( nInput<0 ){
- c->nInput = (int)strlen(zInput);
- }else{
- c->nInput = nInput;
- }
- c->iOffset = 0; /* start tokenizing at the beginning */
- c->iToken = 0;
- c->zToken = NULL; /* no space allocated, yet. */
- c->nAllocated = 0;
- *ppCursor = &c->base;
- return SQLITE_OK;
- }
- /*
- ** Close a tokenization cursor previously opened by a call to
- ** porterOpen() above.
- */
- static int porterClose(sqlite3_tokenizer_cursor *pCursor){
- porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
- sqlite3_free(c->zToken);
- sqlite3_free(c);
- return SQLITE_OK;
- }
- /*
- ** Vowel or consonant
- */
- static const char cType[] = {
- 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
- 1, 1, 1, 2, 1
- };
- /*
- ** isConsonant() and isVowel() determine if their first character in
- ** the string they point to is a consonant or a vowel, according
- ** to Porter ruls.
- **
- ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
- ** 'Y' is a consonant unless it follows another consonant,
- ** in which case it is a vowel.
- **
- ** In these routine, the letters are in reverse order. So the 'y' rule
- ** is that 'y' is a consonant unless it is followed by another
- ** consonent.
- */
- static int isVowel(const char*);
- static int isConsonant(const char *z){
- int j;
- char x = *z;
- if( x==0 ) return 0;
- assert( x>='a' && x<='z' );
- j = cType[x-'a'];
- if( j<2 ) return j;
- return z[1]==0 || isVowel(z + 1);
- }
- static int isVowel(const char *z){
- int j;
- char x = *z;
- if( x==0 ) return 0;
- assert( x>='a' && x<='z' );
- j = cType[x-'a'];
- if( j<2 ) return 1-j;
- return isConsonant(z + 1);
- }
- /*
- ** Let any sequence of one or more vowels be represented by V and let
- ** C be sequence of one or more consonants. Then every word can be
- ** represented as:
- **
- ** [C] (VC){m} [V]
- **
- ** In prose: A word is an optional consonant followed by zero or
- ** vowel-consonant pairs followed by an optional vowel. "m" is the
- ** number of vowel consonant pairs. This routine computes the value
- ** of m for the first i bytes of a word.
- **
- ** Return true if the m-value for z is 1 or more. In other words,
- ** return true if z contains at least one vowel that is followed
- ** by a consonant.
- **
- ** In this routine z[] is in reverse order. So we are really looking
- ** for an instance of of a consonant followed by a vowel.
- */
- static int m_gt_0(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- return *z!=0;
- }
- /* Like mgt0 above except we are looking for a value of m which is
- ** exactly 1
- */
- static int m_eq_1(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 1;
- while( isConsonant(z) ){ z++; }
- return *z==0;
- }
- /* Like mgt0 above except we are looking for a value of m>1 instead
- ** or m>0
- */
- static int m_gt_1(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- return *z!=0;
- }
- /*
- ** Return TRUE if there is a vowel anywhere within z[0..n-1]
- */
- static int hasVowel(const char *z){
- while( isConsonant(z) ){ z++; }
- return *z!=0;
- }
- /*
- ** Return TRUE if the word ends in a double consonant.
- **
- ** The text is reversed here. So we are really looking at
- ** the first two characters of z[].
- */
- static int doubleConsonant(const char *z){
- return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
- }
- /*
- ** Return TRUE if the word ends with three letters which
- ** are consonant-vowel-consonent and where the final consonant
- ** is not 'w', 'x', or 'y'.
- **
- ** The word is reversed here. So we are really checking the
- ** first three letters and the first one cannot be in [wxy].
- */
- static int star_oh(const char *z){
- return
- z[0]!=0 && isConsonant(z) &&
- z[0]!='w' && z[0]!='x' && z[0]!='y' &&
- z[1]!=0 && isVowel(z+1) &&
- z[2]!=0 && isConsonant(z+2);
- }
- /*
- ** If the word ends with zFrom and xCond() is true for the stem
- ** of the word that preceeds the zFrom ending, then change the
- ** ending to zTo.
- **
- ** The input word *pz and zFrom are both in reverse order. zTo
- ** is in normal order.
- **
- ** Return TRUE if zFrom matches. Return FALSE if zFrom does not
- ** match. Not that TRUE is returned even if xCond() fails and
- ** no substitution occurs.
- */
- static int stem(
- char **pz, /* The word being stemmed (Reversed) */
- const char *zFrom, /* If the ending matches this... (Reversed) */
- const char *zTo, /* ... change the ending to this (not reversed) */
- int (*xCond)(const char*) /* Condition that must be true */
- ){
- char *z = *pz;
- while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
- if( *zFrom!=0 ) return 0;
- if( xCond && !xCond(z) ) return 1;
- while( *zTo ){
- *(--z) = *(zTo++);
- }
- *pz = z;
- return 1;
- }
- /*
- ** This is the fallback stemmer used when the porter stemmer is
- ** inappropriate. The input word is copied into the output with
- ** US-ASCII case folding. If the input word is too long (more
- ** than 20 bytes if it contains no digits or more than 6 bytes if
- ** it contains digits) then word is truncated to 20 or 6 bytes
- ** by taking 10 or 3 bytes from the beginning and end.
- */
- static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
- int i, mx, j;
- int hasDigit = 0;
- for(i=0; i<nIn; i++){
- int c = zIn[i];
- if( c>='A' && c<='Z' ){
- zOut[i] = c - 'A' + 'a';
- }else{
- if( c>='0' && c<='9' ) hasDigit = 1;
- zOut[i] = c;
- }
- }
- mx = hasDigit ? 3 : 10;
- if( nIn>mx*2 ){
- for(j=mx, i=nIn-mx; i<nIn; i++, j++){
- zOut[j] = zOut[i];
- }
- i = j;
- }
- zOut[i] = 0;
- *pnOut = i;
- }
- /*
- ** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
- ** zOut is at least big enough to hold nIn bytes. Write the actual
- ** size of the output word (exclusive of the ' ' terminator) into *pnOut.
- **
- ** Any upper-case characters in the US-ASCII character set ([A-Z])
- ** are converted to lower case. Upper-case UTF characters are
- ** unchanged.
- **
- ** Words that are longer than about 20 bytes are stemmed by retaining
- ** a few bytes from the beginning and the end of the word. If the
- ** word contains digits, 3 bytes are taken from the beginning and
- ** 3 bytes from the end. For long words without digits, 10 bytes
- ** are taken from each end. US-ASCII case folding still applies.
- **
- ** If the input word contains not digits but does characters not
- ** in [a-zA-Z] then no stemming is attempted and this routine just
- ** copies the input into the input into the output with US-ASCII
- ** case folding.
- **
- ** Stemming never increases the length of the word. So there is
- ** no chance of overflowing the zOut buffer.
- */
- static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
- int i, j, c;
- char zReverse[28];
- char *z, *z2;
- if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
- /* The word is too big or too small for the porter stemmer.
- ** Fallback to the copy stemmer */
- copy_stemmer(zIn, nIn, zOut, pnOut);
- return;
- }
- for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
- c = zIn[i];
- if( c>='A' && c<='Z' ){
- zReverse[j] = c + 'a' - 'A';
- }else if( c>='a' && c<='z' ){
- zReverse[j] = c;
- }else{
- /* The use of a character not in [a-zA-Z] means that we fallback
- ** to the copy stemmer */
- copy_stemmer(zIn, nIn, zOut, pnOut);
- return;
- }
- }
- memset(&zReverse[sizeof(zReverse)-5], 0, 5);
- z = &zReverse[j+1];
- /* Step 1a */
- if( z[0]=='s' ){
- if(
- !stem(&z, "sess", "ss", 0) &&
- !stem(&z, "sei", "i", 0) &&
- !stem(&z, "ss", "ss", 0)
- ){
- z++;
- }
- }
- /* Step 1b */
- z2 = z;
- if( stem(&z, "dee", "ee", m_gt_0) ){
- /* Do nothing. The work was all in the test */
- }else if(
- (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
- && z!=z2
- ){
- if( stem(&z, "ta", "ate", 0) ||
- stem(&z, "lb", "ble", 0) ||
- stem(&z, "zi", "ize", 0) ){
- /* Do nothing. The work was all in the test */
- }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
- z++;
- }else if( m_eq_1(z) && star_oh(z) ){
- *(--z) = 'e';
- }
- }
- /* Step 1c */
- if( z[0]=='y' && hasVowel(z+1) ){
- z[0] = 'i';
- }
- /* Step 2 */
- switch( z[1] ){
- case 'a':
- stem(&z, "lanoita", "ate", m_gt_0) ||
- stem(&z, "lanoit", "tion", m_gt_0);
- break;
- case 'c':
- stem(&z, "icne", "ence", m_gt_0) ||
- stem(&z, "icna", "ance", m_gt_0);
- break;
- case 'e':
- stem(&z, "rezi", "ize", m_gt_0);
- break;
- case 'g':
- stem(&z, "igol", "log", m_gt_0);
- break;
- case 'l':
- stem(&z, "ilb", "ble", m_gt_0) ||
- stem(&z, "illa", "al", m_gt_0) ||
- stem(&z, "iltne", "ent", m_gt_0) ||
- stem(&z, "ile", "e", m_gt_0) ||
- stem(&z, "ilsuo", "ous", m_gt_0);
- break;
- case 'o':
- stem(&z, "noitazi", "ize", m_gt_0) ||
- stem(&z, "noita", "ate", m_gt_0) ||
- stem(&z, "rota", "ate", m_gt_0);
- break;
- case 's':
- stem(&z, "msila", "al", m_gt_0) ||
- stem(&z, "ssenevi", "ive", m_gt_0) ||
- stem(&z, "ssenluf", "ful", m_gt_0) ||
- stem(&z, "ssensuo", "ous", m_gt_0);
- break;
- case 't':
- stem(&z, "itila", "al", m_gt_0) ||
- stem(&z, "itivi", "ive", m_gt_0) ||
- stem(&z, "itilib", "ble", m_gt_0);
- break;
- }
- /* Step 3 */
- switch( z[0] ){
- case 'e':
- stem(&z, "etaci", "ic", m_gt_0) ||
- stem(&z, "evita", "", m_gt_0) ||
- stem(&z, "ezila", "al", m_gt_0);
- break;
- case 'i':
- stem(&z, "itici", "ic", m_gt_0);
- break;
- case 'l':
- stem(&z, "laci", "ic", m_gt_0) ||
- stem(&z, "luf", "", m_gt_0);
- break;
- case 's':
- stem(&z, "ssen", "", m_gt_0);
- break;
- }
- /* Step 4 */
- switch( z[1] ){
- case 'a':
- if( z[0]=='l' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'c':
- if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
- z += 4;
- }
- break;
- case 'e':
- if( z[0]=='r' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'i':
- if( z[0]=='c' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'l':
- if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
- z += 4;
- }
- break;
- case 'n':
- if( z[0]=='t' ){
- if( z[2]=='a' ){
- if( m_gt_1(z+3) ){
- z += 3;
- }
- }else if( z[2]=='e' ){
- stem(&z, "tneme", "", m_gt_1) ||
- stem(&z, "tnem", "", m_gt_1) ||
- stem(&z, "tne", "", m_gt_1);
- }
- }
- break;
- case 'o':
- if( z[0]=='u' ){
- if( m_gt_1(z+2) ){
- z += 2;
- }
- }else if( z[3]=='s' || z[3]=='t' ){
- stem(&z, "noi", "", m_gt_1);
- }
- break;
- case 's':
- if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- case 't':
- stem(&z, "eta", "", m_gt_1) ||
- stem(&z, "iti", "", m_gt_1);
- break;
- case 'u':
- if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- case 'v':
- case 'z':
- if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- }
- /* Step 5a */
- if( z[0]=='e' ){
- if( m_gt_1(z+1) ){
- z++;
- }else if( m_eq_1(z+1) && !star_oh(z+1) ){
- z++;
- }
- }
- /* Step 5b */
- if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
- z++;
- }
- /* z[] is now the stemmed word in reverse order. Flip it back
- ** around into forward order and return.
- */
- *pnOut = i = strlen(z);
- zOut[i] = 0;
- while( *z ){
- zOut[--i] = *(z++);
- }
- }
- /*
- ** Characters that can be part of a token. We assume any character
- ** whose value is greater than 0x80 (any UTF character) can be
- ** part of a token. In other words, delimiters all must have
- ** values of 0x7f or lower.
- */
- static const char porterIdChar[] = {
- /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
- };
- #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
- /*
- ** Extract the next token from a tokenization cursor. The cursor must
- ** have been opened by a prior call to porterOpen().
- */
- static int porterNext(
- sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
- const char **pzToken, /* OUT: *pzToken is the token text */
- int *pnBytes, /* OUT: Number of bytes in token */
- int *piStartOffset, /* OUT: Starting offset of token */
- int *piEndOffset, /* OUT: Ending offset of token */
- int *piPosition /* OUT: Position integer of token */
- ){
- porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
- const char *z = c->zInput;
- while( c->iOffset<c->nInput ){
- int iStartOffset, ch;
- /* Scan past delimiter characters */
- while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
- c->iOffset++;
- }
- /* Count non-delimiter characters. */
- iStartOffset = c->iOffset;
- while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
- c->iOffset++;
- }
- if( c->iOffset>iStartOffset ){
- int n = c->iOffset-iStartOffset;
- if( n>c->nAllocated ){
- c->nAllocated = n+20;
- c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
- if( c->zToken==NULL ) return SQLITE_NOMEM;
- }
- porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
- *pzToken = c->zToken;
- *piStartOffset = iStartOffset;
- *piEndOffset = c->iOffset;
- *piPosition = c->iToken++;
- return SQLITE_OK;
- }
- }
- return SQLITE_DONE;
- }
- /*
- ** The set of routines that implement the porter-stemmer tokenizer
- */
- static const sqlite3_tokenizer_module porterTokenizerModule = {
- 0,
- porterCreate,
- porterDestroy,
- porterOpen,
- porterClose,
- porterNext,
- };
- /*
- ** Allocate a new porter tokenizer. Return a pointer to the new
- ** tokenizer in *ppModule
- */
- void sqlite3Fts3PorterTokenizerModule(
- sqlite3_tokenizer_module const**ppModule
- ){
- *ppModule = &porterTokenizerModule;
- }
- #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */