vdbeaux.c.svn-base
上传用户:sunhongbo
上传日期:2022-01-25
资源大小:3010k
文件大小:71k
- /*
- ** 2003 September 6
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- ** This file contains code used for creating, destroying, and populating
- ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
- ** to version 2.8.7, all this code was combined into the vdbe.c source file.
- ** But that file was getting too big so this subroutines were split out.
- */
- #include "sqliteInt.h"
- #include <ctype.h>
- #include "vdbeInt.h"
- /*
- ** When debugging the code generator in a symbolic debugger, one can
- ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
- ** as they are added to the instruction stream.
- */
- #ifdef SQLITE_DEBUG
- int sqlite3VdbeAddopTrace = 0;
- #endif
- /*
- ** Create a new virtual database engine.
- */
- Vdbe *sqlite3VdbeCreate(sqlite3 *db){
- Vdbe *p;
- p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
- if( p==0 ) return 0;
- p->db = db;
- if( db->pVdbe ){
- db->pVdbe->pPrev = p;
- }
- p->pNext = db->pVdbe;
- p->pPrev = 0;
- db->pVdbe = p;
- p->magic = VDBE_MAGIC_INIT;
- return p;
- }
- /*
- ** Remember the SQL string for a prepared statement.
- */
- void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
- if( p==0 ) return;
- assert( p->zSql==0 );
- p->zSql = sqlite3DbStrNDup(p->db, z, n);
- }
- /*
- ** Return the SQL associated with a prepared statement
- */
- const char *sqlite3_sql(sqlite3_stmt *pStmt){
- return ((Vdbe *)pStmt)->zSql;
- }
- /*
- ** Swap all content between two VDBE structures.
- */
- void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
- Vdbe tmp, *pTmp;
- char *zTmp;
- int nTmp;
- tmp = *pA;
- *pA = *pB;
- *pB = tmp;
- pTmp = pA->pNext;
- pA->pNext = pB->pNext;
- pB->pNext = pTmp;
- pTmp = pA->pPrev;
- pA->pPrev = pB->pPrev;
- pB->pPrev = pTmp;
- zTmp = pA->zSql;
- pA->zSql = pB->zSql;
- pB->zSql = zTmp;
- nTmp = pA->nSql;
- pA->nSql = pB->nSql;
- pB->nSql = nTmp;
- }
- #ifdef SQLITE_DEBUG
- /*
- ** Turn tracing on or off
- */
- void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
- p->trace = trace;
- }
- #endif
- /*
- ** Resize the Vdbe.aOp array so that it contains at least N
- ** elements.
- **
- ** If an out-of-memory error occurs while resizing the array,
- ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
- ** any opcodes already allocated can be correctly deallocated
- ** along with the rest of the Vdbe).
- */
- static void resizeOpArray(Vdbe *p, int N){
- VdbeOp *pNew;
- pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
- if( pNew ){
- p->nOpAlloc = N;
- p->aOp = pNew;
- }
- }
- /*
- ** Add a new instruction to the list of instructions current in the
- ** VDBE. Return the address of the new instruction.
- **
- ** Parameters:
- **
- ** p Pointer to the VDBE
- **
- ** op The opcode for this instruction
- **
- ** p1, p2, p3 Operands
- **
- ** Use the sqlite3VdbeResolveLabel() function to fix an address and
- ** the sqlite3VdbeChangeP4() function to change the value of the P4
- ** operand.
- */
- int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
- int i;
- VdbeOp *pOp;
- i = p->nOp;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->nOpAlloc<=i ){
- resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
- if( p->db->mallocFailed ){
- return 0;
- }
- }
- p->nOp++;
- pOp = &p->aOp[i];
- pOp->opcode = op;
- pOp->p5 = 0;
- pOp->p1 = p1;
- pOp->p2 = p2;
- pOp->p3 = p3;
- pOp->p4.p = 0;
- pOp->p4type = P4_NOTUSED;
- p->expired = 0;
- #ifdef SQLITE_DEBUG
- pOp->zComment = 0;
- if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
- #endif
- #ifdef VDBE_PROFILE
- pOp->cycles = 0;
- pOp->cnt = 0;
- #endif
- return i;
- }
- int sqlite3VdbeAddOp0(Vdbe *p, int op){
- return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
- }
- int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
- return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
- }
- int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
- return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
- }
- /*
- ** Add an opcode that includes the p4 value as a pointer.
- */
- int sqlite3VdbeAddOp4(
- Vdbe *p, /* Add the opcode to this VM */
- int op, /* The new opcode */
- int p1, /* The P1 operand */
- int p2, /* The P2 operand */
- int p3, /* The P3 operand */
- const char *zP4, /* The P4 operand */
- int p4type /* P4 operand type */
- ){
- int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
- sqlite3VdbeChangeP4(p, addr, zP4, p4type);
- return addr;
- }
- /*
- ** Create a new symbolic label for an instruction that has yet to be
- ** coded. The symbolic label is really just a negative number. The
- ** label can be used as the P2 value of an operation. Later, when
- ** the label is resolved to a specific address, the VDBE will scan
- ** through its operation list and change all values of P2 which match
- ** the label into the resolved address.
- **
- ** The VDBE knows that a P2 value is a label because labels are
- ** always negative and P2 values are suppose to be non-negative.
- ** Hence, a negative P2 value is a label that has yet to be resolved.
- **
- ** Zero is returned if a malloc() fails.
- */
- int sqlite3VdbeMakeLabel(Vdbe *p){
- int i;
- i = p->nLabel++;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( i>=p->nLabelAlloc ){
- p->nLabelAlloc = p->nLabelAlloc*2 + 10;
- p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
- p->nLabelAlloc*sizeof(p->aLabel[0]));
- }
- if( p->aLabel ){
- p->aLabel[i] = -1;
- }
- return -1-i;
- }
- /*
- ** Resolve label "x" to be the address of the next instruction to
- ** be inserted. The parameter "x" must have been obtained from
- ** a prior call to sqlite3VdbeMakeLabel().
- */
- void sqlite3VdbeResolveLabel(Vdbe *p, int x){
- int j = -1-x;
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( j>=0 && j<p->nLabel );
- if( p->aLabel ){
- p->aLabel[j] = p->nOp;
- }
- }
- /*
- ** Loop through the program looking for P2 values that are negative
- ** on jump instructions. Each such value is a label. Resolve the
- ** label by setting the P2 value to its correct non-zero value.
- **
- ** This routine is called once after all opcodes have been inserted.
- **
- ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
- ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
- ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
- **
- ** This routine also does the following optimization: It scans for
- ** instructions that might cause a statement rollback. Such instructions
- ** are:
- **
- ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
- ** * OP_Destroy
- ** * OP_VUpdate
- ** * OP_VRename
- **
- ** If no such instruction is found, then every Statement instruction
- ** is changed to a Noop. In this way, we avoid creating the statement
- ** journal file unnecessarily.
- */
- static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
- int i;
- int nMaxArgs = 0;
- Op *pOp;
- int *aLabel = p->aLabel;
- int doesStatementRollback = 0;
- int hasStatementBegin = 0;
- for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
- u8 opcode = pOp->opcode;
- if( opcode==OP_Function ){
- if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
- }else if( opcode==OP_AggStep
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- || opcode==OP_VUpdate
- #endif
- ){
- if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
- }
- if( opcode==OP_Halt ){
- if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
- doesStatementRollback = 1;
- }
- }else if( opcode==OP_Statement ){
- hasStatementBegin = 1;
- }else if( opcode==OP_Destroy ){
- doesStatementRollback = 1;
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
- doesStatementRollback = 1;
- }else if( opcode==OP_VFilter ){
- int n;
- assert( p->nOp - i >= 3 );
- assert( pOp[-1].opcode==OP_Integer );
- n = pOp[-1].p1;
- if( n>nMaxArgs ) nMaxArgs = n;
- #endif
- }
- if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
- assert( -1-pOp->p2<p->nLabel );
- pOp->p2 = aLabel[-1-pOp->p2];
- }
- }
- sqlite3_free(p->aLabel);
- p->aLabel = 0;
- *pMaxFuncArgs = nMaxArgs;
- /* If we never rollback a statement transaction, then statement
- ** transactions are not needed. So change every OP_Statement
- ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
- ** which can be expensive on some platforms.
- */
- if( hasStatementBegin && !doesStatementRollback ){
- for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
- if( pOp->opcode==OP_Statement ){
- pOp->opcode = OP_Noop;
- }
- }
- }
- }
- /*
- ** Return the address of the next instruction to be inserted.
- */
- int sqlite3VdbeCurrentAddr(Vdbe *p){
- assert( p->magic==VDBE_MAGIC_INIT );
- return p->nOp;
- }
- /*
- ** Add a whole list of operations to the operation stack. Return the
- ** address of the first operation added.
- */
- int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
- int addr;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->nOp + nOp > p->nOpAlloc ){
- resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
- assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
- }
- if( p->db->mallocFailed ){
- return 0;
- }
- addr = p->nOp;
- if( nOp>0 ){
- int i;
- VdbeOpList const *pIn = aOp;
- for(i=0; i<nOp; i++, pIn++){
- int p2 = pIn->p2;
- VdbeOp *pOut = &p->aOp[i+addr];
- pOut->opcode = pIn->opcode;
- pOut->p1 = pIn->p1;
- if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
- pOut->p2 = addr + ADDR(p2);
- }else{
- pOut->p2 = p2;
- }
- pOut->p3 = pIn->p3;
- pOut->p4type = P4_NOTUSED;
- pOut->p4.p = 0;
- pOut->p5 = 0;
- #ifdef SQLITE_DEBUG
- pOut->zComment = 0;
- if( sqlite3VdbeAddopTrace ){
- sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
- }
- #endif
- }
- p->nOp += nOp;
- }
- return addr;
- }
- /*
- ** Change the value of the P1 operand for a specific instruction.
- ** This routine is useful when a large program is loaded from a
- ** static array using sqlite3VdbeAddOpList but we want to make a
- ** few minor changes to the program.
- */
- void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
- p->aOp[addr].p1 = val;
- }
- }
- /*
- ** Change the value of the P2 operand for a specific instruction.
- ** This routine is useful for setting a jump destination.
- */
- void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
- p->aOp[addr].p2 = val;
- }
- }
- /*
- ** Change the value of the P3 operand for a specific instruction.
- */
- void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
- p->aOp[addr].p3 = val;
- }
- }
- /*
- ** Change the value of the P5 operand for the most recently
- ** added operation.
- */
- void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && p->aOp ){
- assert( p->nOp>0 );
- p->aOp[p->nOp-1].p5 = val;
- }
- }
- /*
- ** Change the P2 operand of instruction addr so that it points to
- ** the address of the next instruction to be coded.
- */
- void sqlite3VdbeJumpHere(Vdbe *p, int addr){
- sqlite3VdbeChangeP2(p, addr, p->nOp);
- }
- /*
- ** If the input FuncDef structure is ephemeral, then free it. If
- ** the FuncDef is not ephermal, then do nothing.
- */
- static void freeEphemeralFunction(FuncDef *pDef){
- if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
- sqlite3_free(pDef);
- }
- }
- /*
- ** Delete a P4 value if necessary.
- */
- static void freeP4(int p4type, void *p3){
- if( p3 ){
- switch( p4type ){
- case P4_REAL:
- case P4_INT64:
- case P4_MPRINTF:
- case P4_DYNAMIC:
- case P4_KEYINFO:
- case P4_KEYINFO_HANDOFF: {
- sqlite3_free(p3);
- break;
- }
- case P4_VDBEFUNC: {
- VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
- freeEphemeralFunction(pVdbeFunc->pFunc);
- sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
- sqlite3_free(pVdbeFunc);
- break;
- }
- case P4_FUNCDEF: {
- freeEphemeralFunction((FuncDef*)p3);
- break;
- }
- case P4_MEM: {
- sqlite3ValueFree((sqlite3_value*)p3);
- break;
- }
- }
- }
- }
- /*
- ** Change N opcodes starting at addr to No-ops.
- */
- void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
- if( p && p->aOp ){
- VdbeOp *pOp = &p->aOp[addr];
- while( N-- ){
- freeP4(pOp->p4type, pOp->p4.p);
- memset(pOp, 0, sizeof(pOp[0]));
- pOp->opcode = OP_Noop;
- pOp++;
- }
- }
- }
- /*
- ** Change the value of the P4 operand for a specific instruction.
- ** This routine is useful when a large program is loaded from a
- ** static array using sqlite3VdbeAddOpList but we want to make a
- ** few minor changes to the program.
- **
- ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
- ** the string is made into memory obtained from sqlite3_malloc().
- ** A value of n==0 means copy bytes of zP4 up to and including the
- ** first null byte. If n>0 then copy n+1 bytes of zP4.
- **
- ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
- ** A copy is made of the KeyInfo structure into memory obtained from
- ** sqlite3_malloc, to be freed when the Vdbe is finalized.
- ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
- ** stored in memory that the caller has obtained from sqlite3_malloc. The
- ** caller should not free the allocation, it will be freed when the Vdbe is
- ** finalized.
- **
- ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
- ** to a string or structure that is guaranteed to exist for the lifetime of
- ** the Vdbe. In these cases we can just copy the pointer.
- **
- ** If addr<0 then change P4 on the most recently inserted instruction.
- */
- void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
- Op *pOp;
- assert( p!=0 );
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->aOp==0 || p->db->mallocFailed ){
- if (n != P4_KEYINFO) {
- freeP4(n, (void*)*(char**)&zP4);
- }
- return;
- }
- assert( addr<p->nOp );
- if( addr<0 ){
- addr = p->nOp - 1;
- if( addr<0 ) return;
- }
- pOp = &p->aOp[addr];
- freeP4(pOp->p4type, pOp->p4.p);
- pOp->p4.p = 0;
- if( n==P4_INT32 ){
- /* Note: this cast is safe, because the origin data point was an int
- ** that was cast to a (const char *). */
- pOp->p4.i = (int)(sqlite3_intptr_t)zP4;
- pOp->p4type = n;
- }else if( zP4==0 ){
- pOp->p4.p = 0;
- pOp->p4type = P4_NOTUSED;
- }else if( n==P4_KEYINFO ){
- KeyInfo *pKeyInfo;
- int nField, nByte;
- nField = ((KeyInfo*)zP4)->nField;
- nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
- pKeyInfo = sqlite3_malloc( nByte );
- pOp->p4.pKeyInfo = pKeyInfo;
- if( pKeyInfo ){
- memcpy(pKeyInfo, zP4, nByte);
- /* In the current implementation, P4_KEYINFO is only ever used on
- ** KeyInfo structures that have no aSortOrder component. Elements
- ** with an aSortOrder always use P4_KEYINFO_HANDOFF. So we do not
- ** need to bother with duplicating the aSortOrder. */
- assert( pKeyInfo->aSortOrder==0 );
- #if 0
- aSortOrder = pKeyInfo->aSortOrder;
- if( aSortOrder ){
- pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
- memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
- }
- #endif
- pOp->p4type = P4_KEYINFO;
- }else{
- p->db->mallocFailed = 1;
- pOp->p4type = P4_NOTUSED;
- }
- }else if( n==P4_KEYINFO_HANDOFF ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = P4_KEYINFO;
- }else if( n<0 ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = n;
- }else{
- if( n==0 ) n = strlen(zP4);
- pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
- pOp->p4type = P4_DYNAMIC;
- }
- }
- #ifndef NDEBUG
- /*
- ** Change the comment on the the most recently coded instruction.
- */
- void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
- va_list ap;
- assert( p->nOp>0 || p->aOp==0 );
- assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
- if( p->nOp ){
- char **pz = &p->aOp[p->nOp-1].zComment;
- va_start(ap, zFormat);
- sqlite3_free(*pz);
- *pz = sqlite3VMPrintf(p->db, zFormat, ap);
- va_end(ap);
- }
- }
- #endif
- /*
- ** Return the opcode for a given address.
- */
- VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
- return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
- }
- #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG)
- || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
- /*
- ** Compute a string that describes the P4 parameter for an opcode.
- ** Use zTemp for any required temporary buffer space.
- */
- static char *displayP4(Op *pOp, char *zTemp, int nTemp){
- char *zP4 = zTemp;
- assert( nTemp>=20 );
- switch( pOp->p4type ){
- case P4_KEYINFO: {
- int i, j;
- KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
- sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
- i = strlen(zTemp);
- for(j=0; j<pKeyInfo->nField; j++){
- CollSeq *pColl = pKeyInfo->aColl[j];
- if( pColl ){
- int n = strlen(pColl->zName);
- if( i+n>nTemp-6 ){
- memcpy(&zTemp[i],",...",4);
- break;
- }
- zTemp[i++] = ',';
- if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
- zTemp[i++] = '-';
- }
- memcpy(&zTemp[i], pColl->zName,n+1);
- i += n;
- }else if( i+4<nTemp-6 ){
- memcpy(&zTemp[i],",nil",4);
- i += 4;
- }
- }
- zTemp[i++] = ')';
- zTemp[i] = 0;
- assert( i<nTemp );
- break;
- }
- case P4_COLLSEQ: {
- CollSeq *pColl = pOp->p4.pColl;
- sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
- break;
- }
- case P4_FUNCDEF: {
- FuncDef *pDef = pOp->p4.pFunc;
- sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
- break;
- }
- case P4_INT64: {
- sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
- break;
- }
- case P4_INT32: {
- sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
- break;
- }
- case P4_REAL: {
- sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
- break;
- }
- case P4_MEM: {
- Mem *pMem = pOp->p4.pMem;
- assert( (pMem->flags & MEM_Null)==0 );
- if( pMem->flags & MEM_Str ){
- zP4 = pMem->z;
- }else if( pMem->flags & MEM_Int ){
- sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
- }else if( pMem->flags & MEM_Real ){
- sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
- }
- break;
- }
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- case P4_VTAB: {
- sqlite3_vtab *pVtab = pOp->p4.pVtab;
- sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
- break;
- }
- #endif
- default: {
- zP4 = pOp->p4.z;
- if( zP4==0 ){
- zP4 = zTemp;
- zTemp[0] = 0;
- }
- }
- }
- assert( zP4!=0 );
- return zP4;
- }
- #endif
- /*
- ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
- **
- */
- void sqlite3VdbeUsesBtree(Vdbe *p, int i){
- int mask;
- assert( i>=0 && i<p->db->nDb );
- assert( i<sizeof(p->btreeMask)*8 );
- mask = 1<<i;
- if( (p->btreeMask & mask)==0 ){
- p->btreeMask |= mask;
- sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
- }
- }
- #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
- /*
- ** Print a single opcode. This routine is used for debugging only.
- */
- void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
- char *zP4;
- char zPtr[50];
- static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %sn";
- if( pOut==0 ) pOut = stdout;
- zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
- fprintf(pOut, zFormat1, pc,
- sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
- #ifdef SQLITE_DEBUG
- pOp->zComment ? pOp->zComment : ""
- #else
- ""
- #endif
- );
- fflush(pOut);
- }
- #endif
- /*
- ** Release an array of N Mem elements
- */
- static void releaseMemArray(Mem *p, int N, int freebuffers){
- if( p && N ){
- sqlite3 *db = p->db;
- int malloc_failed = db->mallocFailed;
- while( N-->0 ){
- assert( N<2 || p[0].db==p[1].db );
- if( freebuffers ){
- sqlite3VdbeMemRelease(p);
- }else{
- sqlite3VdbeMemReleaseExternal(p);
- }
- p->flags = MEM_Null;
- p++;
- }
- db->mallocFailed = malloc_failed;
- }
- }
- #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- int sqlite3VdbeReleaseBuffers(Vdbe *p){
- int ii;
- int nFree = 0;
- assert( sqlite3_mutex_held(p->db->mutex) );
- for(ii=1; ii<=p->nMem; ii++){
- Mem *pMem = &p->aMem[ii];
- if( pMem->z && pMem->flags&MEM_Dyn ){
- assert( !pMem->xDel );
- nFree += sqlite3MallocSize(pMem->z);
- sqlite3VdbeMemRelease(pMem);
- }
- }
- return nFree;
- }
- #endif
- #ifndef SQLITE_OMIT_EXPLAIN
- /*
- ** Give a listing of the program in the virtual machine.
- **
- ** The interface is the same as sqlite3VdbeExec(). But instead of
- ** running the code, it invokes the callback once for each instruction.
- ** This feature is used to implement "EXPLAIN".
- **
- ** When p->explain==1, each instruction is listed. When
- ** p->explain==2, only OP_Explain instructions are listed and these
- ** are shown in a different format. p->explain==2 is used to implement
- ** EXPLAIN QUERY PLAN.
- */
- int sqlite3VdbeList(
- Vdbe *p /* The VDBE */
- ){
- sqlite3 *db = p->db;
- int i;
- int rc = SQLITE_OK;
- Mem *pMem = p->pResultSet = &p->aMem[1];
- assert( p->explain );
- if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
- assert( db->magic==SQLITE_MAGIC_BUSY );
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
- /* Even though this opcode does not use dynamic strings for
- ** the result, result columns may become dynamic if the user calls
- ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
- */
- releaseMemArray(pMem, p->nMem, 1);
- do{
- i = p->pc++;
- }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
- if( i>=p->nOp ){
- p->rc = SQLITE_OK;
- rc = SQLITE_DONE;
- }else if( db->u1.isInterrupted ){
- p->rc = SQLITE_INTERRUPT;
- rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
- }else{
- char *z;
- Op *pOp = &p->aOp[i];
- if( p->explain==1 ){
- pMem->flags = MEM_Int;
- pMem->type = SQLITE_INTEGER;
- pMem->u.i = i; /* Program counter */
- pMem++;
-
- pMem->flags = MEM_Static|MEM_Str|MEM_Term;
- pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
- assert( pMem->z!=0 );
- pMem->n = strlen(pMem->z);
- pMem->type = SQLITE_TEXT;
- pMem->enc = SQLITE_UTF8;
- pMem++;
- }
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p1; /* P1 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p2; /* P2 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
- if( p->explain==1 ){
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p3; /* P3 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
- }
- if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
- p->db->mallocFailed = 1;
- return SQLITE_NOMEM;
- }
- pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
- z = displayP4(pOp, pMem->z, 32);
- if( z!=pMem->z ){
- sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
- }else{
- assert( pMem->z!=0 );
- pMem->n = strlen(pMem->z);
- pMem->enc = SQLITE_UTF8;
- }
- pMem->type = SQLITE_TEXT;
- pMem++;
- if( p->explain==1 ){
- if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
- p->db->mallocFailed = 1;
- return SQLITE_NOMEM;
- }
- pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
- pMem->n = 2;
- sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
- pMem->type = SQLITE_TEXT;
- pMem->enc = SQLITE_UTF8;
- pMem++;
-
- #ifdef SQLITE_DEBUG
- if( pOp->zComment ){
- pMem->flags = MEM_Str|MEM_Term;
- pMem->z = pOp->zComment;
- pMem->n = strlen(pMem->z);
- pMem->enc = SQLITE_UTF8;
- }else
- #endif
- {
- pMem->flags = MEM_Null; /* Comment */
- pMem->type = SQLITE_NULL;
- }
- }
- p->nResColumn = 8 - 5*(p->explain-1);
- p->rc = SQLITE_OK;
- rc = SQLITE_ROW;
- }
- return rc;
- }
- #endif /* SQLITE_OMIT_EXPLAIN */
- #ifdef SQLITE_DEBUG
- /*
- ** Print the SQL that was used to generate a VDBE program.
- */
- void sqlite3VdbePrintSql(Vdbe *p){
- int nOp = p->nOp;
- VdbeOp *pOp;
- if( nOp<1 ) return;
- pOp = &p->aOp[0];
- if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
- const char *z = pOp->p4.z;
- while( isspace(*(u8*)z) ) z++;
- printf("SQL: [%s]n", z);
- }
- }
- #endif
- #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
- /*
- ** Print an IOTRACE message showing SQL content.
- */
- void sqlite3VdbeIOTraceSql(Vdbe *p){
- int nOp = p->nOp;
- VdbeOp *pOp;
- if( sqlite3IoTrace==0 ) return;
- if( nOp<1 ) return;
- pOp = &p->aOp[0];
- if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
- int i, j;
- char z[1000];
- sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
- for(i=0; isspace((unsigned char)z[i]); i++){}
- for(j=0; z[i]; i++){
- if( isspace((unsigned char)z[i]) ){
- if( z[i-1]!=' ' ){
- z[j++] = ' ';
- }
- }else{
- z[j++] = z[i];
- }
- }
- z[j] = 0;
- sqlite3IoTrace("SQL %sn", z);
- }
- }
- #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
- /*
- ** Prepare a virtual machine for execution. This involves things such
- ** as allocating stack space and initializing the program counter.
- ** After the VDBE has be prepped, it can be executed by one or more
- ** calls to sqlite3VdbeExec().
- **
- ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
- ** VDBE_MAGIC_RUN.
- */
- void sqlite3VdbeMakeReady(
- Vdbe *p, /* The VDBE */
- int nVar, /* Number of '?' see in the SQL statement */
- int nMem, /* Number of memory cells to allocate */
- int nCursor, /* Number of cursors to allocate */
- int isExplain /* True if the EXPLAIN keywords is present */
- ){
- int n;
- sqlite3 *db = p->db;
- assert( p!=0 );
- assert( p->magic==VDBE_MAGIC_INIT );
- /* There should be at least one opcode.
- */
- assert( p->nOp>0 );
- /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
- * is because the call to resizeOpArray() below may shrink the
- * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
- * state.
- */
- p->magic = VDBE_MAGIC_RUN;
- /* For each cursor required, also allocate a memory cell. Memory
- ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
- ** the vdbe program. Instead they are used to allocate space for
- ** Cursor/BtCursor structures. The blob of memory associated with
- ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
- ** stores the blob of memory associated with cursor 1, etc.
- **
- ** See also: allocateCursor().
- */
- nMem += nCursor;
- /*
- ** Allocation space for registers.
- */
- if( p->aMem==0 ){
- int nArg; /* Maximum number of args passed to a user function. */
- resolveP2Values(p, &nArg);
- /*resizeOpArray(p, p->nOp);*/
- assert( nVar>=0 );
- if( isExplain && nMem<10 ){
- p->nMem = nMem = 10;
- }
- p->aMem = sqlite3DbMallocZero(db,
- nMem*sizeof(Mem) /* aMem */
- + nVar*sizeof(Mem) /* aVar */
- + nArg*sizeof(Mem*) /* apArg */
- + nVar*sizeof(char*) /* azVar */
- + nCursor*sizeof(Cursor*) + 1 /* apCsr */
- );
- if( !db->mallocFailed ){
- p->aMem--; /* aMem[] goes from 1..nMem */
- p->nMem = nMem; /* not from 0..nMem-1 */
- p->aVar = &p->aMem[nMem+1];
- p->nVar = nVar;
- p->okVar = 0;
- p->apArg = (Mem**)&p->aVar[nVar];
- p->azVar = (char**)&p->apArg[nArg];
- p->apCsr = (Cursor**)&p->azVar[nVar];
- p->nCursor = nCursor;
- for(n=0; n<nVar; n++){
- p->aVar[n].flags = MEM_Null;
- p->aVar[n].db = db;
- }
- for(n=1; n<=nMem; n++){
- p->aMem[n].flags = MEM_Null;
- p->aMem[n].db = db;
- }
- }
- }
- #ifdef SQLITE_DEBUG
- for(n=1; n<p->nMem; n++){
- assert( p->aMem[n].db==db );
- }
- #endif
- p->pc = -1;
- p->rc = SQLITE_OK;
- p->uniqueCnt = 0;
- p->returnDepth = 0;
- p->errorAction = OE_Abort;
- p->explain |= isExplain;
- p->magic = VDBE_MAGIC_RUN;
- p->nChange = 0;
- p->cacheCtr = 1;
- p->minWriteFileFormat = 255;
- p->openedStatement = 0;
- #ifdef VDBE_PROFILE
- {
- int i;
- for(i=0; i<p->nOp; i++){
- p->aOp[i].cnt = 0;
- p->aOp[i].cycles = 0;
- }
- }
- #endif
- }
- /*
- ** Close a VDBE cursor and release all the resources that cursor
- ** happens to hold.
- */
- void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
- if( pCx==0 ){
- return;
- }
- if( pCx->pCursor ){
- sqlite3BtreeCloseCursor(pCx->pCursor);
- }
- if( pCx->pBt ){
- sqlite3BtreeClose(pCx->pBt);
- }
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pCx->pVtabCursor ){
- sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
- const sqlite3_module *pModule = pCx->pModule;
- p->inVtabMethod = 1;
- (void)sqlite3SafetyOff(p->db);
- pModule->xClose(pVtabCursor);
- (void)sqlite3SafetyOn(p->db);
- p->inVtabMethod = 0;
- }
- #endif
- if( !pCx->ephemPseudoTable ){
- sqlite3_free(pCx->pData);
- }
- /* memset(pCx, 0, sizeof(Cursor)); */
- /* sqlite3_free(pCx->aType); */
- /* sqlite3_free(pCx); */
- }
- /*
- ** Close all cursors except for VTab cursors that are currently
- ** in use.
- */
- static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
- int i;
- if( p->apCsr==0 ) return;
- for(i=0; i<p->nCursor; i++){
- Cursor *pC = p->apCsr[i];
- if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
- sqlite3VdbeFreeCursor(p, pC);
- p->apCsr[i] = 0;
- }
- }
- }
- /*
- ** Clean up the VM after execution.
- **
- ** This routine will automatically close any cursors, lists, and/or
- ** sorters that were left open. It also deletes the values of
- ** variables in the aVar[] array.
- */
- static void Cleanup(Vdbe *p, int freebuffers){
- int i;
- closeAllCursorsExceptActiveVtabs(p);
- for(i=1; i<=p->nMem; i++){
- MemSetTypeFlag(&p->aMem[i], MEM_Null);
- }
- releaseMemArray(&p->aMem[1], p->nMem, freebuffers);
- sqlite3VdbeFifoClear(&p->sFifo);
- if( p->contextStack ){
- for(i=0; i<p->contextStackTop; i++){
- sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
- }
- sqlite3_free(p->contextStack);
- }
- p->contextStack = 0;
- p->contextStackDepth = 0;
- p->contextStackTop = 0;
- sqlite3_free(p->zErrMsg);
- p->zErrMsg = 0;
- p->pResultSet = 0;
- }
- /*
- ** Set the number of result columns that will be returned by this SQL
- ** statement. This is now set at compile time, rather than during
- ** execution of the vdbe program so that sqlite3_column_count() can
- ** be called on an SQL statement before sqlite3_step().
- */
- void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
- Mem *pColName;
- int n;
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1);
- sqlite3_free(p->aColName);
- n = nResColumn*COLNAME_N;
- p->nResColumn = nResColumn;
- p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
- if( p->aColName==0 ) return;
- while( n-- > 0 ){
- pColName->flags = MEM_Null;
- pColName->db = p->db;
- pColName++;
- }
- }
- /*
- ** Set the name of the idx'th column to be returned by the SQL statement.
- ** zName must be a pointer to a nul terminated string.
- **
- ** This call must be made after a call to sqlite3VdbeSetNumCols().
- **
- ** If N==P4_STATIC it means that zName is a pointer to a constant static
- ** string and we can just copy the pointer. If it is P4_DYNAMIC, then
- ** the string is freed using sqlite3_free() when the vdbe is finished with
- ** it. Otherwise, N bytes of zName are copied.
- */
- int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
- int rc;
- Mem *pColName;
- assert( idx<p->nResColumn );
- assert( var<COLNAME_N );
- if( p->db->mallocFailed ) return SQLITE_NOMEM;
- assert( p->aColName!=0 );
- pColName = &(p->aColName[idx+var*p->nResColumn]);
- if( N==P4_DYNAMIC || N==P4_STATIC ){
- rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
- }else{
- rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
- }
- if( rc==SQLITE_OK && N==P4_DYNAMIC ){
- pColName->flags &= (~MEM_Static);
- pColName->zMalloc = pColName->z;
- }
- return rc;
- }
- /*
- ** A read or write transaction may or may not be active on database handle
- ** db. If a transaction is active, commit it. If there is a
- ** write-transaction spanning more than one database file, this routine
- ** takes care of the master journal trickery.
- */
- static int vdbeCommit(sqlite3 *db){
- int i;
- int nTrans = 0; /* Number of databases with an active write-transaction */
- int rc = SQLITE_OK;
- int needXcommit = 0;
- /* Before doing anything else, call the xSync() callback for any
- ** virtual module tables written in this transaction. This has to
- ** be done before determining whether a master journal file is
- ** required, as an xSync() callback may add an attached database
- ** to the transaction.
- */
- rc = sqlite3VtabSync(db, rc);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- /* This loop determines (a) if the commit hook should be invoked and
- ** (b) how many database files have open write transactions, not
- ** including the temp database. (b) is important because if more than
- ** one database file has an open write transaction, a master journal
- ** file is required for an atomic commit.
- */
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( sqlite3BtreeIsInTrans(pBt) ){
- needXcommit = 1;
- if( i!=1 ) nTrans++;
- }
- }
- /* If there are any write-transactions at all, invoke the commit hook */
- if( needXcommit && db->xCommitCallback ){
- (void)sqlite3SafetyOff(db);
- rc = db->xCommitCallback(db->pCommitArg);
- (void)sqlite3SafetyOn(db);
- if( rc ){
- return SQLITE_CONSTRAINT;
- }
- }
- /* The simple case - no more than one database file (not counting the
- ** TEMP database) has a transaction active. There is no need for the
- ** master-journal.
- **
- ** If the return value of sqlite3BtreeGetFilename() is a zero length
- ** string, it means the main database is :memory:. In that case we do
- ** not support atomic multi-file commits, so use the simple case then
- ** too.
- */
- if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
- }
- }
- /* Do the commit only if all databases successfully complete phase 1.
- ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
- ** IO error while deleting or truncating a journal file. It is unlikely,
- ** but could happen. In this case abandon processing and return the error.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseTwo(pBt);
- }
- }
- if( rc==SQLITE_OK ){
- sqlite3VtabCommit(db);
- }
- }
- /* The complex case - There is a multi-file write-transaction active.
- ** This requires a master journal file to ensure the transaction is
- ** committed atomicly.
- */
- #ifndef SQLITE_OMIT_DISKIO
- else{
- sqlite3_vfs *pVfs = db->pVfs;
- int needSync = 0;
- char *zMaster = 0; /* File-name for the master journal */
- char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
- sqlite3_file *pMaster = 0;
- i64 offset = 0;
- /* Select a master journal file name */
- do {
- u32 random;
- sqlite3_free(zMaster);
- sqlite3_randomness(sizeof(random), &random);
- zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
- if( !zMaster ){
- return SQLITE_NOMEM;
- }
- rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS);
- }while( rc==1 );
- if( rc!=0 ){
- rc = SQLITE_IOERR_NOMEM;
- }else{
- /* Open the master journal. */
- rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
- SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
- SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
- );
- }
- if( rc!=SQLITE_OK ){
- sqlite3_free(zMaster);
- return rc;
- }
-
- /* Write the name of each database file in the transaction into the new
- ** master journal file. If an error occurs at this point close
- ** and delete the master journal file. All the individual journal files
- ** still have 'null' as the master journal pointer, so they will roll
- ** back independently if a failure occurs.
- */
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( i==1 ) continue; /* Ignore the TEMP database */
- if( sqlite3BtreeIsInTrans(pBt) ){
- char const *zFile = sqlite3BtreeGetJournalname(pBt);
- if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
- if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
- needSync = 1;
- }
- rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
- offset += strlen(zFile)+1;
- if( rc!=SQLITE_OK ){
- sqlite3OsCloseFree(pMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3_free(zMaster);
- return rc;
- }
- }
- }
- /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
- ** flag is set this is not required.
- */
- zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
- if( (needSync
- && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
- && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
- sqlite3OsCloseFree(pMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3_free(zMaster);
- return rc;
- }
- /* Sync all the db files involved in the transaction. The same call
- ** sets the master journal pointer in each individual journal. If
- ** an error occurs here, do not delete the master journal file.
- **
- ** If the error occurs during the first call to
- ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
- ** master journal file will be orphaned. But we cannot delete it,
- ** in case the master journal file name was written into the journal
- ** file before the failure occured.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
- }
- }
- sqlite3OsCloseFree(pMaster);
- if( rc!=SQLITE_OK ){
- sqlite3_free(zMaster);
- return rc;
- }
- /* Delete the master journal file. This commits the transaction. After
- ** doing this the directory is synced again before any individual
- ** transaction files are deleted.
- */
- rc = sqlite3OsDelete(pVfs, zMaster, 1);
- sqlite3_free(zMaster);
- zMaster = 0;
- if( rc ){
- return rc;
- }
- /* All files and directories have already been synced, so the following
- ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
- ** deleting or truncating journals. If something goes wrong while
- ** this is happening we don't really care. The integrity of the
- ** transaction is already guaranteed, but some stray 'cold' journals
- ** may be lying around. Returning an error code won't help matters.
- */
- disable_simulated_io_errors();
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- sqlite3BtreeCommitPhaseTwo(pBt);
- }
- }
- enable_simulated_io_errors();
- sqlite3VtabCommit(db);
- }
- #endif
- return rc;
- }
- /*
- ** This routine checks that the sqlite3.activeVdbeCnt count variable
- ** matches the number of vdbe's in the list sqlite3.pVdbe that are
- ** currently active. An assertion fails if the two counts do not match.
- ** This is an internal self-check only - it is not an essential processing
- ** step.
- **
- ** This is a no-op if NDEBUG is defined.
- */
- #ifndef NDEBUG
- static void checkActiveVdbeCnt(sqlite3 *db){
- Vdbe *p;
- int cnt = 0;
- p = db->pVdbe;
- while( p ){
- if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
- cnt++;
- }
- p = p->pNext;
- }
- assert( cnt==db->activeVdbeCnt );
- }
- #else
- #define checkActiveVdbeCnt(x)
- #endif
- /*
- ** For every Btree that in database connection db which
- ** has been modified, "trip" or invalidate each cursor in
- ** that Btree might have been modified so that the cursor
- ** can never be used again. This happens when a rollback
- *** occurs. We have to trip all the other cursors, even
- ** cursor from other VMs in different database connections,
- ** so that none of them try to use the data at which they
- ** were pointing and which now may have been changed due
- ** to the rollback.
- **
- ** Remember that a rollback can delete tables complete and
- ** reorder rootpages. So it is not sufficient just to save
- ** the state of the cursor. We have to invalidate the cursor
- ** so that it is never used again.
- */
- static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
- int i;
- for(i=0; i<db->nDb; i++){
- Btree *p = db->aDb[i].pBt;
- if( p && sqlite3BtreeIsInTrans(p) ){
- sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
- }
- }
- }
- /*
- ** This routine is called the when a VDBE tries to halt. If the VDBE
- ** has made changes and is in autocommit mode, then commit those
- ** changes. If a rollback is needed, then do the rollback.
- **
- ** This routine is the only way to move the state of a VM from
- ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
- ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
- **
- ** Return an error code. If the commit could not complete because of
- ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
- ** means the close did not happen and needs to be repeated.
- */
- int sqlite3VdbeHalt(Vdbe *p){
- sqlite3 *db = p->db;
- int i;
- int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
- int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
- /* This function contains the logic that determines if a statement or
- ** transaction will be committed or rolled back as a result of the
- ** execution of this virtual machine.
- **
- ** If any of the following errors occur:
- **
- ** SQLITE_NOMEM
- ** SQLITE_IOERR
- ** SQLITE_FULL
- ** SQLITE_INTERRUPT
- **
- ** Then the internal cache might have been left in an inconsistent
- ** state. We need to rollback the statement transaction, if there is
- ** one, or the complete transaction if there is no statement transaction.
- */
- if( p->db->mallocFailed ){
- p->rc = SQLITE_NOMEM;
- }
- closeAllCursorsExceptActiveVtabs(p);
- if( p->magic!=VDBE_MAGIC_RUN ){
- return SQLITE_OK;
- }
- checkActiveVdbeCnt(db);
- /* No commit or rollback needed if the program never started */
- if( p->pc>=0 ){
- int mrc; /* Primary error code from p->rc */
- /* Lock all btrees used by the statement */
- sqlite3BtreeMutexArrayEnter(&p->aMutex);
- /* Check for one of the special errors */
- mrc = p->rc & 0xff;
- isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
- || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
- if( isSpecialError ){
- /* This loop does static analysis of the query to see which of the
- ** following three categories it falls into:
- **
- ** Read-only
- ** Query with statement journal
- ** Query without statement journal
- **
- ** We could do something more elegant than this static analysis (i.e.
- ** store the type of query as part of the compliation phase), but
- ** handling malloc() or IO failure is a fairly obscure edge case so
- ** this is probably easier. Todo: Might be an opportunity to reduce
- ** code size a very small amount though...
- */
- int notReadOnly = 0;
- int isStatement = 0;
- assert(p->aOp || p->nOp==0);
- for(i=0; i<p->nOp; i++){
- switch( p->aOp[i].opcode ){
- case OP_Transaction:
- notReadOnly |= p->aOp[i].p2;
- break;
- case OP_Statement:
- isStatement = 1;
- break;
- }
- }
-
- /* If the query was read-only, we need do no rollback at all. Otherwise,
- ** proceed with the special handling.
- */
- if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
- if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
- xFunc = sqlite3BtreeRollbackStmt;
- p->rc = SQLITE_BUSY;
- } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
- xFunc = sqlite3BtreeRollbackStmt;
- }else{
- /* We are forced to roll back the active transaction. Before doing
- ** so, abort any other statements this handle currently has active.
- */
- invalidateCursorsOnModifiedBtrees(db);
- sqlite3RollbackAll(db);
- db->autoCommit = 1;
- }
- }
- }
-
- /* If the auto-commit flag is set and this is the only active vdbe, then
- ** we do either a commit or rollback of the current transaction.
- **
- ** Note: This block also runs if one of the special errors handled
- ** above has occured.
- */
- if( db->autoCommit && db->activeVdbeCnt==1 ){
- if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
- /* The auto-commit flag is true, and the vdbe program was
- ** successful or hit an 'OR FAIL' constraint. This means a commit
- ** is required.
- */
- int rc = vdbeCommit(db);
- if( rc==SQLITE_BUSY ){
- sqlite3BtreeMutexArrayLeave(&p->aMutex);
- return SQLITE_BUSY;
- }else if( rc!=SQLITE_OK ){
- p->rc = rc;
- sqlite3RollbackAll(db);
- }else{
- sqlite3CommitInternalChanges(db);
- }
- }else{
- sqlite3RollbackAll(db);
- }
- }else if( !xFunc ){
- if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
- if( p->openedStatement ){
- xFunc = sqlite3BtreeCommitStmt;
- }
- }else if( p->errorAction==OE_Abort ){
- xFunc = sqlite3BtreeRollbackStmt;
- }else{
- invalidateCursorsOnModifiedBtrees(db);
- sqlite3RollbackAll(db);
- db->autoCommit = 1;
- }
- }
-
- /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
- ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
- ** and the return code is still SQLITE_OK, set the return code to the new
- ** error value.
- */
- assert(!xFunc ||
- xFunc==sqlite3BtreeCommitStmt ||
- xFunc==sqlite3BtreeRollbackStmt
- );
- for(i=0; xFunc && i<db->nDb; i++){
- int rc;
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = xFunc(pBt);
- if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
- p->rc = rc;
- sqlite3SetString(&p->zErrMsg, 0);
- }
- }
- }
-
- /* If this was an INSERT, UPDATE or DELETE and the statement was committed,
- ** set the change counter.
- */
- if( p->changeCntOn && p->pc>=0 ){
- if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
- sqlite3VdbeSetChanges(db, p->nChange);
- }else{
- sqlite3VdbeSetChanges(db, 0);
- }
- p->nChange = 0;
- }
-
- /* Rollback or commit any schema changes that occurred. */
- if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
- sqlite3ResetInternalSchema(db, 0);
- db->flags = (db->flags | SQLITE_InternChanges);
- }
- /* Release the locks */
- sqlite3BtreeMutexArrayLeave(&p->aMutex);
- }
- /* We have successfully halted and closed the VM. Record this fact. */
- if( p->pc>=0 ){
- db->activeVdbeCnt--;
- }
- p->magic = VDBE_MAGIC_HALT;
- checkActiveVdbeCnt(db);
- if( p->db->mallocFailed ){
- p->rc = SQLITE_NOMEM;
- }
- checkActiveVdbeCnt(db);
- return SQLITE_OK;
- }
- /*
- ** Each VDBE holds the result of the most recent sqlite3_step() call
- ** in p->rc. This routine sets that result back to SQLITE_OK.
- */
- void sqlite3VdbeResetStepResult(Vdbe *p){
- p->rc = SQLITE_OK;
- }
- /*
- ** Clean up a VDBE after execution but do not delete the VDBE just yet.
- ** Write any error messages into *pzErrMsg. Return the result code.
- **
- ** After this routine is run, the VDBE should be ready to be executed
- ** again.
- **
- ** To look at it another way, this routine resets the state of the
- ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
- ** VDBE_MAGIC_INIT.
- */
- int sqlite3VdbeReset(Vdbe *p, int freebuffers){
- sqlite3 *db;
- db = p->db;
- /* If the VM did not run to completion or if it encountered an
- ** error, then it might not have been halted properly. So halt
- ** it now.
- */
- (void)sqlite3SafetyOn(db);
- sqlite3VdbeHalt(p);
- (void)sqlite3SafetyOff(db);
- /* If the VDBE has be run even partially, then transfer the error code
- ** and error message from the VDBE into the main database structure. But
- ** if the VDBE has just been set to run but has not actually executed any
- ** instructions yet, leave the main database error information unchanged.
- */
- if( p->pc>=0 ){
- if( p->zErrMsg ){
- sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
- db->errCode = p->rc;
- p->zErrMsg = 0;
- }else if( p->rc ){
- sqlite3Error(db, p->rc, 0);
- }else{
- sqlite3Error(db, SQLITE_OK, 0);
- }
- }else if( p->rc && p->expired ){
- /* The expired flag was set on the VDBE before the first call
- ** to sqlite3_step(). For consistency (since sqlite3_step() was
- ** called), set the database error in this case as well.
- */
- sqlite3Error(db, p->rc, 0);
- sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
- p->zErrMsg = 0;
- }
- /* Reclaim all memory used by the VDBE
- */
- Cleanup(p, freebuffers);
- /* Save profiling information from this VDBE run.
- */
- #ifdef VDBE_PROFILE
- {
- FILE *out = fopen("vdbe_profile.out", "a");
- if( out ){
- int i;
- fprintf(out, "---- ");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%02x", p->aOp[i].opcode);
- }
- fprintf(out, "n");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%6d %10lld %8lld ",
- p->aOp[i].cnt,
- p->aOp[i].cycles,
- p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
- );
- sqlite3VdbePrintOp(out, i, &p->aOp[i]);
- }
- fclose(out);
- }
- }
- #endif
- p->magic = VDBE_MAGIC_INIT;
- p->aborted = 0;
- return p->rc & db->errMask;
- }
-
- /*
- ** Clean up and delete a VDBE after execution. Return an integer which is
- ** the result code. Write any error message text into *pzErrMsg.
- */
- int sqlite3VdbeFinalize(Vdbe *p){
- int rc = SQLITE_OK;
- if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
- rc = sqlite3VdbeReset(p, 1);
- assert( (rc & p->db->errMask)==rc );
- }else if( p->magic!=VDBE_MAGIC_INIT ){
- return SQLITE_MISUSE;
- }
- releaseMemArray(&p->aMem[1], p->nMem, 1);
- sqlite3VdbeDelete(p);
- return rc;
- }
- /*
- ** Call the destructor for each auxdata entry in pVdbeFunc for which
- ** the corresponding bit in mask is clear. Auxdata entries beyond 31
- ** are always destroyed. To destroy all auxdata entries, call this
- ** routine with mask==0.
- */
- void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
- int i;
- for(i=0; i<pVdbeFunc->nAux; i++){
- struct AuxData *pAux = &pVdbeFunc->apAux[i];
- if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
- if( pAux->xDelete ){
- pAux->xDelete(pAux->pAux);
- }
- pAux->pAux = 0;
- }
- }
- }
- /*
- ** Delete an entire VDBE.
- */
- void sqlite3VdbeDelete(Vdbe *p){
- int i;
- if( p==0 ) return;
- Cleanup(p, 1);
- if( p->pPrev ){
- p->pPrev->pNext = p->pNext;
- }else{
- assert( p->db->pVdbe==p );
- p->db->pVdbe = p->pNext;
- }
- if( p->pNext ){
- p->pNext->pPrev = p->pPrev;
- }
- if( p->aOp ){
- Op *pOp = p->aOp;
- for(i=0; i<p->nOp; i++, pOp++){
- freeP4(pOp->p4type, pOp->p4.p);
- #ifdef SQLITE_DEBUG
- sqlite3_free(pOp->zComment);
- #endif
- }
- sqlite3_free(p->aOp);
- }
- releaseMemArray(p->aVar, p->nVar, 1);
- sqlite3_free(p->aLabel);
- if( p->aMem ){
- sqlite3_free(&p->aMem[1]);
- }
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1);
- sqlite3_free(p->aColName);
- sqlite3_free(p->zSql);
- p->magic = VDBE_MAGIC_DEAD;
- sqlite3_free(p);
- }
- /*
- ** If a MoveTo operation is pending on the given cursor, then do that
- ** MoveTo now. Return an error code. If no MoveTo is pending, this
- ** routine does nothing and returns SQLITE_OK.
- */
- int sqlite3VdbeCursorMoveto(Cursor *p){
- if( p->deferredMoveto ){
- int res, rc;
- #ifdef SQLITE_TEST
- extern int sqlite3_search_count;
- #endif
- assert( p->isTable );
- rc = sqlite3BtreeMoveto(p->pCursor, 0, 0, p->movetoTarget, 0, &res);
- if( rc ) return rc;
- *p->pIncrKey = 0;
- p->lastRowid = keyToInt(p->movetoTarget);
- p->rowidIsValid = res==0;
- if( res<0 ){
- rc = sqlite3BtreeNext(p->pCursor, &res);
- if( rc ) return rc;
- }
- #ifdef SQLITE_TEST
- sqlite3_search_count++;
- #endif
- p->deferredMoveto = 0;
- p->cacheStatus = CACHE_STALE;
- }
- return SQLITE_OK;
- }
- /*
- ** The following functions:
- **
- ** sqlite3VdbeSerialType()
- ** sqlite3VdbeSerialTypeLen()
- ** sqlite3VdbeSerialRead()
- ** sqlite3VdbeSerialLen()
- ** sqlite3VdbeSerialWrite()
- **
- ** encapsulate the code that serializes values for storage in SQLite
- ** data and index records. Each serialized value consists of a
- ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
- ** integer, stored as a varint.
- **
- ** In an SQLite index record, the serial type is stored directly before
- ** the blob of data that it corresponds to. In a table record, all serial
- ** types are stored at the start of the record, and the blobs of data at
- ** the end. Hence these functions allow the caller to handle the
- ** serial-type and data blob seperately.
- **
- ** The following table describes the various storage classes for data:
- **
- ** serial type bytes of data type
- ** -------------- --------------- ---------------
- ** 0 0 NULL
- ** 1 1 signed integer
- ** 2 2 signed integer
- ** 3 3 signed integer
- ** 4 4 signed integer
- ** 5 6 signed integer
- ** 6 8 signed integer
- ** 7 8 IEEE float
- ** 8 0 Integer constant 0
- ** 9 0 Integer constant 1
- ** 10,11 reserved for expansion
- ** N>=12 and even (N-12)/2 BLOB
- ** N>=13 and odd (N-13)/2 text
- **
- ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
- ** of SQLite will not understand those serial types.
- */
- /*
- ** Return the serial-type for the value stored in pMem.
- */
- u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
- int flags = pMem->flags;
- int n;
- if( flags&MEM_Null ){
- return 0;
- }
- if( flags&MEM_Int ){
- /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
- # define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
- i64 i = pMem->u.i;
- u64 u;
- if( file_format>=4 && (i&1)==i ){
- return 8+i;
- }
- u = i<0 ? -i : i;
- if( u<=127 ) return 1;
- if( u<=32767 ) return 2;
- if( u<=8388607 ) return 3;
- if( u<=2147483647 ) return 4;
- if( u<=MAX_6BYTE ) return 5;
- return 6;
- }
- if( flags&MEM_Real ){
- return 7;
- }
- assert( flags&(MEM_Str|MEM_Blob) );
- n = pMem->n;
- if( flags & MEM_Zero ){
- n += pMem->u.i;
- }
- assert( n>=0 );
- return ((n*2) + 12 + ((flags&MEM_Str)!=0));
- }
- /*
- ** Return the length of the data corresponding to the supplied serial-type.
- */
- int sqlite3VdbeSerialTypeLen(u32 serial_type){
- if( serial_type>=12 ){
- return (serial_type-12)/2;
- }else{
- static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
- return aSize[serial_type];
- }
- }
- /*
- ** If we are on an architecture with mixed-endian floating
- ** points (ex: ARM7) then swap the lower 4 bytes with the
- ** upper 4 bytes. Return the result.
- **
- ** For most architectures, this is a no-op.
- **
- ** (later): It is reported to me that the mixed-endian problem
- ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
- ** that early versions of GCC stored the two words of a 64-bit
- ** float in the wrong order. And that error has been propagated
- ** ever since. The blame is not necessarily with GCC, though.
- ** GCC might have just copying the problem from a prior compiler.
- ** I am also told that newer versions of GCC that follow a different
- ** ABI get the byte order right.
- **
- ** Developers using SQLite on an ARM7 should compile and run their
- ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
- ** enabled, some asserts below will ensure that the byte order of
- ** floating point values is correct.
- **
- ** (2007-08-30) Frank van Vugt has studied this problem closely
- ** and has send his findings to the SQLite developers. Frank
- ** writes that some Linux kernels offer floating point hardware
- ** emulation that uses only 32-bit mantissas instead of a full
- ** 48-bits as required by the IEEE standard. (This is the
- ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
- ** byte swapping becomes very complicated. To avoid problems,
- ** the necessary byte swapping is carried out using a 64-bit integer
- ** rather than a 64-bit float. Frank assures us that the code here
- ** works for him. We, the developers, have no way to independently
- ** verify this, but Frank seems to know what he is talking about
- ** so we trust him.
- */
- #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
- static u64 floatSwap(u64 in){
- union {
- u64 r;
- u32 i[2];
- } u;
- u32 t;
- u.r = in;
- t = u.i[0];
- u.i[0] = u.i[1];
- u.i[1] = t;
- return u.r;
- }
- # define swapMixedEndianFloat(X) X = floatSwap(X)
- #else
- # define swapMixedEndianFloat(X)
- #endif
- /*
- ** Write the serialized data blob for the value stored in pMem into
- ** buf. It is assumed that the caller has allocated sufficient space.
- ** Return the number of bytes written.
- **
- ** nBuf is the amount of space left in buf[]. nBuf must always be
- ** large enough to hold the entire field. Except, if the field is
- ** a blob with a zero-filled tail, then buf[] might be just the right
- ** size to hold everything except for the zero-filled tail. If buf[]
- ** is only big enough to hold the non-zero prefix, then only write that
- ** prefix into buf[]. But if buf[] is large enough to hold both the
- ** prefix and the tail then write the prefix and set the tail to all
- ** zeros.
- **
- ** Return the number of bytes actually written into buf[]. The number
- ** of bytes in the zero-filled tail is included in the return value only
- ** if those bytes were zeroed in buf[].
- */
- int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
- u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
- int len;
- /* Integer and Real */
- if( serial_type<=7 && serial_type>0 ){
- u64 v;
- int i;
- if( serial_type==7 ){
- assert( sizeof(v)==sizeof(pMem->r) );
- memcpy(&v, &pMem->r, sizeof(v));
- swapMixedEndianFloat(v);
- }else{
- v = pMem->u.i;
- }
- len = i = sqlite3VdbeSerialTypeLen(serial_type);
- assert( len<=nBuf );
- while( i-- ){
- buf[i] = (v&0xFF);
- v >>= 8;
- }
- return len;
- }
- /* String or blob */
- if( serial_type>=12 ){
- assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
- == sqlite3VdbeSerialTypeLen(serial_type) );
- assert( pMem->n<=nBuf );
- len = pMem->n;
- memcpy(buf, pMem->z, len);
- if( pMem->flags & MEM_Zero ){
- len += pMem->u.i;
- if( len>nBuf ){
- len = nBuf;
- }
- memset(&buf[pMem->n], 0, len-pMem->n);
- }
- return len;
- }
- /* NULL or constants 0 or 1 */
- return 0;
- }
- /*
- ** Deserialize the data blob pointed to by buf as serial type serial_type
- ** and store the result in pMem. Return the number of bytes read.
- */
- int sqlite3VdbeSerialGet(
- const unsigned char *buf, /* Buffer to deserialize from */
- u32 serial_type, /* Serial type to deserialize */
- Mem *pMem /* Memory cell to write value into */
- ){
- switch( serial_type ){
- case 10: /* Reserved for future use */
- case 11: /* Reserved for future use */
- case 0: { /* NULL */
- pMem->flags = MEM_Null;
- break;
- }
- case 1: { /* 1-byte signed integer */
- pMem->u.i = (signed char)buf[0];
- pMem->flags = MEM_Int;
- return 1;
- }
- case 2: { /* 2-byte signed integer */
- pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
- pMem->flags = MEM_Int;
- return 2;
- }
- case 3: { /* 3-byte signed integer */
- pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
- pMem->flags = MEM_Int;
- return 3;
- }
- case 4: { /* 4-byte signed integer */
- pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
- pMem->flags = MEM_Int;
- return 4;
- }
- case 5: { /* 6-byte signed integer */
- u64 x = (((signed char)buf[0])<<8) | buf[1];
- u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
- x = (x<<32) | y;
- pMem->u.i = *(i64*)&x;
- pMem->flags = MEM_Int;
- return 6;
- }
- case 6: /* 8-byte signed integer */
- case 7: { /* IEEE floating point */
- u64 x;
- u32 y;
- #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
- /* Verify that integers and floating point values use the same
- ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
- ** defined that 64-bit floating point values really are mixed
- ** endian.
- */
- static const u64 t1 = ((u64)0x3ff00000)<<32;
- static const double r1 = 1.0;
- u64 t2 = t1;
- swapMixedEndianFloat(t2);
- assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
- #endif
- x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
- y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
- x = (x<<32) | y;
- if( serial_type==6 ){
- pMem->u.i = *(i64*)&x;
- pMem->flags = MEM_Int;
- }else{
- assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
- swapMixedEndianFloat(x);
- memcpy(&pMem->r, &x, sizeof(x));
- pMem->flags = MEM_Real;
- }
- return 8;
- }
- case 8: /* Integer 0 */
- case 9: { /* Integer 1 */
- pMem->u.i = serial_type-8;
- pMem->flags = MEM_Int;
- return 0;
- }
- default: {
- int len = (serial_type-12)/2;
- pMem->z = (char *)buf;
- pMem->n = len;
- pMem->xDel = 0;
- if( serial_type&0x01 ){
- pMem->flags = MEM_Str | MEM_Ephem;
- }else{
- pMem->flags = MEM_Blob | MEM_Ephem;
- }
- return len;
- }
- }
- return 0;
- }
- /*
- ** The header of a record consists of a sequence variable-length integers.
- ** These integers are almost always small and are encoded as a single byte.
- ** The following macro takes advantage this fact to provide a fast decode
- ** of the integers in a record header. It is faster for the common case
- ** where the integer is a single byte. It is a little slower when the
- ** integer is two or more bytes. But overall it is faster.
- **
- ** The following expressions are equivalent:
- **
- ** x = sqlite3GetVarint32( A, &B );
- **
- ** x = GetVarint( A, B );
- **
- */
- #define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
- /*
- ** Given the nKey-byte encoding of a record in pKey[], parse the
- ** record into a UnpackedRecord structure. Return a pointer to
- ** that structure.
- **
- ** The calling function might provide szSpace bytes of memory
- ** space at pSpace. This space can be used to hold the returned
- ** VDbeParsedRecord structure if it is large enough. If it is
- ** not big enough, space is obtained from sqlite3_malloc().
- **
- ** The returned structure should be closed by a call to
- ** sqlite3VdbeDeleteUnpackedRecord().
- */
- UnpackedRecord *sqlite3VdbeRecordUnpack(
- KeyInfo *pKeyInfo, /* Information about the record format */
- int nKey, /* Size of the binary record */
- const void *pKey, /* The binary record */
- void *pSpace, /* Space available to hold resulting object */
- int szSpace /* Size of pSpace[] in bytes */
- ){
- const unsigned char *aKey = (const unsigned char *)pKey;
- UnpackedRecord *p;
- int nByte;
- int i, idx, d;
- u32 szHdr;
- Mem *pMem;
-
- assert( sizeof(Mem)>sizeof(*p) );
- nByte = sizeof(Mem)*(pKeyInfo->nField+2);
- if( nByte>szSpace ){
- p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
- if( p==0 ) return 0;
- p->needFree = 1;
- }else{
- p = pSpace;
- p->needFree = 0;
- }
- p->pKeyInfo = pKeyInfo;
- p->nField = pKeyInfo->nField + 1;
- p->needDestroy = 1;
- p->aMem = pMem = &((Mem*)p)[1];
- idx = GetVarint(aKey, szHdr);
- d = szHdr;
- i = 0;
- while( idx<szHdr && i<p->nField ){
- u32 serial_type;
- idx += GetVarint( aKey+idx, serial_type);
- if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
- pMem->enc = pKeyInfo->enc;
- pMem->db = pKeyInfo->db;
- pMem->flags = 0;
- pMem->zMalloc = 0;
- d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
- pMem++;
- i++;
- }
- p->nField = i;
- return (void*)p;
- }
- /*
- ** This routine destroys a UnpackedRecord object
- */
- void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
- if( p ){
- if( p->needDestroy ){
- int i;
- Mem *pMem;
- for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
- if( pMem->zMalloc ){
- sqlite3VdbeMemRelease(pMem);
- }
- }
- }
- if( p->needFree ){
- sqlite3_free(p);
- }
- }
- }
- /*
- ** This function compares the two table rows or index records
- ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
- ** or positive integer if {nKey1, pKey1} is less than, equal to or
- ** greater than pPKey2. The {nKey1, pKey1} key must be a blob
- ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
- ** key must be a parsed key such as obtained from
- ** sqlite3VdbeParseRecord.
- **
- ** Key1 and Key2 do not have to contain the same number of fields.
- ** But if the lengths differ, Key2 must be the shorter of the two.
- **
- ** Historical note: In earlier versions of this routine both Key1
- ** and Key2 were blobs obtained from OP_MakeRecord. But we found
- ** that in typical use the same Key2 would be submitted multiple times
- ** in a row. So an optimization was added to parse the Key2 key
- ** separately and submit the parsed version. In this way, we avoid
- ** parsing the same Key2 multiple times in a row.
- */
- int sqlite3VdbeRecordCompare(
- int nKey1, const void *pKey1,
- UnpackedRecord *pPKey2
- ){
- u32 d1; /* Offset into aKey[] of next data element */
- u32 idx1; /* Offset into aKey[] of next header element */
- u32 szHdr1; /* Number of bytes in header */
- int i = 0;
- int nField;
- int rc = 0;
- const unsigned char *aKey1 = (const unsigned char *)pKey1;
- KeyInfo *pKeyInfo;
- Mem mem1;
- pKeyInfo = pPKey2->pKeyInfo;
- mem1.enc = pKeyInfo->enc;
- mem1.db = pKeyInfo->db;
- mem1.flags = 0;
- mem1.zMalloc = 0;
-
- idx1 = GetVarint(aKey1, szHdr1);
- d1 = szHdr1;
- nField = pKeyInfo->nField;
- while( idx1<szHdr1 && i<pPKey2->nField ){
- u32 serial_type1;
- /* Read the serial types for the next element in each key. */
- idx1 += GetVarint( aKey1+idx1, serial_type1 );
- if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
- /* Extract the values to be compared.
- */
- d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
- /* Do the comparison
- */
- rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
- i<nField ? pKeyInfo->aColl[i] : 0);
- if( rc!=0 ){
- break;
- }
- i++;
- }
- if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
- /* One of the keys ran out of fields, but all the fields up to that point
- ** were equal. If the incrKey flag is true, then the second key is
- ** treated as larger.
- */
- if( rc==0 ){
- if( pKeyInfo->incrKey ){
- rc = -1;
- }else if( !pKeyInfo->prefixIsEqual ){
- if( d1<nKey1 ){
- rc = 1;
- }
- }
- }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
- && pKeyInfo->aSortOrder[i] ){
- rc = -rc;
- }
- return rc;
- }
- /*
- ** The argument is an index entry composed using the OP_MakeRecord opcode.
- ** The last entry in this record should be an integer (specifically
- ** an integer rowid). This routine returns the number of bytes in
- ** that integer.
- */
- int sqlite3VdbeIdxRowidLen(const u8 *aKey){
- u32 szHdr; /* Size of the header */
- u32 typeRowid; /* Serial type of the rowid */
- sqlite3GetVarint32(aKey, &szHdr);
- sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
- return sqlite3VdbeSerialTypeLen(typeRowid);
- }
-
- /*
- ** pCur points at an index entry created using the OP_MakeRecord opcode.
- ** Read the rowid (the last field in the record) and store it in *rowid.
- ** Return SQLITE_OK if everything works, or an error code otherwise.
- */
- int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
- i64 nCellKey = 0;
- int rc;
- u32 szHdr; /* Size of the header */
- u32 typeRowid; /* Serial type of the rowid */
- u32 lenRowid; /* Size of the rowid */
- Mem m, v;
- sqlite3BtreeKeySize(pCur, &nCellKey);
- if( nCellKey<=0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- m.flags = 0;
- m.db = 0;
- m.zMalloc = 0;
- rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
- if( rc ){
- return rc;
- }
- sqlite3GetVarint32((u8*)m.z, &szHdr);
- sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
- lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
- sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
- *rowid = v.u.i;
- sqlite3VdbeMemRelease(&m);
- return SQLITE_OK;
- }
- /*
- ** Compare the key of the index entry that cursor pC is point to against
- ** the key string in pKey (of length nKey). Write into *pRes a number
- ** that is negative, zero, or positive if pC is less than, equal to,
- ** or greater than pKey. Return SQLITE_OK on success.
- **
- ** pKey is either created without a rowid or is truncated so that it
- ** omits the rowid at the end. The rowid at the end of the index entry
- ** is ignored as well.
- */
- int sqlite3VdbeIdxKeyCompare(
- Cursor *pC, /* The cursor to compare against */
- int nKey, const u8 *pKey, /* The key to compare */
- int *res /* Write the comparison result here */
- ){
- i64 nCellKey = 0;
- int rc;
- BtCursor *pCur = pC->pCursor;
- int lenRowid;
- Mem m;
- UnpackedRecord *pRec;
- char zSpace[200];
- sqlite3BtreeKeySize(pCur, &nCellKey);
- if( nCellKey<=0 ){
- *res = 0;
- return SQLITE_OK;
- }
- m.db = 0;
- m.flags = 0;
- m.zMalloc = 0;
- rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
- if( rc ){
- return rc;
- }
- lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
- pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey,
- zSpace, sizeof(zSpace));
- if( pRec==0 ){
- return SQLITE_NOMEM;
- }
- *res = sqlite3VdbeRecordCompare(m.n-lenRowid, m.z, pRec);
- sqlite3VdbeDeleteUnpackedRecord(pRec);
- sqlite3VdbeMemRelease(&m);
- return SQLITE_OK;
- }
- /*
- ** This routine sets the value to be returned by subsequent calls to
- ** sqlite3_changes() on the database handle 'db'.
- */
- void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
- assert( sqlite3_mutex_held(db->mutex) );
- db->nChange = nChange;
- db->nTotalChange += nChange;
- }
- /*
- ** Set a flag in the vdbe to update the change counter when it is finalised
- ** or reset.
- */
- void sqlite3VdbeCountChanges(Vdbe *v){
- v->changeCntOn = 1;
- }
- /*
- ** Mark every prepared statement associated with a database connection
- ** as expired.
- **
- ** An expired statement means that recompilation of the statement is
- ** recommend. Statements expire when things happen that make their
- ** programs obsolete. Removing user-defined functions or collating
- ** sequences, or changing an authorization function are the types of
- ** things that make prepared statements obsolete.
- */
- void sqlite3ExpirePreparedStatements(sqlite3 *db){
- Vdbe *p;
- for(p = db->pVdbe; p; p=p->pNext){
- p->expired = 1;
- }
- }
- /*
- ** Return the database associated with the Vdbe.
- */
- sqlite3 *sqlite3VdbeDb(Vdbe *v){
- return v->db;
- }